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Reflection and refraction of an acceleration wave at boundary between
two nonlinear elastic materials

P. BOREJKO (WARSZAWA)

THe PAPER considers the propagation of acceleration waves in nonlinear elastic materials. The
propagation condition of the acceleration wave is derived. Then the definition of the slowness
surface for the acceleration waves is introduced. The geometrical properties of the slowness
surface and the relation between the condition of strict hyperbolicity and the condition of strong
ellipticity are discussed. With the aid of the slowness surface ray curves are introduced and
it is shown that the material energy flux-density vector is tangent to the ray curve. In the second
part of the paper two laws governing reflection and refraction of the acceleration wave
are derived. Using the derived laws and the slowness surface, all the parameters of reflected
acceleration waves are determined.

W niniejszej pracy rozwaza si¢ propagacj¢ fali przyspieszenia w materialach nieliniowo spre-
zystych. Na wstepie podano warunek propagacii fali przyspieszenia. Dalej zdefiniowano po-
wierzchni¢ opdznienia dla fal przyspieszenia i przedyskutowano jej wlasnosci geometryczne.
Omoéwiony zostat réwniez zwigzek pomigdzy warunkiem Scislej hiperbolicznosci i

s:!ne} eliptycznoséci. Wykorzystujac pojecie powierzchni opéi:mema wprowadzono pronneme
i udowodniono, Ze materialny wektor strumienia gestosci energii jest styczny do promienia.
W drugiej czgéci pracy wyprowadzono dwa prawa rzadzace odbiciem i zalamaniem fali przy-
spieszenia. Wykorzystujac wyprowadzone prawa odbicia i zalamania a takze pomemchmg
opbfnienia wyznaczono wszystkie parametry odbitych i zalamanych fal przyspieszenia.

B Hacrosueit paGore paccMaTpHBAaeTCA PAaCHPOCTPAHEHWe BONHBI YCKODEHMA B HENHHEHHO
VOPYTHX MarepHanax. Bo BBeJeHMH [aeTcAd YCJIOBHE DAacIIPOCTPAHEHHA BONHBLI YCKODEHHS.
Jlanee onpesenena MOBEPXHOCTS 3aMETEHHA JUIA BOJH YCKOPEHHA B 06CY>K/IeHBI ee redMeTpH-
geckue cBojicrea. OGCY)/IEHO TOXKe COOTHOUIEHHE MEX(TY YCIOBHEM TOUHOM rHIepGOHIHOCTH
M YCJIOBHeM TOUHO#H 9JUMITHYHOCTH. Hcno/msys MOHATHE MOBEPXHOCTH 3aMe IIEHHA, BBE/ICHb!
PaZMyCEI M JIOKA3aHO, YTO MATEPHAIBHBLII BEKTOP ITOTOKA JHEPIHM KacaTelleH K PaaMycy.
Bo BTOpoit wactit paboThl BbIBe[eHBI ABA 3aKOHA YIPABILIONIHE OTPAKEHHEM H ITPEJIOMIIE-
HHEM BOJHBI ycKopeHMs. Mcmombsys BhIBENEHHEIE 3aKOHBI OTPAKEHHA H IIPENIOMIICHHS,
a TaKXkKe IOBEPXHOCTh 3aMeICHHA, Ompe/ie/ieHbl BCe MApaMeTpPhl OTPAKEHHLIX H MPETOMIICH-
HBIX BOJIH YCKOPEHHS.

Introduction

PROPAGATION of acceleration waves in unbounded nonlinear elastic materials was in-
vestigated in many works, see, for example, the papers [1] to [4] and the references cited
there.

In this paper we investigate the problem of reflection and refraction of an accelera-
tion wave at an infinite boundary on both sides of which lie unbounded nonlinear elastic
media differing in mass density and elastic properties.

In Sect. 1 we recall the basic facts concerning the acceleration wave propagation,
that is we derive the propagation condition, we introduce the definition of the slowness
surface and then we consider the ray curves along which the mechanical energy carried
by the acceleration wave propagate.
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In Sect. 2 we derive the first and the second law of reflection and refraction of the
acceleration wave. These two laws are the counterparts of the well-known Snell’s law
governing reflection and refraction of an electromagnetic wave at an interface between
two anisotropic media [8]. Then, with the aid of the derived laws and the slowness surface
we calculate all parameters of reflected and refracted acceleration waves.

1. An acceleration wave in an unbounded nonlinear elastic material

Let the motion of an elastic body be given by [6]
(L.1) x*=xXx%t, i,a=1,2,3,

where X™ are the Cartesian coordinates of a particle in a natural (unstressed) configura-
tion 4z, and x' are the Cartesian coordinates of the same particle at time 7.

The balance of linear momentum of an elastic body in its local form may be expressed
by the following differential equation [5]:

(1.2) TI‘.a"'anl = PrXi, 1>
where the comma denotes partial differentiation
aC) a()

(').BEFQ (')"E_ér_’

T¢ is the Piola-Kirchhoff stress tensor, b; denotes a body force, x;,,, is the acceleration
and gy is the mass density in the natural configuration %j.

For simple elastic materials the Piola-Kirchhoff stress tensor 7;* depends on the de-
formation gradient tensor X', and additionally on X* for inhomogeneous materials

13 T = TAG* 5, XP).

Hence with the aid of Eq. (1.3), Eq. (1.2) takes the following form [5]:
(14) ACPX o+ qit+orby = orXi, 0,

where

AP = —21* A5P+ ALY,

-3
(15) Aiak e ax“,, ’
[ ote
e ( X ),a,,-m..'
The tensor 4%’ defined by Eq. (1.5), is the elasticity tensor depending on x* ; and X™.

For a hyperelastic material the Piola-Kirchhoff stress tensor is expressed by [5]
. 8
(1.6) Ty —E{U(f.p’m},

where ¢ = o(x,,, X®) is the strain energy function. Hence, for the hyperelastic materials
the elasticity tensor 4% fulfills the following symmetry condition:

Arf = Ak’i‘-
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Consider a propagating discontinuity surface (wave) in.the natural configuration
Zr [6]

(L7 Y(X)—-t =0,
with a speed of propagation

=3
(1.8) U= (S,.S) 2
The vector
(1.9) Sa=¥q,

is called the slowness vector of the wave (1.7). The direction of propagation (the unit
normal vector) of Eq. (1.7) is expressed as follows:

(1.10) N, = Us,,

where U is given by Eq. (1.8) and S, is defined by the relation (1.9). Note, that the length
of the slowness vector S, equals 1/U, i.e. the reciprocal value of the speed of propagation.

We assume that the function (1.1) itself and its first derivatives with respect to X™
and ¢ are continuous across Eq. (1.7); then the jumps of the second derivatives of the
function (1.1) with respect to X* and ¢ may be written as [6, 2]

¥ op] = sDNe,
(1.11) [#.a] = [*'.:a] = —sUD'N;,

[x‘,,,]] = sU2D',
where U and N, are given by Egs. (1.8) and (1.10) respectively, the non-zero unit vector
D' is called the amplitude of the jump and the scalar s denotes the intensity of the jump.
Note that on ¥(X™)—¢ = 0 the jump in the acceleration differs from zero; thus we call
Eq. (1.7) an acceleration wave,

From the above considerations it follows that T;*, 4%’ and ¢, defined by Eq. (1.5);
are continuous across Eq. (1.7) as the functions of x* .. Hence, with the aid of Egs. (1.3),
(1.5) and (1.11),,, the following relations
(112) [Tj?'] = A(’;ﬂ[’-".m] = —SUA‘th’DkNg,

[Tl?m] = Alut#[x‘.aﬂ] = "’Al“kﬂDtNGMs
hold.

The balance of linear momentum holds in the whole region ahead and behind the
acceleration wave ; while on the acceleration wave it must be replaced by its jump. Assuming
that the body force b, is continuous across the acceleration wave, making use of Egs.
(1.11); and (1.12),, the jump of Eq. (1.2) on Eq. (1.7) may be written as [2]

(1.13) (ASPNNy—or U8) D* = 0.

The relation (1.13) is the propagation condition of the acceleration wave in the natural
configuration #. In accordance with the Fresnel-Hadamard theorem [5], the amplitude
D' of the acceleration wave propagating in the direction N, must be the eigenvector of
the acoustical tensor

Ou = AiatpNaNg:
and the speed of propagation U of the acceleration wave must be such that gg U? is the
corresponding eigenvalue of the acoustical tensor Q.
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The system of equations (1.13) has non-trivial solutions D' (non-trivial acceleration
waves exist) if and only if
(1.14) det (45NN —0r U8y) = 0,
what, with the aid of Eq. (1.10), may be written in two equivalent forms:

(1.15) H(¥ ., X¥) = det(AFP ., 5—0r0n) = 0,

’ H(S,, X®) = det(45°S,S;—0r 0u) = 0.

Equation (1.15), is identical with the characteristic condition of Eq. (1.4), and this proves
that the acceleration waves are carried by the characteristic surfaces of Eq. (1.4), for
this see [7] Chapter VI. This fact enables us to construct the acceleration waves with
the aid of the bi-characteristic ray curves which will be introduced later on. Equation
(1.15), is the counterpart of the Fresnel’s differential equation (eiconal equation) occurring
in geometrical optics [8].

In a space with the {S,} Cartesian system of coordinates, Eq. (1.15), defines the slow-
ness (normal) surface — compare with [7], [9], [10] and [11]. If the S,’s are real, then
Eq. (1.15), gives us the real surface of the sixth degree symmetrical with respect to the
origin of the {S,} system of coordinates. If the acoustical tensor Qj is positive-definite
for every direction of propagation N, (the S— E condition holds [5]), then, from Eq. (1.14)
follows that three real speeds of propagation U are possible. This, with the aid of Eq.
(1.10), leads to the conclusion that the slowness surface consists at the most of the three
real sheets. Thus every straight line drawn through the origin of the’ {S,} system of co-
ordinates cuts the slowness surface in six points symmetrical in pairs.

By definition the slowness surface is the locus of the ends of the slowness vectors
S, of all possible acceleration waves emanating from the point X* at which the origin
of the {S,} system of coordinates is located.

From the fact that slowness surface consists of three sheets and it is a sixth degree
surface it follows that the inner sheet of Eq. (1.15), (having no points in common with
the other sheets of Eq. (1.15),) must be convex. Otherwise, there could exist a straight
line intersecting the inner sheet of Eq. (1.15), in four or more points and the remaining
sheets at least in four further points; what contradicts the fact that Eq. (1.15), is of the
sixth degree.

In this paper we consider the case when the slowness surface consists of three real
and separate sheets, that is Eq. (1.4) is strictly hyperbolic — compare with [7], Chapter
VI. With the aid of Eq. (1.10) this implies that for every direction of propagation three
real and different speeds of propagation are possible. Then, by Eq. (1.13) a uniquely
determined real orthogonal triad of amplitudes exists.

Hence the condition of strict hyperbolicity implies the condition of strong ellipticity
(the S—E condition [5]), but the opposite implication does not hold. With the aid of the
slowness surface we may define ray curves in the following way [7, 8]:

ax= d
o 35, {H(S., X},

(1.16) as. P
_dx_ ek "EF{H(SM Xl)}’
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where H(S,, X¥) = 0 is given by Eq. (1.15); and x denotes a parameter along the ray
curve. From Eq. (1.16), it follows that the tangent vector to the ray curve is parallel to
the suitable normal vector to the slowness surface — see Fig. 1.

| OH/0S

H(Suw,X3=0

¥(x%)-t=0
Fia. 1.

The right hand side of Eq. (1.16); may be written as [12] page 597

(1.17) 2 (s, x) = S XD (oe s, X},
88, 0S,

where

(1.18) Hy(Sa, X*) = A% S:Ss—0r Ok

and cof H;(S,, X*) denotes the cofactor of Hy(S,, X™) satisfying the following rela-
tion:
(1.19) {COngk}Hu = Hd;‘j =0,

where H = 0 denotes the slowness surface (the arguments S, and X% of Hy and H for
simplicity are omitted). With, the aid of Eqs. (1.10) and (1.18), Eq. (1.13) takes the form

(1.20) Hth = 0.

Comparing Eq. (1.19) with Eq. (1.20) we conclude that

(1.21) cof Hy oc D'D*,

where oc denotes proportionality. Making use of Eq. (1.18) we obtain
J0H,
as:: = 2455,

This with the aid of the relation (1.21) allows us to write Eq. (1.17) in the following way:
(1.22) D {H(S., X9} = mAFODIDS,,
[ 4

where m is a constant.

In the case when the acceleration wave propagates into the region where x!, = 0 and
T = 0, it is possible to show that the material energy flux-density vector P* may be
written as[4]

(1.23) = —[T7% Q[ ec]-
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Using Egs. (1.11); and (1.12), this becomes
(1.24) P* = (sU%)245FD'D*Sy.

Comparing Eq. (1.24) with Eq. (1.16), and making use of Eq. (1.22), we conclude that the
material energy flux-density vector is the tangent vector to the ray curve. This proves that
the mechanical energy carried by the acceleration wave propagates along the ray curve.

2. Reflected and refracted acceleration waves

In the following section we consider propagation of the acceleration waves in bounded
nonlinear elastic media.

Let two nonlinear elastic bodies differing in elastic properties and having different
mass densities be given:

1 i}
ASP # ASS,
2.1) i i
€r % @r»
) | 14
where 4%°(4%") denotes the elasticity tensor for the first (second) medium and 53 (3,)
is the mass density of the first (second) medium in its natural configuration. These two

bodies are assumed to be rigidly coupled at the interface. The surface of the interface
may be written in the parametric form

(22) Xt= B.(Esﬂ)’ a= 132'3’

where £ and 7 are surface parameters. The unit normal vector to the interface (2.2) is denoted
by M,, thus the following relations

MM, =1,
M.Bj; = M.B}, =0,

2.3)

hold.

We assume that at each point (&, 5) of the interface (2.2) the unit normal vector M,
is uniquely determined and it is directed from the first into the second medium.
Let the acceleration wave

2.4) DX —t =0, f fixed,

be given propagating in the first medium. The acceleration wave (2.4) is called the in-
cident acceleration wave on the interface (2.2) when it intersects that interface for some

s
time 7. We assume that the slowness vector S* and the intensity 3 of Eq. (2.4) at some
point (£, 7) on the interface (2.2) are known. Then, by Egs. (1.8), (1.10) and (1.13) we

s 5 s
know the speed of propagation U, the propagation direction N, and the amplitude D of
Eq. (2.4).

As Eq. (2.4) is the incident wave for some time ¢, we have [8]

@5 B, 7) = DB, D), S fixed.
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The incident acceleration wave gives rise to a reflected acceleration wave

®
(2.6), YX)—t=0, R fixed,
propagating back into the first medium, while in the second medium Eq. (2.4) gives rise
to a refracted (transmitted) acceleration wave
T
(2.6), YX)—t =0, T fixed.

The reflected (2.6), (refracted (2.6);) acceleration wave at a point (£, n) on the interface
(2.2) must have the same value as the incident acceleration wave (2.4). Thus our aim is
to find the reflected (refracted) acceleration wave which, on the interface (2.2), satisfies
the following condition:

R
Y{B*¢&, )} = P&, ),

s
VB¢, )} = PE,m), R,T fixed,
where ®(Z, 7) is defined by Eq, (2.5). Note that the equation
{ﬁ(f’ '})“ . 0&
in the (&, n) Cartesian systems of coordinates represents the curve along which Egs. (2.4)

s &
and (2.6),,, meet on the interface (2.2), see Fig. 2. We assume that the functions ¥, ¥

2.7

The second maferial

x*=B%(&.n)

The First material

FiG. 2.

s
and ¥ have continuous derivatives up to and on the interface (2.2). By Egs. (2.5) and
(2.7) at any point (£, ) on the interface (2.2) the following relations

J R L
¢.! = !P'.I!B;‘Q = SF.HB:IQ - W.uﬂ.“g;
' 2 s

@8 y
¢.' - P’.GB: - g’.xB:'q s T.aB:.p ’s a' T fixed,
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s T
hold, where ¥ ,, ¥, and ¥, are the derivatives on one side of the interface (2.2). Re-

membering that S, = ¥ ,, where S, is the slowness vector, Eq. (2.8) yields

x® 5
(SG_SG)B:I€ ki 0;

(2.9) * g
(Se—S)B% =0, JF,R,T fixed,
and
Ty s
: (Sa_SR)BE‘E = 0’
(2.10)

Ty g
(SG_SK)B;‘Q - 0; ” a’g- ﬁmd,

5 X J
where S,, S, and S, are the slowness vectors of the incident, reflected and refracted ac-
x 5
celeration waves. Form Egs. £2.9) and (2.3) it follows that S,—S, is parallel to M, at

F s
a common point (£, 7) on the interface (2.2). Equations (2.10) and (2.3) tell us that S,—S,
is parallel to M, at a common point (£, 1)) on the interface (2.2). This allows us to write
the following relations:

x " i xR
S, = Sy+AM,,
(2.11) s 5 5
Sy = S,+AM,, £, R, T fixed,

&= F
where 4 and A are real fixed constants. Employing the absojute notation it follows, from
Eq. (2.11),
s ®
SxM = SxM,
(2.12) 7 T
SxM=SxM, ¢ & 9 fixed,
where x denotes the vector product. The relations (2.12) express the first law of reflection
and refraction of the acceleration wave:

s *
The slowness vector S, of the incident acceleration wave, the slowness vector S, of

F
the reflected acceleration wave, the slowness vector S, of the refracted acceleration wave
and the unit normal vector M, to the interface are co-planar. This common plane determined

by §, and M, is called the plane of incidence [8, 11].

Taking into account the fact fhat the length of the slowness vector is equal to the
reciprocal value of the speed of propagation, then, if we make use of Eq. (2.3); and the
definition of the vector product, Egs. (2.12) yield

g U U
(2.13) =—a=—7, SRT fixed,

7
sinf sinf  sinf
EA ¥
where U, U and U are the speeds of propagation of the incident, reflected and refracted

J X F
acceleration waves. The angles 8, 6 and 8 measured from M, are the angles of incidence,
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&'-
KatAMy

I X%=0

reflection and refraction, for this see Fig. 3. The relation (2.13) expresses the second law
of reflection and refraction of the acceleration wave:

The speeds of propagation of the incident, reflected and refracted acceleration waves
are proportional to the sines of the angles of incidence, reflection and refraction.

The relations (2.12) and (2.13) are the counterparts of the well-known Snell’s law of
reflection and refraction [8, 11].

The normal vector to the plane of incidence may be defined as (see Eq. (2.12))

(2.14) I=SxM,  fixed,

hence the equation of the plane of incidence is

(2.15) LX,=0,

where I, is defined by Eq. (2.14). We define the following vector

(2.16) K=1IxM,

where I is given by Eq. (2.14). Using Eq. (2.14) and the definition of the vector triple
product, Eq. (2.16) yields

s s

2.17) K=S-(M:S)M, # fixed,

where a dot denotes the scalar product. Making use of Eq. (2.12) we conclude that K
may be expressed in the following way as well:

@ 2 T T
(2.18) K=S-(M-SYM =S-(M:S)M.
From Egq. (2.16) it follows that K lies on the plane of incidence (2.15) and it is perpendicular

to M, see Fig. 3. Making use of Eqs. (2.17) and (2.18) it is easy to show

s R T
sinf@ sinf sinf

(2.19) K| = e i
U U U

6 Arch, Mech. Stos. nr 3/79
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where |K]| is the length of K. The relations (2.17), (2.18) and (2.19) express the fact that the
incident, reflected and refracted acceleration waves at any point (£, #) on the interface
(2.2) have their vector K vectorially equal.

® T
Now we proceed to the computation S,(S,) explicitly and we determine the other
parameters of the reflected (refracted) acceleration waves. From Egs. (2.11) it follows

o T
that the ends of S, and S, must lie on a straight line parallel to M,
(2.20) Se = K.+ AM,,

where K, is defined by Eq. (2.17) and 2 is parameter along the line.

On the other hand we know that the slowness surface is the locus of the ends of the
2 T
slowness vectors. Thus the end of S, and S, must lie on the line (2.20) and on one of three

sheets of the slowness surface. In order to find the slowness vectors .Si and St satisfying
Egs. (2.12) and (2.13) we proceed as follows:

(i). We take the equations of the slowness surfaces for the first and the second medium
at a point (£, n) on the interface (2.2)

11 I 11

H{S,, B(E, 1)} = det (A4S, ~ex 0 = 0,
(2.21) non N S T
H{S,, B*(£, )} = det (4525, S5—0r %) = 0,

I i
where 4.5°(A45°) denotes the elasticity tensor of the first (second) medium, _g',,(}_ig) is the

mass density in the natural configuration of the first (second) medium and §,(.§:} is the
slowness vector of any acceleration wave proceeding from a point (£, ) on the interface
(2.2) into the first (second) medium.

(ii). We construct the curves of intersection of the slowness surfaces (2.21) by the
plane of incidence (2.15).

2
(iii). The points of intersection of these curves with the line (2.20) are the ends of S,

T 2
and S,. On Fig. 4 the above construction is shown for S, only and the plane of the picturé
is the plane of incidence.

Sa Kot AMg

H(Su,Xe)=0

FiG. 4.
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* s _
To compute S, and S, analytically, we substitute Eq. (2.20) into Eq. (2.21)

H{K,+AM,, B¢, )} = 0,
2.22) -
H (Ko + AM,, B(E, )} = 0,

where K, and M, are known and 4 is to be determined. The slowness surfaces (2.21) are
1 1I
of the sixth degree in S, and S, respectively, hence Eqs. (2.22) are of the sixth degree
in A
Consider the case when six roots 4 of Eqgs. (2.22) are real and distinct, what implies

that the line (2.20) intersects all three sheets of each of the slowness surfaces (2.21). Intro-
ducing into Eq. (2.20) the A’s computed from Eq. (2.22), we obtain the slowness vectors

St and .Si. But not all of them are the slowness vectors of the reflected (refracted) accelera-
tion waves.

We remember that the material energy flux-density vector is parallel to the normal vec-
tor to the slowness surface (see Sect. 1). On the basis of this fact we formulate the selection

X T
rule for the slowness vector S,(S,) corresponding to the reflected (refracted) acceleration
waves:

2 7

Only these S,(S,) are the slowness vectors of the reflected (refracted) acceleration
waves for which the corresponding material energy flux-density vector points inside the
first (second) medium.

Thus these points of intersection of the line (2.20) with the surface (2.21), ((2.21),)

R T
are the ends of the slowness vectors S;(S,) of the reflected (refracted) acceleration waves
in which the normal vector to the surface (2.21), ((2.21);) points inside the first (second)
medium.

In any compressible nonlinear elastic material at least three acceleration waves are
possible. Thus, taking into account the above selection rule we conclude that in the case
when 'Eqgs. (2.22) have six different and real roots three reflected

R F
Y(X9)—t=0, X=1,2,3 (refracted ¥(X*)—t=0, T =1,2,3)
acceleration waves are possible.

xR T
The slowness vectors S,(S,) give us, with the aid of Eqgs. (1.8) and (1.10), the speeds

5 2 7
of propagation U(U) and the directions of propagation N;(N,) of the reflected (refracted)
acceleration waves. Then the second law of reflection and refraction expressed by Eq.

2 T
(2.13) yields the angles of reflection 6 and refraction 0. Finally, from Eq. (1.13) the ampli-

R T
tudes D'(DY) of the reflected (refracted) acceleration waves may be determined.
The compatibility condition and the sum of the material energy flux-density vectors at

6
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a point (£,7) on the interface (2.2) in which the incident, reflected and refracted
acceleration waves meet each other may be written in the following. way:

u:x',tt]"+[x‘.u]’+[x‘,u]'r =0,
J xR Ld
Pr—pP*—P*=0, Jfixed, R, T =1,2,3,
where [ - I, [ - J# and [ - ]* denote the jump across the incident, reflected and refracted
xR F

(2.23)

s
acceleration waves, while P*, P* and P* are material energy flux-density vectors. With
the aid of Eqgs. (1.11); and (1.24), Eq. (2.23) takes the form
s s X R T T

$02D'+SUD' +5UD' = 0,
1 F S5 s xR R AR R 3 I Fyrrx
ArE (G UD DS, — (S UDD'DS,} — (5 U2 AR DIDHS, = 0,

S fixed, R,9 =1,2,3.

These relations represent the system of six equations from which six intensities ? and .::
R, T = 1,2, 3 of the reflected (refracted) acceleration waves may be computed. In this
way all the parameters of the reflected (refracted) acceleration waves are determined.

In the case when we consider only reflection of the acceleration wave, the relation

(2.24), is sufficient for the unique determination of the intensities .‘: , ®=1,2,3. This
R
is possible provided that the amplitudes D' are linearly independent [13).

(2.24)
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