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Airfoil with minimum relaxation drag
H. BUGGISCH, W. ELLERMEIER and J. WELLMANN (DARMSTADT)

THE FOLLOWING problem is discussed: what is the shape of a two-dimensional airfoil which,
at a given length, area and lift, makes the relaxation drag (i.e. the drag caused by thermodynamic
relaxation) a minimum. The discussion is confined to the cases of subsonic flows and slender
airfoils. The optimal shape ig actually derived for the case of near equilibrium flow. Thus
the problem is reduced to minimizing a certain integral under the side condition that the
length, area and lift of the airfoil have prescribed values.

Rozwazono nastepujace zagadnienie: jaki powinien by¢ ksztalt dwuwymiarowego plata (pro-

fllu), aby przy danej diugodci, powierzchni i wyporze opér relaksacyjny (tzo. opér wywolany

ynamiczng relaksacje) mial warto$¢ minimalng. Dyskusje ograniczono do przy-

pmp{ywéw dZwigkowych i smuklego profilu. Ksztalt optymalny wyznacza sig w istocie

dla przeplywéw bliskich réwnowagowych. W ten sposéb zadanie sprowadza si¢ do minimali-

zacji pewnej calki z warunkami bocznymi dotyczacymi stalo$ci diugoci, powierzchni profilu
i wartodci wyporu.

PaccmoTpena ciie/yromasn sajada: Kakas Jo/DKHA ObITh (hopma AByMepHOro Kphuia (mpodms),
4T0OBI NPH JAHHON JUTHHE, ITOBEPXHOCTH M IOIbeMHOH CAITe, PETAKCAIMORHOS CONPOTHBIICHHE
(T. e. CONMpOTHBNEHHE BBLIIBAHHOS TEPMOJHHAMHYECKON DENAKCAIMed) HMENO MHHHMAIEHOC
aHadende. OGCy)KOeHHe OTPAHMUEHO CIYYasMK NO3BYKOBLIX TEUeHMii M TOHKOTO mpodmisa.
OnremameHan dopma onpeensierca B CYIIHOCTH 1)iT TedeHni 6/MaKix pasHoBecHbIM. Tardm
00pasom 337893 CBOJHTCH K MHHHMHESAITHH HEKOTOPOTO HETETPAA ¢ IPAHNYHLIMK YC/IOBHAMH,
KACAIOIMMHCH MOCTOAHCTBA JUMHLI, IIOBEPXOCTH MpodMIA B IHAYCHHA NOJBEMHON CHIIBLI.

1. Introduction

WE CONSIDER a two-dimensional body moving with constant subsonic speed u, through
a gas which is uniform and at rest far ahead of the body. Equivalently, in a body fixed
frame of reference (with the coordinates x, y, see Fig. 1), the gas flow is steady, the flow

Yy
r/l =F(x/1)
Ug
 E—
y/t=F (x/l)

FigG. 1.

speed being u, far upstream. The gas is assumed to be a real gas with one internal degree
of freedom, which may describe, e.g. a chemical reaction or internal vibrations of mole-
cules. While a fluid particle passes the vicinity of the body, its pressure changes with time.
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As a consequence, the particle gets out of its thermodynamic equilibrium state since
_relaxation processes can only proceed at a finite rate. Thereby entropy is generated which
in turn causes a drag force (OswATITSCH [2], ROMBERG [1], BECKER [3]). We shall call
this drag force the “relaxation drag” of the airfoil. It is the aim of this paper to find that
shape of the profile which for a given length, area and lift minimizes the relaxation drag.
In order to achieve this, we shall first discuss shortly the thermodynamic properties
of the gas, deriving thereby the formula which relates the entropy production rate to the
relaxation process. Then we shall simplify this result for flow fields which differ only by
a small perturbation from a constant parallel flow. This will lead us to a formula which
allows us to compute the entropy production rate if the velocity field is known. Next
we shall derive an equation which relates the relaxation drag to the overall entropy produc-
tion and hence to the velocity field. Then we shall simplify the situation further, assuming
sufficiently slow flow, such that the fluid particles are always nearly in their thermodynamic
equilibrium states. This being the case, a good approximation to the real velocity field
of the relaxing gas will be the velocity field of the non-relaxing equilibrium gas. As a con-
sequence, we can insert this field into our drag formula, thereby obtaining the drag force
for slender bodies of arbitrary shape. Finally we shall use this result, which gives the drag
as a functional of the body shape, to gain the optimal shape which makes the relaxation
drag a minimum.

2. Thermodynamic properties of the gas
The thermodynamic state of the gas is characterized completely by the canonical
equation of state
h = h(p, s, q),
h being the specific enthalpy, p — the pressure, s — the specific entropy and g — the internal
state variable. By the Gibbs relation (see e.g. [4D
2.1 dh = % dp+Tds+I'dg,

we obtain the‘density e=1 /(8£!3p), the temperature T = 3!;/33 and the chemical po-
tential I' = 9h/dq as functions of the independent state variables p, s and ¢. In thermo-
dynamic equilibrium the chemical potential vanishes [5, 4]:

oh &
P T a_q (P, s, Q) = 0.
This is an implicit equation for the equilibrium value
q=4(,s)

of the internal state variable.
If a gas particle is not in (local) thermodynamic equilibrium, its internal state vari-
able is assumed to change with time according to the “relaxation equation”
r 1

(22) Dg/Dt = — aToq ‘r(p,q,s)
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(see e.g. [9]). Note that, at least close to a stable equilibrium state, for reasons of thermo-
dynamic stability 0I'/dq is positive. D/Dt denotes the material time derivative and 7 is
the “relaxation time”. The relaxation process, described by Eq. (2.2), is a source of entropy
production. This fact follows immediately from the Gibbs relation (2.1), as a consequence
of which

Dh 1 Dp +r 2 Ds Dg

Dt ¢ Dt ot D

Assuming inviscid flow (without heat conduction and diffusion) the energy balance equa-
tion may be given by the form

(2.3)

Dh _ 1 Dp
Dt ¢ Dt
Hence we get from Eqgs. (2.2) and (2.3)
Ds ! 1 o
@4 DT v e

This equation relates the specific entropy production rate ¢ to the relaxation process.
Since T, 0I'/dg and T are positive, ¢ is non-negative.

3. Entropy production rate as a functional of the velocity field for steady small amplitude flow

Next let us simplify Eq. (2.4) assuming that the thermodynamic state of the gas differs
only by a small perturbation from a fixed equilibrium state p,, go, 5o. In thermodynamic
equilibrium I" vanishes, hence the Taylor expansion with respect to p—p,, ¢v¢go and
§—38, leads to

60 1050 =(2) o-p0+ (L) a-a+ (L) -5,

Note that entropy changes are of second order in the amplitude of the flow field. There-
fore, the last term on the right-hand side can be neglected in a first-order approxima-
tion for I

The aim of the next steps is to obtain I" as a functional of the velocity field. To this
end we have to express g—g, and p—p, in terms of the velocity field. Integration of the
linearized version of the relaxation equation

dq - 1
@2 “ax = " w(olTag) {( ) AR ""’*(_) (- ""}}
leads to
(3.3) q4—qo = — g—ggg—;—:—! e “{p(x—uooa, y)—po}da.

Integrating the linearized momentum balance
Qolo Ouj/ox = — dp[ox
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we get
3.4 Qotlo(#—1o) =.—(p—po).
Combination of this with Eqgs. (3.3) and (3.1) leads finally to the following relation:

= (%) Gotto of e (u(x—uo 70, y)—u(x, 3))de.

Inserting this into the expression (2.4) for'the specific entropy production rate, we get

1 I"/dp)2 - A
o= gauﬁmgﬁﬁ—‘g;[ﬁfe (u(x—uo 7o @, y)—u(x, y))da] .

Now, it is known from the literature that the following relation holds between the equi-
librium and frozen speeds of sound, @, and 5, (see e.g. [6]):

1 _L T (o1 dp)s
@B ¥ @reg,
Therefore, we can rewrite our result for the entropy production rate in the form
(3.5 o = Q% (i - -l-) - [H{u(x, )P
Toto\ag b3 T
where the functional I{u} is given by

w

(3.6) IHu(x, y)} = f e~ *{u(x—uo 7o, y)—u(x, y)}da.
6

By this the entropy production rate is given in terms of the square of 7 {u} where Iis a linear
functional of the velocity field. Of course, this result can be exploited only if the velocity
field is known at Vst approximately. Fortunately, there are situations where the velocity
field nearly coincides with that of an associated non-relaxing gas flow, such that it can
be gompuu:d by standard mcthodsA of classical aerodynamics. This is for instance true
if 9h/0q is small as compared to (8h/dp) - (po/qo) that is, if the enthalpy function depends
only weakly on the internal state variable, In that case one may take the frozen gas as
an associated non-relaxing gas. Similarly, it is also true if the relaxation time 7, is small
or large as compared to the characteristic flow time //u,, where [ is the length of the profile
(see Fig. 1). In the first case, 7, < I/u,, the equilibrium flow is the associated non-relaxing
gas flow, in the second case, 7o > Ifuy, it is the completely frozen flow.

Incidentally, for near equilibrium flow the integral I{u} can be simplified consider-
ably: Since u,7, < 1 in this case, we have, by the Taylor expansion,

e~ *u(x—up o, y)—u(x, y)] ® —tpToe™ " a %";- (x, ).
‘Therefore, the functional /{u} can be reduced to
(3.7 IHu} = muoro%(x, y) for wupto €10

Similarly, we obtain for nearly frozen flow, that is, in the limit 4 7o/l = ©
{3.8) I{u} = ug—u(x,y) for wueto>» 1.
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4. Relaxation drag

As we can see from Egs. (3.5) and (3.6), entropy is produced only in the vicinity of the
airfoil, where I{u} is not negligible, Therefore, an entropy wake emerges, the width of
which is determined by the dimensions of the airfoil. Now, the generalized Crocco’s
Theorem (see e.g. [4])

4.1) —vxcurly = TVs—I'Vg
reduces to
—vxcurly = TVs

far away from the body since the gas approaches thermodynamic equilibrium at a great
distance, and therefore I" vanishes. As a consequence, together with the entropy wake,
we also find a momentum wake. The appearance of this indicates that due to relaxation
a drag force D is produced. The magnitude of D follows immediately from the overall
momentum balance, as a consequence of which

(1]
(4.2) D =1lim [ ou(uo—u)dy.
x40 o
The integral is to be taken over a line x = const far downstream (such that the pressure
can be assumed to be p, again along that line). Linearizing Eqs (4.1) and (4.2) for nearly
parallel flow, we arrive at the following pair of equations:

(4.3) Ug0uldy = — Ty 0s/dy,
[-+]
(4.4) D = goup lim | (uo—u)dy.
X—»0D

Integrating Eq. (4.2), we obtain
Uuo(u—1uo) = — To(s—5o).

Inserting this into Eq. (4.4), we get the following drag formula:

(4'5) D = TOQO lim f (S—So)dy.
xa0 o

Now, @oto(s—S5o) is, in linear approximation, the surplus flux of entropy. This flux must
be equal to the entropy produced along the stream-line per unit time. Hence, in linear
approximation, we get

x

Qolig(s—So) = f adx.

-

Combination of this with Eq. (4.4) finally leads to the following result for the relaxation

drag:
p=To f f odxdy.
Up

The integral is to be taken over the whole plane outside the airfoil.
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Though this result has been derived here assuming the slenderness of the body, it is
of quite general validity (ROMBERG [1], OSWATITSCH [2], BECKER [3]). Defining the drag
coefficient Cp in the usual way as

[

Cp = D/( gouo:')

and inserting the expression (3.5) for o, we obtain the final result

4.6) G s (_l_.{ - —) f f U {u)Pdxdy
with
Iu} = f e *{u(x—uo o, y)—u(x, y)}da.
0

For near equilibrium flow we may use the simplified expression (3.7) for I{u}. This leads
to the drag formula

@ o= 20570 () [ (3] v

which, essentially, was first found by ROMBERG [1] under the more restrictive assumption
that both the frozen and the equilibrium gas are ideal gases.
Similarly, for nearly frozen flow we may use Eq. (3.8) for I{u}, with the result

@9 Co =y (2= 55 [ [ Cwsorasay,

which was first found by E. Becker [7]. Unfortunately, the integral in Eq. (4.8) does
not exist if the airfoil has a finite lift. On the other hand, the real physical relaxation drag
of course remains finite. That this holds true can be seen from the following arguments:
At a great distance from the body (of the order u,7,) the relaxation time 7, becomes
comparable with the time scale of pressure changes. Therefore, the expression (3.8) for
I'{u} is not valid there. For still larger distances J{u} must even be approximated by the
near equilibrium formula (3.7); that is, I{u} is proportional to du/dx for r > u,7,. Now,
the integral over (du/dx)* does exist at infinite distances. Hence the real physical relaxa-
tion drag always 1emains finite. Since the far field is that of a single vortex with circula-
tion (1/2) - CLuol, where Cy is the lift coefficient of the airfoil, probably the divergent
integral in Eq. (4.8) has to be replaced by a term of the order

const - (Cpuol)? - In 2070

Indeed this expression becomes infinite for u, 7, — c0. This is the reason why the integral
in Eq. (4.8) diverges if C, # 0. Inserting this expression into Eq. (4.8) instead of the
integral, we obtain a lift coefficient which does even vanish in the limit #g 7o — co. This
result could be expected from physical arguments.

Although Eq. (4.8) is of no importance in cases of finite lift of the airfoil, it never-
theless holds true if the velocity field decays at least like a dipole field at infinity. This is
the case if the lift coefficient of the airfoil is zero.
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5. The flow field

In order to evaluate the integral J{u} we must know the velocity field at least ap-
proximately. As has been explained above, it suffices in many cases to insert the velocity
field of the -associated non-relaxing gas flow. Standard methods of the classical slender
body theory [8] lead to the following result, whereby M, denotes the Mach number of
the associated non-relaxing gas far ahead of the body:

IS
(S.l) u= Vl——w ai ?G’J’),
with x = x/I, y = (y/I)- Y 1-M¢.
The potential ¢ is given by
(5.2) P = 9’4(}' 3;)"'9’1(}15’):
| 1
53 n= gz | dOm) G,
1 1 y
L y
(5.4) P =3 !7(931(:{311 7 dt.

The dimensionless vortex and source distributions, y and g, are determined by the shape
of the airfoil through the following relations:

5.5 ~a o Lt = BEHEE) =@,
(5.6) 4G) = F\@D—F.() =123,

whereby ¥ = F,(x) and ¥ = F_(X) are the upper and lower boundary of the airfoil. The

symbol ¢f denotes the Cauchy principal value of the integral. From Eq. (5.6) we see that
the source distribution ¢ has to satisfy the “closing-condition”

(5.7 jq(é')dé =0.
The area A of the airfoil is
(58 = - of £ q(6)de.
The lift coefficient C, of the body is given by
1
Com s [ 0
%6

Finally, the Kutta-Joukowski condition is expressed by
(5.9 y(1) = 0.
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6. Relation between the drag coefficient and the vortex and source distributions for a flow
near equilibrium

For near equilibrium flow the drag coefficient is given by Eq. (4.7). Combination of
this equation with Eq. (5.1) leads to

(6.1) Co = C[[ g2 dxdy
with
(6.2) - _"""ff;i (:_% _ _“) (1= M2)-32,

Because ¢ = ¢,+@,, we can write, instead of Egs. (6.1)

e 53] (2] 2o S S

Now, a mirror reflexion of the airfoil transforms (F, , F_) into (—F,, — F_). Thereby ¢,
remains unaffected, and ¢, changes sign. Since the drag of the airfoil obviously does not
change sign under mirror reflexion, the last term in this equation must vanish. This leads
to the result

(6.3) Gp= cff {(a;j’;') (“i;;;)z}dzd}.

This equation shows that the influences of the vortex and source distributions on the
drag are decoupled. Inserting Eqs. (5.3) and (5.4) into Eq. (6.3), one obtains, after some
mathematics,

64 Cn—"-—{f()dqc q‘e’d‘?d +f()df;c ”Wfdn}.l

The mathematics which leads from Eq. (6.3) to Eq. (6.4) is rather complicated. It is ex-
plained in the Appendix. Equation (6.4) expresses the dependence of the relaxation drag
coefficient of a slender airfoil in near equilibrium flow in terms of the source and vortex
distributions, g(x) and y(x).

7. Airfoil with minimum drag

The problem of finding that shape of a airfoil which for a given area and lift makes
the relaxation drag a minimum has now ‘been reduced to the following mathematical
problem: find ¢(x) and y(x) such that the right-hand side of Eq. (6.4) becomes a minimum
under the side conditions (5.7), (5.8), (5.9). Introducing the Lagrangean multipliers 4, u, »
in order to satisfy the side conditions, we have to solve the following variational problems:

(11) s f ‘ff’ﬂ{dnc "(‘" ) dt—tn—updn =0,

(1.2) s f y(n){dic ;’fide—v}dn =0
[] 1 0 n
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We show in the appendix that this leads to the following singular integral equations which
have to be satisfied by g(£&) and p(¥) if, in addition to the side conditions, we have g(0) =
= g(1) = 0 and (0) = 0

: 1
d (4@ 1
(1.3) 7”_“! S & ='“2*{‘1"“'"“}’
()
(7.4) B f &=L

As a consequence of the cenditions q(O) = q(l) = 0, the airfoil has a sharp leading and
trailing edge. It seems plausible, for physical reasons, that the optimal airfoil should
have sharp edges since then stagnation points can be avoided. The appearance of a stagna-
tion point would cause divergence of the integral on the right-hand side of Eq. (4.6). This
certainly means that in reality the drag would increase very much if a stagnation point
were produced. Similarly, due to ¢(0) = 0, there is no flow around the leading edge.
That this condition is satisfied by the optimal airfoil is plausible, since otherwise the drag
integral would diverge again.

The solutions of Egs. (7.3) and (7.4) are well known from classical aerodynamics
(see e.g. [8]). Taking into account the side conditions, we can write the result as

x 32 4 2x x [, x\
(7.5) ?(T) = ?Tf(l_T) ]/T(‘*‘T)»
x 4 —_[x [ x|
(7.6) y(—l—)=;CLy’l—M§‘l/T(l—T).
a

y

02~

ol |

05 1

0z

bl |

o5 : §

0z
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The corresponding shape of the airfoil can be determined from Egs. (5.5) and (5.6), the
result being

an T EAE) =g(F) = A, —%)}m.
(7.8) = (F,~F) =f(%) -~a Vn—_m-,’i(l - %).

In these results g(x) is the shape of the centerline and 2f(x) is the thickness distribution
of the airfoil. The resulting optimal shape is sketched in Fig. 2. It is symmetrical about
x[l = 1/2, and has a sharp leading and trailing edge. Further, there is no flow around
the edges. As a consequence, the perturbation of the constant parallel flow remains small,
and therefore our result is consistent with the basic assumption of nearly parallel flow.

From Eq. (6.4) we finally can derive the following expression for the minimum relaxa-
tion drag coefficient:

1 2

1

5 C CH1-M)),

where C is given by Eq. (6.2).

Appendix

The calculation of the drag coefficient (6.3) requires an integration over the total flow
field. For slender airfoils integration is done over the whole plane, whereby integration
over a generating singularity does not exist (in the usual sense). Since the flow around
an edge with a finite jump of slope already leads to a divergent integral, it is not to be
expected that a reasonable limit process can always be found. It is easy to show that the
drag coefficient of a dipole or a source does not exist, hence it follows that for rounded
noses this simplification is not allowed. If the airfoil, however, can be generated by source
and vortex lines whose strength fulfills a Holder-condition, then the integrals exist in the
Cauchy sense. The optimum is then only sought within the class of the airfoils which can
be thus presented. That is to say, there may well be solutions even more optimal in other
airfoil classes.

The variational problem can be solved analytically using the following ideas:

a) One optimizes the source and vortex distribution and determines the shape from it.

b) One regards the square in the integrand of Eq. (6.1) ¢2; as a product of two different
fields.

¢) One changes the integration sequence, such that integration over the location of
the singularities is carried out as the last step.

d) One understands the integration over the y coordinate as the limit of the integra-
tion over the following symmetric interval Iin: e |y < %): Equations (6.3), (5.3) and

[ ol

(5.4) lead, under these assumptions, to the representation
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. 1 F -H_. (?r-n)

2 @ (3 ¥
¥ .,f of YOydidn e 2 f d&l o e

The symbol . f has the following meaning:

(A.2) J = f+fdy.
1 &

In the limit & = oo this leads to the main part of the Cauchy integral for y = 0 and y — 0.
We then simply carry out this limit, but only if the integrals exist, and begin by calculat-
ing with the finite interval. With the aid of the residue theorem (u.h. = upper half plane)

(A3) [ 1@ = 2"‘2 Res (f(%))

the last integration in each case can be carried out simply; the second integration over y
leads to the somewhat surprising result that both kernels are identical

(A9 L=IL= %[ln(l +§(€—-n)’)—ln8’—ln(8’+ % (E—'})’)]-

Upon a single differentiation — I; we go to the limit which now exists in the Cauchy

aé
sense (symbol ¢ J)

1
- — d Q(ﬂdf y(&)dE
as -2 T«‘J“‘”"”’Eco f ()dqdqcf

in so far as g, y € C*(0, 1) fulfill a Hélder condition and vanish at the ends of the interval:
9(0) = ¢(1) = y(0) = y(1) = 0.

Should the g, y € C*(0, 1) even be differentiable (this will later be the case), then
(A.5) can be simpliﬁed by partial integration to

1 1
(A.6) %’=——*~ fq(E)q(r:)InIE —nldédn——— ffy'(f)?'(u)lnle—ﬂldEdq.
0 0

In this form the symmetry of the integration with respect to § and 7 is evident, which is
not immediately recognizable (but also valid) from Eq. (A.5) at first glance.

The optimization with the given side conditions (5.7) and (5.8) leads to the following
variational problem (Q(n) u+An):

%) s f | f WL ot |in =0

4 Arch. Mech. Stos. nr 3/79
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Due to the symmetry of the integration this requirement is equivalent to

1
d q(§)dé
(A%) of"‘?"’) [2‘,—,?% IO o) |an =o.
If this identity holds for all permissible test functions, then the integral equation
d q(f)df 1

follows from the fundamental lemma of variational calculus.

One could invert this integral equation by applying the Betz inversion formula. It is,
however, preferable to utilize the fact that Q(») is a finite polynomial. With the slightly
modified Glauert formulae

1
dt
U(1-28) y— = aT,(1-21),
Cof ( me—q aT,(1—27)
(A.10)
f T.(1-28) d¢ ,(1—213)
c) VEa-9 & " Vat-n
whereby T, and U, are the Tschebyscheff functions of the first and second kind,
(A.11) T,(x) = cosn(arccosx), U,(x) = sinn(arccosx)
one quickly arrives at the explicit solutions using an obvious ansatz.
From the orthogonality of the Tschebyscheff polynomials a further relation of ortho-
gonality
32
T(1-2¢) T,(1-2 = 5= 0sm, n#0,
(A.12) ff LU-20 Tl =20 1o myatdn = |~ 20
VE1I=8 Yn(l-n) —27%In28,,, n=0

follows using Eq. (A.10) which, finally, by virtue of Eq. (A.6) allows the explicit cal-
culation of the drag coefficient of the optimized airfoils.

For numerical purposes one should note that it is not necessary to calculate the re-
laxation drag of the linear theory (6.1) by integration over the whole flow field. With the
aid of the Gauss and Stokes theorem of the plane (by utilizing the Laplace equation 4¢ = 0
after having carried out a Prandtl-Glauert transformation), one can reduce the plane
integral (6.1) to a contour integral

(A.13) 4}’];&&,4 2i{uu.d.e+[{(..e —12) (7 - F)ds— 2f(u_u.)(r s,
i+yj, U= @ Vu.
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