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Airfoil with minimum relaxation drag 

H. BUGGISCH, W. ELLERMEIER and J. WELLMANN (DARMSTADT) 

THE FOLLOWING problem is discussed: what is the shape of a two-dimensional airfoil which, 
at a given length, area and lift, makes the relaxation drag (i.e. the drag caused by thermodynamic 
relaxation) a minimum. The discussion is confined to the cases of subsonic flows and slender 
airfoils. The optimal shape is actually derived for the case of near equilibrium flow. Thus 
the problem is reduced to minimizing a certain integral under the side condition that the 
length, area and lift of the airfoil have prescribed values. 

Rozwarono nast~puj~&ce zagadnienie: jaki powinien bye k.sztatt dwuwymiarowego plata (pro­
filu), aby przy danej dlugoSci, powierzchni i WYporze op6r relaksacyjny (tzn. op6r W}'Wolany 
przez tenrlodynamiczru& relaksacj~) mial warto8C minimaln~&. Dysk:usj~ ograniczono do przy­
pad,ku przeplyw6w podd.Zwi~koWYch i smuldego profilu. Ksztalt optymalny wyznacza si~ w istocie 
dla przeplyw6w bliskich r6wnowagowych. W ten spos6b zadanie sprowadza si~ do minimali­
zacji pewnej calki z warunkami bocznymi dotye7Jlcymi staloSci dlugoSci, powierzchni profilu 
i wartoSci wyporu. 

PaceMOTpeHa CJIC.zcylQIUaJI ~qa: KaKaJl ~O.JDI<HB 6Lm. <l><>PMa .ltBYMepHoro J<Pbl1Ul (npocl>llml), 
ll'l'OOhl npH ~ ,ttJDIHe, uosepXHOCTH H uo.l(beMHoit CRJie, penaK~oHHoe couponranemre 
(T. e. COIIpOTIIBJieHHe Bbi3BaHHOe TepMO~ecKOit penaKCI.QIIeit) HMeJIO ~ 
:maqemre. ~eHHe orpamAeHO CJIY"WWMH ~03BY'KOBbiX -reqemd I! TOHKOI'O npocl>llml. 
OlmlMam.HaJI <l><>PMa onpe~eJDie"l'CH B cyiiUWCTil ~ Tet~emdt 6JIH3Kitt pasHOBecHhiM. TaKI!M 
o6pasoM ~qa c:BOAHTCH K .MIIHHMIIsai$ HeKOTOporo Iiarerpana c rpamAIIbiMJI yCJioBHJDul, 
KaCaiOIUI!MI!CH UOCTOSIHCTBa ,ttJDIHhl, UOBepXOCTII npocl>llml I! :maqemiJI UO~MHOit CWibl. 

1. Introduction 

WE CONSIDER. a two-dimensional body moving with constant subsonic speed u0 through 
a gas which is uniform and at rest far ahead of the body. Equivalently, in a body fixed 
frame of reference (with the coordinates x, y, see Fig. 1), the gas flow is steady, the flow 

y 

X 

FIG. 1. 

speed being u0 far upstream. The gas is assumed to be a real gas with one internal degree 
of freedom, which may describe, e.g. a chemical reaction or internal vibrations of mole­
cules. While a fluid particle passes the vicinity of the body, its pressure changes with time. 
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As a consequence, the particle gets out of its thermodynamic equilibrium state since 
_relaxation processes can only proceed at a finite rate. Thereby entropy is generated which 
in turn causes a drag force (OswATITSCH [2], RoMBERG [1], BECKER. [3]). We shall call 
this drag force the "relaxation drag" of the airfoil. It is the aim of this paper to find that 
shape of the profile which for a given length, area and lift minimizes the relaxation drag. 

In order 1o achieve this, we shall first discuss shortly the thermodynamic properties 
of the gas, deriving thereby the formula which relates the entropy production rate to the 
relaiation process. Then we shall simplify this result for flow fields which differ only by 
a small perturbation from a constant parallel flow. This will lead us to a formula which 
allows .us to compute the entropy production rate if the velocity field is known. Next 
we shall derive an equation which relates the relaxation drag to the overall entropy produc­
tion and hence to the velocity field. Then we shall simplify the situation further, assuming 
sufficiently slow flow, such that the fluid particles are always nearly in their thermodynamic 
equilibrium states. This being the case, a good approximation to the real velocity field 
of the relaxing gas will be the velocity field of the non-relaxing equilibrium gas. As a con­
sequence, we can insert this field into our drag formula, thereby obtaining the drag force 
for slender bodies of arbitrary shape. Finally we shall use this result, which gives the drag 
as a functional of the body shape, to gain the optimal shape which makes the relaxation 
drag a minimum. 

2. 1bermodynamic properties of the gas 

The thermodynamic state ·of the gas is characterized completely by the canonical 
equation of state 

h = h(p, s, q), 

h being the specific enthalpy, p - the pressure, s- the specific entropy and q - the internal 
state variable. By the Gibbs relation (see e.g. (4D 

1 
(2.1) dh =- dp+ Tds+Fdq, 

(! 

we obtain the density e = 1/(ohfop), the temperature T = oh/os and the chemical po­
tential r = ohfoq as functions of the independent state variables p, sand q. In thermo­
dynamic equilibrium the chemical potential vanishes [5, 4]: 

r = a/, (p _) 0 oq , s, q = . 

This is an implicit equation for the equilibrium value 

q = q(p, s) 

of the internal state variable. 
If a gas particle is not in (local) thermodynamic equilibrium, its internal state vari­

able is assumed to change with time according to the "relaxation equation" 

. r 1 
(22) DqfDt = - arJoq . T(p, q,,) 
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(see e.g. [9D. Note that, at least close to a stable equilibrium state, for reasons of thermo­
dynamic stability oFJoq is positive. DfDt denotes the material time derivative and T is 
the "relaxation time". The relaxation process, described by Eq. (2.2), is a source of entropy 
production. This fact follows immediately from the Gibbs relation (2.1), as a consequence 
of which 

(2.3) 
Dh _ 1 Dp T Ds r Dq 
Dt - e Dt + · Dt + Dt . 

Assuming inviscid flow (without heat conduction and diffusion) the energy balance equa­
tion may be given by the form 

Dh 1 Dp 
Dt = e Dt. 

Hence we get from Eqs. (2.2) and (2.3) 

(2.4) 
Ds F 2 

Dt = T· oFJoq 
1 (J 

·-=:-
T (! 

This equation relates the specific entropy production rate G to the relaxation process. 
Since T, oFjoq and T are positive, G is non-negative. 

3. Entropy production rate as a functional of the velocity field for steady small amplitude flow 

Next let us simplify Eq. (2.4) assuming that the thermodynamic state of the gas differs 
only by a small perturbation from a fixed equilibrium state p0 , q0 , s0 • In thermodynamic 
equilibrium r vanishes, hence the Taylor expansion with respect to p-p0 , q r q0 and 
s- s0 leads to 

(3.1) F(p, s, q) = ( :~).. (p-p0 )+ ( :~). · (q-q0)+ ( :~).. (s-s0). 

Note that entropy changes are of second order in the amplitude of the ftow field. There- . 
fore, the last term on the right-hand side can be neglected in a first-order approxima­
tion for r. 

The aim of the next steps is to obtain r as a functional of the velocity field. To this 
end we have to express q- q0 and p-p0 in terms of the velocity field. Integration of the 
linearized version of the relaxation equation 

(3.2) Uo :! = - To( ai.f aq )o · {( ~~) 
0 

• (p-Po) + ( ~~). . (q- qo}} 

leads to 

00 

(oFfop)o J 
q-qo = - (oFfoq)o e-«{p(x-u0 T 0 cx, y)-P.o}dcx. 

0 

(3.3) 

Integrating the linearized momentum balance 

(!oUo OUjOX = - OpjfJX 
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we get 
(3.4) eouo(U-Uo) = , - (p-po). 

Combination of this with Eqs. (3.3) and (3.I) leads finally to the following relation: 
CO 

r = (~r) eouo I e-CI(u(X-UoToa,y)-u(x,y))da. 
'P 0 0 

Inserting this into the . expression (2.4) for· the specific entropy production rate, we get 
CO 

s 2 I (ar;ap)~ [J -Cl{. ( ) ]2 
(J = eouo ToTo (ar;aq)o e \u X-UoToa,y)-u(x,y) da ; 

0 

Now, it is known from the literature that the following relation holds between the equi· 
librium and frozen speeds of sound, a0 and b0 (see e.g. [6]): · 

I 1 2 (OFjap)~ 
a~ - b~ =eo. (ar;aq)o. 

Therefore, we can rewrite our result for the entropy production rate in the form 

eo u~ ( 1 I ) { } 2 (3.5) (J = -T. 2 - -b2 ·[I u(x, y) ] , 
o To Oo o 

where the functional I {u} is given by 
CO 

(3.6) I{u(x,y)} = J e-cx{u(x-u0 T0 a,y)-u(x,y)}da. 
0 

By this the entropy production rate is given in terins of the square of I {u} where I is a linear 
functio~l of the velocity field . . Of course, this result can be exploited only if the velocity 
field is knoWJl at ~st approximately. Fortunately, there are situations where the velocity 
field nearly coincides with that of an associated non·relaxing gas flow, such that it can 
be computed by standard methods of classical aerodynamics... This is for instance true 
if ahjaq is small as compared to (ahfap) · (p0 fq0) that is, if the enthalpy function depends 
{)nly weakly on the internal state variable. In that case one may take the frozen gas as 
an associated-non-relaxing gas. Similarly, it is also true if the relaxation time To is small 
or large as compared to the characteristic flow time lfu0 , where I is the length of the profile 
(see Fig. 1). In the first case, To ~ lfu0 , the equilibrium flow is the associated non-relaxing 
gas flow, in the second case, To ~ lfu0 , it is the completely frozen flow. 

Incidentally, for near equilibrium flow the integral I {u} can be simplified consider­
.ably: Since uo To ~ 1 in this case, we have, by the Taylor expansion, 

e-CI(U(X-UoTo!X,y)-U(X,y)] ~ -UoToe-CI· IX aau (X,y). 
. X 

Therefore, the functional I {u} can be reduced to 

au 
{3.7) J{u} = -UoTo ax (X,y) for UoTo ~ 1: 

Similarly, we obtain for nearly frozen flow; that is, in the limit u0 T 0 /l-+ oo 

{3.8) J{u} = u0 -u(x,y) for u0 T0 ~I. 
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4. Relaxation drag 

As we can see from Eqs. (3.5) and (3.6), entropy is produced only in the vicinity of the 
airfoil, where I {u} is not negligible. Therefore, an entropy wake emerges, the width of 
which is determined by the dimensions of the airfoil. Now, the generalized Crocco's 
Theorem (see e.g. [4D 

(4.1) 

reduces to 

-vxcurlv = TVs-FVq 

-v xcurlv = TVs 

far away from the body since the gas approaches thermodynamic equilibrium at a great 
distance, and therefore r vanishes. As a consequence, together with the entropy wake, 
we also find a momentum wake. The appearance of this indicates that due to relaxation 
a drag force D is produced. The magnitude of D follows immediately from the overall 
momentum balance, as a consequence of which 

00 

(4.2) D = lim j eu(u0 -u)dy. 
X-+00 -OO 

The integral is to be taken over a line x = const far downstream (such that the pressure 
can be assumed to be p0 again along that line). Linearizing Eqs (4.1) and (4.2) for nearly 
parallel flow, we arrive at the following pair of equations: 

(4.3) uooufoy = -Toosfoy, 

00 

(4.4) D = e0 u0 lim J (u0 -u)dy. 
x-oo -oo 

Integrating Eq. (4.2), we .obtain 

Uo(u-uo) = - To(s-so). 

Inserting this into Eq. (4.4), we get the following drag formula: 
00 

(4.5) D = Toeo lim J (s-s0)dy. 
X-+OO _

00 

Now, (!oUo(S-So) is, in linear approximation, the surplus fiux of entropy. This fiux must 
be equal to the entropy produced along the stream-line per unit time. Hence, in linear 
approximation, we get 

X 

eouo(s-so) = J adx. 
-oo 

Combination of this with Eq. ( 4.4) finally leads to the following result for the relaxation 
drag: 

D = ~: J J adxdy. 

The integral is to be taken over the whole plane outside the airfoil. 
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Though this result has been derived here assuming the slenderness of the body; it is 
of quite general validity (ROMBERG (1], OSWATITSCH [2], BECKER [3D. Defining the drag 
coefficient CD in the usual way as 

( 
1 I 

CD= D/ 2eou~l) 

and inserting the expression (3.5) for (], we obtain the final result 

(4.6) 

with 

CD= __3_/ (4- b
1

2 ) ·JJ [I{u}]2dxdy 
UoTo ao o 

CO 

I{u} = J e-cx{u(x-u0 T 0 (X,y)-u(x,y)}d(X. 
0 

For near equilibrium fiow we may use the simplified expression (3.7) for I{u}. This leads 
to the drag formula 

(4.7) C = 2uo To (-1 __ I ) Jj" (~)2 

dxd 
D I a~ b~ ax y 

which, essentially, was first found by ROMBERG [1] under the more restrictive assumption 
that both the frozen and . the equilibrium gas are ideal gases. 

Similarly, for nearly frozen fiow we may use Eq. (3.8) for I {u }, with the result 

(4.8) C0 = -
2

- (~- ~)JJ (u-u0 )
2dxdy, 

u0 T 0 l a0 b0 

which was first found by E. BECKER [7]. Unfortunately, the integral in Eq. (4.8) does 
not exist if the airfoil has a finite lift. On the other hand, the real physical relaxation drag 
of course remains finite. That this holds true can be seen from the following arguments: 
At a great distance from the body (of the order u0 T0) the relaxation time T0 becomes 
comparable with the time scale of pressure changes. Therefore, the expression (3.8) for 
I{u} is not valid there. For still larger distances J{u} must even be approximated by the 
near equilibrium formula (3.7); that is, J{u} is proportional to aujax for r ~ u0 T0 • Now, 
the integral over ( 8uf 8x)2 does exist at infinite distances. Hence the real physical relaxa­
tion drag always temains finite. Since the far field is that of a single vortex with circula­
tion (1/2) · CLu0 /, where CL is the lift coefficient of the airfoil, probably the divergent 
integral in Eq. (4.8) has to be replaced by a term of the order 

/)
2 I Uo To const · (CLuo · n - 1-. 

Indeed this expression becomes infinite for u0 To--+ oo. This is the reason why the integral 
in Eq. (4.8) diverges if CL #: 0. Inserting this expression into Eq. {4.8) instead of the 
integral, we obtain a lift coefficient which does even vanish in the limit u0 To --+ oo. This 
result could be expected from physical arguments. 

Although Eq. (4.8) is of no importance in cases of finite lift of the airfoil, it never­
theless holds true if the velocity field decays at least like a dipole field at infinity. This is 
the case if the lift coefficient of the airfoil is zero. 
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S. lbe flow field 

In order to evaluate the integral J{u} we must know the velocity field at least ap­
proximately. As has been explained above, it suffices in many cases to insert the velocity 
field of the ·associated non-relaxing gas flow. Standard methods of the classical slender 
body theory [8] lead to the following result, whereby M 0 denotes the Mach number of 
the associated non-relaxing gas far ahead of the body: 

(5.1) 
Uo 0 ~ _) 

u = .. ! ~- q;\x,y , 
V 1-M~ ux 

with :X= xfl, y = (yfl) · Jfl-M~. 

The potential q> is given by 

(5.2) q; = q>q{X,)I)+q;lx,y), 
1 

(5.3) q;q = ~ J q(~)Iny(x-~)2 +y2 d~, 
0 

1 

1 f y 
q;, = 2n y(~)arctan x-~ d~. 

0 

(5.4) 

The dimensionless vortex and source distributions, i' and q, are determined by the shape 
of the airfoil through the following relations: 

(5.5) 

(5.6) 

- ~ cf ~~~ d~ = ~ (F~(X)+F~(X)) =: g'(X), 

q(i) = F~(X)-F~(x) =: 2/'(i), 

whereby y = F+(i) and y = F_(i) are the upper and lower boundary of the airfoil. The 

symbol cf denotes the Cauchy principal value of the integral. From Eq. (5.6) we see that 
the source distribution q has to satisfy the "closing-condition" 

1 

(5.7) J q(e)d~ = 0. 
0 

The area A of the airfoil is 
1 

(5.8) A= -P f ~ · q(E)d~. 
0 

The lift coefficient CL of the body is given by 

2 1 

CL= yl-M~ I y(E)d~. 
0 

Finally, the Kutta-Joukowski condition is expressed by 

(5.9) y(l) = 0. 
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6. Relation between the drag coefficient and the vortex and source distributioos for a flow 
near equilibrium 

For nea~ equilibrium flow the drag coefficient is given by Eq. (4.7). Combination of 
this equation with Eq. (5.1) leads to 

{6.1) CD = c f J ~idXdj 
with 

(6.2) C = 2u~ To (-1- __ 1_) {l-Mo2)_ 312 

I a~ bg · 
Because rp = rpq+rp,, we can write, instead of Eqs. (6.1) 

cD = c J J{( ~;:f +(~;:)}xdj+2C J J ~';: ~;; axdj. 
Now, a mirror reflexion of the airfoil transforms (F+, F_) into (-F+, - F_). Thereby rpq 
remains unaffected, and q>1 changes sign. Since the drag of the airfoil obviously does not 
change sign under mirror reflexion, the last term in this equation must vanish. This leads 
to the result 

(6.3) C0 = C J J {( ~:.·r + ( ~;; nQXdj. 

This equation shows that the influences of the vortex and source distributions on the 
drag are decoupled. Inserting Eqs. {5.3) and (5.4) into Eq. (6.3), one obtains, after some 
mathematics, 

c { !1 d I1 q(~d~ It d It y(~)d~ } I 
(6.4) CD= - 4n q(TJ) dTj c ~-TJ dTJ+ r(TJ) dTj c E-TJ dTj . I 

0 0 0 0 t 

The mathematics which leads from Eq. (6.3) to Eq. (6.4) is rather complicated. It is ex­
plained in the Appendix. Equation (6.4) expresses the dependence of the relaxation drag 
coefficient of a slender airfoil in near equilibrium flow in terms of the source and vortex 
distributions, q(X) and y(X). 

7. AirfoD with minimum drag 

The problem of finding that shape of a airfoil which for a given area and lift makes 
the relaxation drag a minimum has now ·been reduced to the following mathematical 
problem: find q(i) and y(i) such that the right-hand side of Eq. (6.4) becomes a minimum 
under the side conditions (5.7), (5.8), (5.9). Introducing the Lagrangean multipliers A., p,, v 
in order to satisfy the side conditions, we have to solve the following variational problems: 

1 1 

d J q(7J){~ cJ ;~~ d~-A7J-p}d7j = 0, 
0 0 

(7.1) 

(7.2) 

1 1 

d J y(7J){~ cJ J~~ d~-• }d7j = 0. 
0 0 
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We show in the appendix that this leads to the following singular integral equations which 
have to be satisfied by q(E) and ,.,a) if, in addition to the side conditions, we have q(O) = 

= q(l) = 0 and y(O) = 0: 
1 

d f q(E) 1 
(7.3) d1J c E-rJ dE= 2{,t1J+p}, 

0 
1 

(7 .4) _!!_ f y( E) dE = _!_V. 
dYJ CO E-1} 2 

As a consequence of the c&nditions q(O) = q(l) = 0, the airfoil has a sharp leading and 
trailing edge. It seems plausible, for physical reasons, that the optimal airfoil should 
have sharp edges since then stagnation points can be avoided. The appearance of a stagna­
tion point would cause divergence of the integral on the right-hand side of Eq. (4.6). This 
certainly means that in reality the drag would increase very much if a stagnation point 
were produced. Similarly, due to y(O) = 0, there is no flow around the leading edge. 
That this condition is satisfied by the optimal airfoil is plausible, since otherwise the drag 
integral would diverge again. 

The solutions of Eqs. (7.3) and (7.4) are well known from classical aerodynamics 
(see e.g. [SD. Taking into account the side conditions, we can write the result as 

(7.5) 

(7.6) 

q(;) = ~ :. (1- ~h/ -T-(1--J-). 
r(;) = ~ cd1-M6j/; (1- ;). 

Q a 

g c 

0.2 

Fio. 2. 
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The. corresponding shape of the airfoil can be determined from Eqs. (5.5) and (5.6), the 
result being 

(1.1) 

(7.8) 

In these results g(i) is the shape of the centerline and 2/(X) is the thickness distribution 
of the airfoil. The resulting optimal shape is sketched in Fig. 2. It is symmetrical about 
xfl = 1/2, and has a sharp leading and trailing edge. Further, there is no flow around 
the edges. As a consequence, the perturbation of the constant parallel flow remains small, 
and therefore our result is consistent with the basic assumption of nearly parallel flow. 

From Eq. (6.4) we finally can derive the following expression for the minimum relaxa­
tion drag coefficient: 

16 A 1 2 2 
( )

2 

CD=-;:·C P +TC·CL(l-Mo), 

where C is given by Eq. (6.2). 

Appendix 

The calculation of the drag coefficient (6.3) requires an integration over the total flow 
field. For slender airfoils integration is done over the whole plane, whereby integration 
over a generating siJigularity does not exist (in the usual sense). Since the flow around 
an edge with a finite jump of slope already leads to a divergent integral, it is not to be 
expected that a reasonable limit process can always be found. It is easy to show that the 
drag coefficient of a dipole or a source does not exist, hence it follows that for rounded 
noses this simplification is not allowed. If the airfoil, ho~ever, can be generated by source 
and vortex lines whose strength fulfills a Holder-condition, then the integrals exist in the 
Cauchy sense. The optimum is then only sought within the class of the airf oils which can 
be thus presented. That is to say, there may well be solutions even more optimal in other 
airfoil classes. 

The variational problem can be solved analytically using the following ideas: 
a) One optimizes the source and vortex distribution and determines the shape from it. 
b) One regards the square in the integrand ofEq. (6.1) ~-as a product of two different 

"" fields. 
c) One changes the integration sequence, such that integration over the location of 

the singularities is carried out as the last step. 
d) One understands the integration over the y coordinate as the limit of the integra-

tion over the following symmetric interval lim (e ~ IYI ~ _ _!_): Equations (6.3), (5.3) and 
.... o 8 

(5.4) lead, under these assumptions, to the representation 
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-· IJ 

(A.2) ef dy = J + J dy · 
1 --
8 

In the limit s -+ oo this leads to the main part of the Cauchy integral for y -+ 0 and y -+ oo. 
We then simply carry out this limit, but only if the integrals exist, and begin by calculat· 
ing with the finite interval. With the aid of the residue theorem (u.h. = upper half plane) 

00 

(A.3) _£ f(X)dX = 2nl ~Res (f(x)) 

the last integration in each case can be carried out simply; the second integration over y 
leads to the somewhat surprising result that both kernels are identical 

(AA> I,= I,=~ [~n(t+ ~ ce-'1>'}-ln•'-ln(••+! ce-'1>·}]. 
Upon a single differentiation :E 11 we go to the limit which now exists in the Cauchy 

sense (symbol cJ) 
l l l 1 

(A.5) -CD=- _1 f ( )d _!!_ I q(~dE- _1 f ( )k~ f y(E)dE 
C 4n q fJ fJ drj C E-f} 4n 1' fJ "'I d7J C E-7J 

0 0 0 0 

in so far as q, y e CX(O, 1) fulfill a Holder condition and vanish at the ends of the interval: 
q(O) = q(1) = y(O) = y(l) = 0. 

Should the q, ye: C1(0, 1) even be differentiable (this will later be the case), then 
(A.5) can be simplified by partial integration to 

l 1 1 I 

(A.6) c; = ~ 4~ I I q'(E)q'(7J)lniE-1JldEdrj- 4~ J J y'(~y'(7J)lniE-7JidEd7J. 
0 0 0 0 

In this form the symmetry of the integration with respect to E and 1J is evident, which is 
not immediately recognizable (but also valid) from Eq. (A.S) at first glance. 

The optimization with the given side conditions (5.7) and (5.8) leads to the following 
variational problem (Q(fJ) = ,u+AfJ): 

1 1 

d f q('l>[~ cf 9i~~~ -Q(1J) ]dfJ = 0· 
0 0 

(A.7) 

4 Arch. Mech. Sto!l. nr 3n9 
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Due to the symmetry of the integration this requirement is equivalent to 

1 .1 

(A.8) f ~q('YJ) [2; c f qi~dE -Q('YJ)]dfJ = 0. 
0 fJ 0 fJ 

If this identity holds-for ail permissible test functions, then the integral equation 
1 

~ f q(E)dE = _.!._ Q( ) 
drJ c E-fJ 2 fJ 

0 

(A.9) 

foiiows from the fundamental lemma of variational calculus. 
One could invert this integral equation by applying-the Betz inversiotl formula. It is, 

however, preferable to utilize the fact that Q(fJ) is a finite polynomial. With the slightly 
modified Olauert formulae 

(A.lO) 

1 

f dE c U,.(l- 2E) E _ fJ = nT.(l-2fJ), 
0 

1 

f T,.(1-2E) _ 4E _ -n U,.(l-2fJ) 

c y'E(l-E) E-1]- ff}{l-f}) I 

0 

whereby T,. and U,._ are the Tsc}lebyscheff functions of the first and second kind, 

(A.ll) T,.(x) = cosn(arccosx), U,.(x) = sinn(arccosx) 

one quickly arrives at the explicit solutions using ~ obvious ansatz. 
From the orthogonality of the Tschebyscheff polynomials a further relation of ortho­

gonality 

(A.l2} 
1 1 {-~~ 0 

If T.(l-U) T.,(l-21}) ln(~-1})~tbj = 2n .... , n #< , 

o o V E(l- E) V '10-'1) -2n2ln2~11 .m, n = 0 

foiiows using Eq. (A.lO) which, finally, by virtue of Eq. (A.6) allows the explicit cal­
culation of the drag coefficient of the optimized airf oils. 

For numerical purposes one should note that it is not necessary to calculate the -re­
laxation drag of the linear theory (6.1) by integration ovet the whole flow field. With the 
aid of the Gauss and Stokes theorem of the plane (by utilizing the Laplace equation LlqJ = 0 
after having carried out a Prandtl-Glauert transformation), one- can ·reduce the plane 
integral (6.1) to a contour integral 

(A.l3) 4 J J t1dA = 2 f uu,.ds+ f <ui-u!)tr ·1i)ds-2 f (uiU-)(r · t)ds, 
A aA aA ' a~C ' 
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