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Magnetohydrodynamic flow in a rectangular duct under a uniform
transverse magnetic field at high Hartmann number

II. The volumetric flow-rate in a duct having non-conducting walls (*)

D.J. TEMPERLEY (EDINBURGH)

TS PAPER is an extension of an earlier publication by the author [1] on the fully developed,
laminar, unidirectional flow of a uniformly conducting, incompressible fluid through a duct
having uniform rectangular cross-section, the walls of which are all non-conducting. Here the
leading terms of the high-M series form for the volumetric flow-rate are derived from the series
expansion for the velocity field obtained in [1] and checked with a closed-form estimate from
the same source. The results match exactly with those obtained by previous authors using differ-
ent approaches.

Praca jest uogblnieniem wczedniejszej publikacji autora [1] dotyczacej w pelni rozwinigtego,
laminarnego, jednokierunkowego przeplywu jednorodnie przewodzacej niefcifliwej cieczy
przez przewod o prz:ekro}u Jprostokatnym, ktérego Scianki sq nieprzewodzace. Gidéwny czlon
szeregu dla duzych M opisuje wydatek. Wyraz ten otrzymuje si¢ za pomocg rozkiadu w szereg
pola predkodci otrzymanego w [1] oraz poréwnania z oszacowaniem podanym w tej samej
pracy. Otdrmeodzc wyniki wykazuja zgodnoéé z rezultatami innych autoréw otrzymanymi
na innej

Pabora sBnserca obobmenrem Gonee pamHelt myGmexamen asropa [1], xacaromelicss Bnomme
PasBepHYTOr0 OJHOHAIPABIIEHHOTO TeUeHHA OMHOPOAHO NPOBOMMAIIEH HeCHHMAeMOH »HI-
KOCTH 4epe3 KAHAN C MPAMOYTONLHEBIM CeUcHHEM, CTCHKHE KOTOPOro HenmpoBomainge. [nasHurf
Wien B pAjie UIA Go/mbumEx M omHCcRIBaeT PAcxXof]; 3TOT WICH [MOJyIaeTCA OPH IOMOIIH Pasio-
JKEHHA B PAJ HOJA CKOPOCTH mOnydeHHOro B [1] H cpaBHeH OH C OIEHKON IPHBeJeHHON
B 3Tl ke camoif pabore. ITomydeHHELIE PE3YILTATLI YKASHLIBAIOT HA COTJIACHE C Pe3y/ILTaTaMHd
OPYTHX ABTOPOB, MOAYWICHHLIMH 10 APYTOMY ITYTH.

Introduction

IN AN BARLIER paper [1], the author considered the fully developed, laminar, unidirectional
flow of a uniformly conducting, incompressible fluid through a rectangular duct of uniform
cross-section, the walls of which were all non-conducting. For values of the Hartmann
number M > 1, classical asymptotic analysis revealed the leading terms in the expansions
of the induced velocity and magnetic fields in all key regions, with the exception of certain
boundary layers near the corners of the duct. As was promised in Sect. 4 of [1] we will,
in the current paper, estimate the leading terms in the series form for the volumetric flow-
rate in powers of M2 A closed-form estimate for the flow-rate will also be derived
and the results will be compared with those obtained by earlier researchers.

In the following sections, references of the forms (2.1) to {6.31) relate to key expressions
and results which were featured in [1].

(*) Paper presented at the XIII Biennial Fluid Dynamics Symposium, Poland, September 5-10, 1977.
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1. The series form for the volumetric flow-rate

Since v is even in y and b is odd in y, the volumetric flow-rate down the duct may be
expressed in the form (see the definitions (3.1) in [1])

1 0
(11D F=2 [ [ {u=M-'(1+y)}dxdy.

ym—1 x=~] ’
One must integrate uy, ug, (4;.)r, (4.). and (), over the entire rectangle. Although
the results for u, are not defined in the (ic); layers, and integration of u, over such regions
may thus seem to introduce an error into the eventual expression for F, it was shown in
Sect. 6A of [1] that by integrating {(4;,)r—u,} = % over the entire cross-section, the error
is effectively cancelled. This is due to the fact that u, is, in fact, the outer expansion of
(u.c)r as one moves out from the (ic), layer into the (s) layer. The reader’s attention is drawn
to this and other salient comments in Sect. 5 of [1].
The contribution to F from the (I) and (H) regions is (see the result (4.3)):
1
(1.2 From ~ 2M-* [ (1—y=2e"M+7)dy = 4IM-1(1-M""),
-1
correct to asymptotically small terms in M.
The side layers on x = 4/ contribute a term

1 L]
Fo=2M- [ [ u(X,ydxady,

¥y==1X=0
where (see the results (4.11’), (4.18) and (4.20))
1-y

(13D = —M~ [ exfo(X]20) B+ M-2(1-) 5 (e (X121 -3)' 7))

0
+M-3(1 y){ 2--+2(1 ~Ngs ,}(erfc{Xﬂ(l )2} +0(M-4).

Since

(1.41) f erfe(X/2a"?)dX = [Xerfc(X[2a"?)]§ + (na)*l? j Xe~ 14X = 2(afn)'/?,

X=0
hence
4M—3.~‘1 1 1-y
(1.5D) F'=";;1T J.{ fﬂ‘lztﬂ-l-M"‘(l—y)-—-(I— )2 — M3(1 y){
y=—1 0
64 2M-%2  8yY2M-2
(l J’)d 3}(1" )lp}d}'+0(M—w2) '{;‘l;z = '/_3;1;2
+SI/ZM_WO(M"!’).

T

It is worth noting that although #{*’ and subsequent #{, n > 4, are unbounded at the
corner X =0 = 1—y (see the comments following the result (4.25)), their respective
contributions to F are all finite.
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The (c), layers on y = —1 contribute (see the results (4. 40), (4.43) and (4.46))

a - i 512
(L6D)  Fy, = 2M-302 f f u(X, Y°)dY°dX = 2“‘”, { f 261249

X=0 Y°=0
Xe™ X8 M2 -
+ M1 f { 232 4 I'fc(zwz)}dx-f' 2.”2 f {T‘Z(X‘—SX’—IM)e xys
X=0 A
l AL 512
+gae-mene-x o S’-IZ)S‘e""’f’ds}dX}+0(M-u;z) e
0

6Y2M-"2  TY2M~°”

+O(M-1112),

=Il:l'.'z 831;2
The (ic), layers contribute (see the results (4.51) and (4.56))
0 i AM-+ 0 i 8
AT Fa=2M2 [ [ urvyareay =27 [ ks —ke—ptyderou-9)
%=0 ¥Y=0 0

]
-4
=M f(w‘*—w’—Z)dw+0(M"),
0

on setting k = w(1—-w?)™, dk = (1+0?)(1 —0?)~2dw.

That is,
—128M-#
(1.71) Fuey, = T T

Summarising, the results (1.2I), (1.5I), (1.6I) and (1.71') yield
. 64y2M-2 . 8Y2ZM-:  1TY2M- g
(18 F~4IM-t— *il/s_TM"* —4IM-24 V_:m + '/2“1,, +0(M~4).
The full 0(M~#) contribution cannot be obtained without first deriving the complete

solution for u in the (ic), layers (see earlier comments); this is not available by means
of the classical approach.

+0(M-%).

2. A closed-form estimate for the flow-rate

Performing a double integration, over the entire rectangular cross-section, of the
closed-form solution (6.6) yields the full contribution to the flow rate from the (ic); and
(s) layers. Integration of the result (6.21) likewise yields those from the (c), and (ic), layers.
From the result (6.6),

®w 2M 4 H @ w 2M
@D Fuo e = 2M~ f f ety DYy dgar = 22 f [ f k-3 {—k2Y
x=0 Y=0 k=0 x=0 Y=0
+(- e“’)}srn(kx)dexdk—éM—- f {~2M2k~2 4 2MK~* + (ak) " (e~ 25 — 1)} k.
k=0

5 Arch. Mech. Stos. nr 319



366 D.J. TEMPERLEY

From the expression (6.5")
2(k% —k*+ 2k M) +4(k* — k*)>*M?
K (k2 —k%) ~
+2M2k~2+0(k°), mnear k=0,

and hence the integral of the result (2.1I) does exist.
In the Appendix Al, the expression (2.1I) is expanded as a power series in- M ~1/2;
the result is

—2Mk~4

22D (ak¥)"l(e~M—-1) ~ —

D i _ 64Y2M-*  8Y2M-%P | 5Y/2M-72 128M-*
(23D Fuoyps = — 572~ 3@ T 2a# T 5w

162(2"—1) {(=5/2(=7/2)(=9/2) ... (=3/2—n)}(n—3/2) - 2M)~3/*~*
(n+1)! ’

n=2

in which the three leading terms clearly match with the expression (1.5I).
The full contribution from the (r) layers is (see the result (6.21)):

@ 0 -]

o0 [-+]
| aM—*
(241 F, =2M-? f f ux, ¥*)dgd?® = = f f f k=3 {22 Me*

Y°=0 z=0 k=m0 x=0 Y°m0

—(1- e"""')e"*’“}sm(kz)dx—— f k=4 (2k3 M — B-1(1 — e~2M) } k.

k=0

In the Appendix A2, the latter expression is expanded out as a power series in M~1/2,
yielding

25D Fr=16|/fM—’ﬂ 6Y2M-"?  128M~* L 16 2(2:: 5){( 12(=9/2)

3a'3 R C

Am2

- (—3/2—?’)}1' (n—3/2) - (2M)~3/2"",

the third term being the sole contribution from the (ic), layers. The leading four terms
check with the results (1.6I) and (1.70').
Combining results (2.3I), (2.5I) with the closed form (1.2I)

64y 2M 12 8y 2M-52
Q6 F= FuntFaao, +F, = A= SV o, SV

l?]/_M‘”’_256M i 82(4::’ 16n—5)
27313 157 (m+1)!

=)} (n—3/2)(2M)~*I*" +O(M~P~"1%).

One cannot actually proceed to the p = oo limit because the infinite series is not convergent
(see ERDELYI [2]). SHERCLIFF [3] obtained the first three terms of Eq. (2.6I), and WILLIAMS
[4] obtained the first four terms explicitly but did not continue his expansion so as to yield
the remaining terms of the series. We have (see Appendix A3) extended his result for ¥,

{(=7/2)(-9/2) ... (-3/2
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([4], p. 265, result 22) — in which the numerator of the third term in { } was incorrectly
given as 32a, rather than 64a — using asymptotic expansions of the Bessel functions
K,(M), K3(M) for M > 1; the series so obtained matches exactly with Eq. (2.6I) above.
One may also note that addition of the results (2.1I) and (2.4I) yields the single closed-
form expression obtained by Topp [5].

Conclusion

In a future publication we shall consider a duct having non-conducting walls parallel
to, and walls of arbitrary conductivity perpendicular to, the imposed magnetic field.
The boundary conditions on the induced fields do not decouple in such a configuration,
unlike the situation considered in [1] and the current paper.

Finally, the author wishes to express his sincere gratitude to Professor L. TopbD of the
Laurentian University, Sudbury, Ontario, Canada, for his collaboration on this project.

Appendix Al. Expansion of the expression (2.1I) as a power series in M2

Introducing s = Mua(k) into the expression (6.5") yields
12
(AL1) aty = sM_-1+% - (k=+7i~) . k2= sM-Y(14+sM-Y),
2kdk = M~*(1+2sM~*)ds, and hence Eq. (2.11) may be re-written in the form

o
2M-302 [ [~ —1425(1—5—s2 M1
(ALD)  Fuqo, == f {"" (1’“+s§{_1';,,,’ )}(1+st-1);-7%.
0

The highest-order contribution is

(AL3) 2—"-23 j. (e-”—1+2;—2;=)s-m¢g=“§;m f (2 —4s—2e-2)5~512ds
0
SEMOR o gy SR g _SYIM
There remains ’ ’
o
(AL4) w:“f (e-u_1+23-2s’)‘(—11_1_i;%%—1}s‘712d9
0

++]
4M-52 [ (14+2sM~Y)s~ 12
) Q4sMTYE T

the leading (0(M~2)) contribution here being (setting s = aM)
aM

-2
1

(A1.5) -

[ {1 +20)(1+0)-¥2 =1}~ ¥2da.
(1]

5



368 D.J. TEMPERLEY

Setting a = tan?, da = 2sec*0tanfdb, the latter integral equals

nf2
(AL5) f {2cos 0 —2(1 —cosb)cosec?0}di = 2— f sec (—;—ﬂ)dﬂ =
Thus the expression (Al.4) reduces to the form

M- [ (1+2sM-Y) o

s~72ds,

w
B (e"'v-l+2.s'){ —sM~*+0(s2M~?)
T m ) OasM) P T4 2M T+ (T4 sM )

in which the highest contribution is

(AL6) MY [ 0-tr-eryring o - WL
0

Ini/2

(see integration-by-parts in line (Al.3)) and the next is (setting sM~! = « = tan?f)

-3 o i
] {(1+2a)(l+a)'511—1+%a}a 40” f (6c0s°0
0
—Tcos’0)df = 0.
This leaves
2M-3 . 1\
(A1.8) f (e 1){(1+25M"‘)(1+.9M H-s2_14 sM-ilds

in which, for M » 1,
_ 5 ., 35 _
(Al.8) {}~(+2sM 1)(1—?.9M 1+—8—.s'3ﬂ»l 24 )

—I+—;—sM'1 = —-g-s’M"+0(S’M")-

The leading term in (Al.8) is thus

-17/2 bl
(AL.9) 5M V -1

f(l e~ ¥)s

the next (setting sM~! = o = tan?0) being

-4 »
(A1.10) Mi f {—2(1 +0)" 324+ (14 a)~ 32 +1~ -%—u— -guaz} o= 2dy
o

nf2
f {8co0s30+8cosf+7(1+cosb)~2 —2(1 +cosB)~>}db

M-+
T
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1
-
(Al1.10) - {ﬁ +if(l+uz)(6—a’)da}, where ¢ = tan(lﬁ),
[cont.] b4 3 4 3 2
o 128M¢
150 °

This is the leading contribution from the (ic), layers, which can clearly only generate
flow-rate terms involving integral powers of M~. Furthermore, it is the only such contribu-
tion; this becomes clear on noting that the only term in (Al.2) not yet explicitly consider-
ed is

(AL.11)

-32 [
S f "’_”{“+2’M")(1+~*‘M“)""—‘+“;*~"M“+ %sw"}s-’ﬂds,
0

where
(14+2sM-Y(14+sM~2)312 = 2(1 +sM~1)"32 (1 4+sM~1)~512

Zn‘ 2{(=3/2)(-5/2) ... (=3/2-)} (i)“‘
@@+n! M

=1+
i=0
o0

{(=52(=7/2) ... (=52-0)} [s)*'
& (3

= (+1)!
-]
ETR TR frma @n=1){(=52(=1/2) ... (=3)2-m} [ s \"*!
B =g et T 20+ 1)! M
Since, for all n> 2,
o
(Al.12) [ s*%12e-2ds"= 232-"I(n—3)2),
]

therefore (A1.11) reduces to the series form

(AL13) %2 (2n—1){(—5/2)(—711);1.)(!-3/2—u)}r(n—sfz) M)~

this being the flow-rate contribution due to >, u{™M~".

n=4

Finally. Fy ), is obtained by combining the contributions (Al.3), (AL6), (Al.9),
(A1.10) and (Al.13).

n=2

Appendix A2. Expansion of the expression (2.4]) as a power series in M/~

Combining the expression (6.20) for f(k) with line (Al.1) and substituting into the
result (2.41) yields

2M—5}'2
T

(A21) F, =

[ +]
f {e*-14+25(1+sM~")} (1 F2sM~7) (1 + sM 1)~ 125~ 5125,
0
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in which the leading contribution (due to ") is

w0
-5/2 -5/2
M f(e"‘—l+2.f)s"’”dr= 16y/2M
/]

(A22) T

The O(M ~3) contribution is readily seen to be zero, while !’ contributes a term

_3M-n 6V2M-"2

[-+]
f (e~ —1)s~3%ds = ——
0

(A2.3)

There remains

-5/2
A24) M
T

@
f {(e"’— D(1+2sM=2)(1 +sM=1)""2 —1 + % sM1 } s~ 50ds,
0

the leading term from which (on re-introducing o = sM~?') equals

(A25 _2M-*

{(l+2a)(l+a)-7f'= 1+Z l o« 5/2da,

which reduces, after three integrations by parts, substituting « = tan?0 and the use of
Wallis’ formula, to the form

nf2

ZM 4
f (630cos™0 — 1323 cos®0 + 693 cos''6)db =

_128M-

25) 157

The other term in (A2.4) is

2M‘

[ ]
e"‘{Z(l +SM~Y)"52 _(14+sM~)""2 -1+ %sM"‘}r’f’ds.

in which

{}= 2 (n=5/2){(=7/2)(=9/2) ... (=3/2—n)} (%)'

n!
n=2

Thus, using the result (A1.12), we may express the contribution (A2.6) in the series
form

(A2.6) 176 1 2n=5){(=7/2)(=9/2) ... (=3/2—n)} p(,,_ _;_ )'(ZM)"""""-

n!
n=2

The (ic), layers contribute only the term (A2.5’) which exactly matches the contribu-
tion (Al.10) from the (ic), regions.

Finally, F, is obtained by combining the contributions (A2.2), (A2.3), (A2.5') and
(A2.6").
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Appendix A3. Completion of Williams’ series expansion for the mean
velocity

WiLLIAMS ([4], p. 265, result 22) obtained the mean velocity v, in the (corrected) closed
form

A3l v~ E{p L e }

w "M Tl ~ T oM+ g Ka(M)

The two last terms in this result can be expanded, when M » 1, in the series forms (see
WATSON [6], p. 202)

(A32)  MKy(M) = ( )m {1+235 27-11... {36— (2k_1)3}}

k'(SM)"
and
12 o e .
@y ewnn=(z) e JEIE Ry,

Jm1
Thus the flow rate is given by

4lv, 4l 64y/2 4 8y2
(W) F= 28 = 5~ iy~ 35 e

172 25%  64Y2 \ Cls)

+ 273 T 15aM* + 15712 4 (s+ DISHIME+32°

where

(A3.5) C(s) = 40(s+1D[15-7-(=9) ... {16—(2s—1)2}]-35-27- 11 ... {36—(2s+1)*}.

Factorisation of each term involving the difference of two squares yields

(A3.5)  C(s) = 40(s+ ) {((NI) .. 25+ 1)(2s+HHE))(=1)(=3) ... (T—-2s)(5—23)}
={(ME) ... 5+2s)(T+29)}H{SB)(D) ... (T-25)(5—-29)}

DY - 93
(%) (%)} .29 (452 165—9) = 8;15,,, (45*—165~5)

{22 3

Thus, for any s> 2, the coefficient of M~*~5/2 in the series expansion of F is

wo -2 (-2 (- 2) - (-2 r(s-3)

and hence our expansion (2.6I) matches exactly with (A3.4), the full series expansion
of Williams’ solutien, :
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