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Stress and heat flux in a dumbbell solution(*)
I. MULLER (PADERBORN)

IN THE KINETIC theory of macromolecular solutions the macromolecules are modelled as dumb-
bells whose dimensions exceed the dimensions of the fluid particles of the solvent and therefore
the interaction between the different parts of the dumbbells contributes to the stress in the
solution. The present paper has been motivated by the idea that, if the macromolecules contri-
bute to the stress because of their nonlocal interaction, they should also contribute to the inter-
pal energy and the flux of internal energy. It is therefore the objective of this paper to identify
the macromolecular contribution to stress, internal energy and heat flux and to point out the
means by which these quantities can be related to the fields of continuum mechanics.

W teorii kinetycznej roztwordw makromolekularnych makroczasteczki modelowane s ,,dwu-
biegunami” o wymiarach przekraczajacych wymiary czasteczek cieczy rozpuszczalnika; w zwiaz-
ku z tym oddzialywanie miedzy poszczegblnymi cze¢fciami ,,biegunami” wplywa na stan na-
prezenia w roztworach. U podstaw pracy lezy poglad ze w sytuacji, gdy makroczasteczki wply-
waja na naprezenie, z uwagi na ich nielokalne oddzialywania, powinny one réwniez wplywaé na
energi¢ wewnetrzng i jej strumieri. Celem pracy jest zatem identyfikacja makromolekularnego
wkladu do stanu napreZenia, energii wewnetrznej i strumienia ciepla oraz wskazanie sposobu
w jaki wielkodci te zwigza¢ mozna z polami mechaniki ofrodkéw cigglych.

B xuHerHuecKo# TEOPHH MAaKPOMOJICKY/ISPHBIX PAaCTBOPOB MAaKPOMOJIEKY/IbI MOMENHPYIOTCH
,,OHIomocamMu’™ 0 pasmMepax NPEBBINAIONIAX Pa3Mephbl MOJIEKYJ YKHAKOCTH PAacTBODHTENA,
B CBAA3H C 9THM B3aHMOMCHCTBHE MEKIY OTACIBHBIMH ,,[TOJIOCAMH’’ BIIHACT HA HANPSDKEHHOE
COCTOAIHME B pacrBopax. B ocHoBax paboThl JIOKHT MHEHHE, YTO B CHTYALHH, KOTJa MaKpo-
MOJIEKYJIbI BJIMAIOT, HA HANPSDKEHHE , H3-33 HeJIOKANBHOTO B3aHMOJICHCTRHA , OHM TOXKE JOJDKHEI
BJIMATE HA BHYTPEHHIOI SHEPTHIO H ee noToK. 1lemsio paboThl clie/IoBaTeNsHO ABIACTCA HACH-
THOHKALMA MAKPOMOJIEKYJIAPHOrO BKJIAIA B HANPSKEHHOE COCTOHNAE, BHYTPECHHIOK JHEPIHIO
H TIOTOK TEINIa, & TAKKE YKa3aHue , KakuM 06pa3oM 5TH BeMIHHEI MOMHO CBA3BATH C NOJIAMH
MEXaHWKH CIUIOLIHBIX CpeA.

1. Introduction

MANY solutions of macromolecular substances exhibit normal stress effects and secondary
flows which a continuum theory can describe by assuming non-Newtonian constitutive
equations. Such equations are nonlocal and non-instantaneous in the sense that they
relate the stress not only to first spatial derivatives of the velocity — as in a newtonian
fluid — but to space and space-time derivates of higher order of the velocity.

In the kinetic theory of macromolecular solutios the macromolecules are modelled
as dumbbells whose dimensions exceed the dimensions of the fluid particles of the
solvent and therefore the interaction between the different parts of the dumbbells
contributes to the stress in the solution. That contribution has often been derived and
a particularly suggestive derivation can be found in the article [1] by BIRD, WARNER
and Evans, Recently, this subject has been systematized and considerably generalized
in [2] by Birp, CurTISS and HASSAGER who have also treated molecular models different
from the dumbbell model.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
August 28th — September 2nd, 1977.
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2. Basic concepts
2.1. The model

For the purpose of the formulation of the statistical theory we represent a polymer
solution as a mixture of two constituents:

Constituent 0, the solvent has molecules which we consider as point particles of mass m,.
The state of the molecule i is therefore characterized by the position ry; and the velocity 7o,
and the index i runs over all values from 1 to Ny, the number of molecules of constituent 0.

Constituent 1, the solute, consists of macromolecules whose structure we considerably
simplify in that we consider them as dumbbell molecules of mass m, whose two partial
masses are equal. The state of molecule « is characterized by the position r,, and the
velocity I, of the center of mass S and by the distance vector R, between the two masses
and its rate of change (see the Fig. 1). The index « runs from 1 to N, where N, is the
total number of dumbbells.

i
2

In a dilute polymer solution the interaction between different dumbbells may be ignor-
ed. The two partial masses of the dumbbell molecule « interact with each other and the

interaction force on the mass at rmq:—;-lt, will be denoted by +I*. These two masses
No

also interact with the solvent molecules and we write 3 F% for that interaction force
im1

on the mass at r,.F —-;— R,. The equations of motion for the two masses thus read in the

absence of external forces

A&

| 2 = 2
20] F " = oe— i —— &
( ) lu:F 2 R« ml ¥ i ml P

i=1

We assume that F¥' depends on ry«F -12— R, —r, and that I* depends on R*. It is then useful
to introduce the fields F and I, such that

@2) FY = F(uF g Re-ro) and L = I(R).
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Summation and subtraction of the two equations for ¥,,F % R, leads to equations for the

motion of the center of mass and of the relative motion respectively, viz.

No
- 1
e Sl o1

No
- 1 4
R, = -E;- Z [F(ha"‘ % R.— rol) = F(rl"_ _;!-'R“— l'm)] - m_l I(R¢)-

i=1

2.3)

2.2. Probability densities

The state of a mixture is in this model fully characterized by the prescription of the
values

. . N l.zl,Z,---aNO!
Tois Fois Fia, rlG;RB)RC fOf all o= 132,-.-,Nl‘

The state of an ensemble of such mixtures is therefore characterized by the density function
S =f(ro, ---l'oN,---i'ol, i.ONn’ Fig--Tyin,s | %Y ---i'm,. R, -—-RN,, R.n ---Rn,s t)
which is normalized by the requirement

[fay =1,

N, N; "
where dy stands for the integration element [| d°ro;d*ro; [] d°riad®F1ad®Rad*R,. With
i=1 a=]

this normalization we may interpret f as the probability density for the state ro;, Fo;, Fya, Fyas
R., R, in a single mixture. This interpretation of f implies that

@4 fE@,v.r,i,RE,0)=
= [ 8(roi— 1) (k01— ¥') 8(rip—1) 8(k;5— ) S(R,— R) S(R, — R)fdy

is the probability density of finding the molecule i of constituent 0 in the state r’, i’ and
the molecule # of constituent 1 in the state r, t, R, R.

Integration of f% over all ¥, I’ leads to the probability density f5(r, t, R, R, t) of
finding the molecule B of constituent 1 in the state r, r, R, R and we have

(2.5 fi £, R, R, 1) = [ 8(ry5—1) 8(k,5— 1) S(Ry—R) SR, — R) 7y .
We define

Ny
> f8r, 1, R, R, 1)
(2.6) fi(r, ¥, R, R) =21 =

and this is the probability density of finding any molecule of constituent 1 in the state
r,i, R, R.
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In particular, f; (r + % R, i+ —:12— il, R, R, t) is therefore the probability density of find-
ing a partial mass m, /2 of a dumbbell with R, R at the position r and with a velocity F

when the center of mass lies at r+ —;— R and has the velocity £+ -;— R.

2.3. Expectation values

With the probability densities f; (r;t —;—R, i+ —;— il, R, R, r) one can now define the

expectation values at the point r of the mass density g,, the momentum density p, u,, the
momentum flux tensor P, , the kinetic energy density g, %, and the flux of kinetic energy J}
as follows:

o ="M [ U+, DA, NPPRER,

2

=N, f Pl 1@ d*RA°R,

2.7 P, =32‘-N, f W[ 1d%d*RA°R,
ouet = TN, f % [ 1 d*RA°R,

JE= i’%’-mf%"- i 1d%d*Rd*R,

where the index 1 throughout stands for constituent 1 and where f;(3, +) stands for
Fi (rj;%ll, i'j;%-k, R, R, t) . All expressions on the left hand side are functions of r

and 7.

3. Equations of transfer

The continuity equation for the probability density f expresses the fact that the number
of mixtures in the ensemble is constant and it reads

No
of 6i‘o;f Ot f 3ruf BRJ Otaf | ORaf
(&0 _3T+ 2( 6ro, Org, ) 2( 51'1:. v i) P + 6R¢) 0.
f=1

We shall assume that f tends to zero rapidly for great values of o, ¥yq» Ra, Re and that
the expectation values of the normal velocity of both constituents vanish at the wall. Under
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these assumptions the integration of the continuity equation (3.1) over all variables
Yois For, Fias Fras Re, Ry e€Xcept rys, Tip, Rg, R, and subsequent summation over all g
results in the equation of transfer for the probability density f;:

& afx 20N, 0 (1
32 = +R +€;(?-?IT (Fy +F-)f1) +

ot JR
Y R A

Here F, denote the expectation values of the force which the particles of constituent 0
exert on the partial masses at r+ -;— R, respectively, of a dumbbell whose state is character-

ized by r, ¥, R, R. More explicitly, we have

ZB‘IF(ri —;'R—rm)foif(fo, i'ou r, i, R, ﬁ$ Ir)d:’rflldaj'l'.)l

3.3 F, =2 -
o) 2 N.fi(r, £, R, R)

A special assumption is made regarding the expectation values of the forces between the
partial masses of a dumbbell molecule and the solvent molecules: It is assumed that F,
is proportional to the velocity difference

. 1
r+ —2—R-—uo (ri TR)

between the partial mass and the solvent. Therefore we write

(3.4) F, = —¢ ii-;-it—uo(ri_;-n)]

and obtain as the equation of transfer for f,

1 1))
u (r+—R +uo(r———R)
gy Yl 3 Lyl "\ 2 ) < )f,“

or "R my oF | 2

_ ii% [(n_ (uo (r+ _;_R) (r-—- —R))) f,] - e (W) = 0.

The relation (3.4) is known as the assumption of the Stokes drag law and the coefficient
of propartionality { in that law is related to the viscosity of the solvent.

Integration of Eq. (3.5) over all ¥ and R leads to

3.6) f fudidlet o f if.di dR+ f ORf: giak =0,

if f; tends to zero fast enough with increasing t, R so that integrals over distant surfaces
in the (r, R)-space can be neglected.
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The definitions (2.7) for density p, velocity u,, etc. of constituent 1 suggest that we are
particularly interested in the values of f; that belong to the arguments r+ —:12- R, it —%- R,R,
R. Obviously we can write

. o, (riin i+—R,R,R,¢
ofy(r, £, R, R,1) ! 27 Tt
or

1 [ . = L]
r 3Rk s RRK or

afl(rv l', R; ﬁs Ir)
dR

r+ % R+ %i.n,'l

1 1.
l afl(riTR,i‘iTR:R,Rs‘)

o (r:};%k, iiil't, R, R, r)
= 2 or :

2
oR

- =

and similar expressions hold for the derivatives of f; with respect to 7 and R. It is then
easy to show that Eq. (3.5) is equivalent to the following equation of transfer for

37 f}(ri%k,ii%i{,ll,il,t):

5f1(iﬂ:) orfy (£ +) aRfi(ii) 2(:' a |[. 1
of ar R m, or [("(*“*T) "°('

M LR S S b
el e
REL

m1

7 (IR)fi(£ 1) - '—"”*(I(R)fa(ﬂ: +)) =0.
When the two equations implied by Eq. (3.7) are added, one obtains

(3.8) ofi(+ +)6-rf1(— =), A+ +3r+f1(— -) | R (+ -};a);-f,(- =)

_ %:.%{[i—uo(r)] (Li(+H)=fi(= )

- E‘ii(ln o(r-+ R)-+ ua(O1; (+ +) + IR - na() + B~ R (— -))

e (I(R) L+ H)=fi(- =)= -—»—(I(R)(f:(+ +)+fi(--))) = 0.
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4. Equations of balance

4.1. General equations of balance

Multiplication of the equation of transfer (3.8) by a function g(r, I, R, fl) and inte-
gration over all f, R leads to the general equation of balance(®)

@) o [e(h+ A=) drdR+ - [ UG+ H)HA(=—)di d

d
aRng(ﬁ(++}+ﬂ(——))d'dR f[ iR g](fl(++)

2{

+fi(==))di dR+ g = [F—uo()] (fi(+ +H)+/i (- —))drdR

+ 2 f > {(R—uo(r+ R)+uo(0)) /i (+ +) + (R—uo(x)

Fup(r=R))fi(— —)}dfdé—mil [ 2 x®) ((+ ) ~fi(-drai

b [ B 1R (i + A=) bk = 0

4.2. Balance of mass of the dumbbell constituent

With g = ”% N, Eq. (4.1) delivers the balance of mass at the point r of those dumb-

bells whose distance vectors are R:

@2 5 [ TN DA )RR [N f )

+i(—==))d*rd*R+ ——f 2 W, R(fi(+ +)+f(— =))d*d*R = 0.

The mass balance of constituent 1 results from Eq. (4.2) by integrating over R and —
by use of the definitions (2.7) — we may write it as

dg, | Opyuy _
4.3) 2t + ar 0.

(‘) Here and in subsequent formulae we assums that f; tends to zero sutﬁc:ently rapidly for great
r, R, R, so that integrals over the distant surfaces in the spaces of the variables r, R and R can be neglected.
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4.3. Balance of momentum of the dumbbell constituent
We choose g = L;iN,i in Eq. (4.1) and obtain

0

@8 2 [ PNAG - )RR o [ TN+ 4)

(= )R+ [ TLNR( ()~ fi (= )R

+ 2 [ 20 N li—ua(®) (fi(+ +)+(~ )R

- 2 [ 2 NI (fi(+ H)=Fi(— )% R = 0,

which represents the contribution of those dumbbells to the balance of momentum at the
point r whose distance vectors are R. Integration over all R yields the balance of momentum
of constituent 1 which — by use of the definitions (2.7) — can be written as

5 2, B (1@ (i DAl )RR = = 2 0, ).

The third term in this balance is due to the interaction force between the partial masses
of the dumbbell molecules. If f; varies sufficiently slowly in its first two variables over the
ranges of R and R, we may approximate that term by use of a truncated Taylor expansion:

(4.6) fi (r:l: SRt L3R, R) f,+ RS ar

where the argument of f; on the right hand side is r, t, R, R. Thus we obtain the relation
@D~ [I®N(LG DAl -)d%dRER =
- % ( - f IR)RN, f,(r, t, R, ﬁ)d’id’Rd’fr)

whence follows the momentum balance in the form

4.8) ‘395:‘* = ( f IR)RY, f, (tfRR) d° d'—‘Rd’R) - -——gl(ul—uo)

which suggest the definition of the stress tensor t” due to the dumbbell interaction:
(4.9) t® = [ IR)RN, f, (r{RR)d% d°Rd*R.

The momentum flux P, contains a convective part, viz. p;u, u,, and it is usefull and
customary to split that part off and introduce the stress t}, defined as

(4.10) ti=—-P,+omu = f—’—gi (f—w,) (F—u,) (fi(+ +)+A (- —))d’r'd’Rd’ﬁ.
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With this definition the momentum balance can be written in the form

a  O(tf+t° x
(4.11) 9:_'1"— —(—551_—)‘ o Ql(“l—“o)'

where '! denotes the rate of change in the frame that moves with the dumbbell constit-

. 2
uent. t¥+t] is the total stress of that constituent and the term -m—‘:gl(ul—no) on the
1

right hand side represents the momentum production of constituent 1 due to the inter-
action of the two constituents 0 and 1.

4.4. Balance of energy of the dumbbell constituent
We choose g = ’—’;—’—Nli' - T in the general equation of balance (4.1) and obtain

@) 2[NS (A )R

6ar n;L N: ) !‘(fx(-i' +)+fi(—=))d* ‘PR"{'—-,{ 5 N‘ 2 R(fl(+ +)

(= NFPR+ 2 [ LN @i+ )i )Tk

- o [ BENH® (G D= PR = 0.

This cquﬁtion represents the contribution of the dumbbells with the distance vector R
to the energy balance at r. Upon integration over all R Eq. (4.12) will deliver the balance
of energy of constituent 1 which — with the definitions (2.7) — can be written as

691 91

@1y 2 + 2 i f KRN, (fi(+ +) =13 (= =))d*%d*Rd*R =

2
- ;(:_ (SpP;—g,u; * wp).
1

Here again the third term on the right hand side is due to the interaction between the

partial masses of a dumbbell. We transform that term by use of a truncated Taylor expansion
(4.6) and obtain

. f KRN, (fi(+ +)—fi(— =) d* d°Rd°R =
= 5 (- [ 1®) N iR - [ 100 v, G dtiatRak

a . . - » - &
= 5 (- [1® my s @rereR) + [10: RN PRER.
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For a further transformation of the second integral it is assumed that I(R) is a central
force so that

(4.14) I(R) = i(R)%
R
holds. Thus I(R) can be written as%( ! i (R')dR’) and we have
- f IR)- iV, (fi(+ +)—~fi(~ —))d*d*Rd*R =
R
= %(_ f I(R)- iRN, f,d’}d’Rd"‘ﬁ)+ f 3%( f i(R')dR’) RN, f,d*rd*Rd*R

R -
= 2 (- 1@ wsiaiara®)- [ ( [ iwyar)w, O aviasrai
o
Rf,
dr

By Eq. (3.6) the expression [ drdR can be written as— «5% { £ d’}d"'ﬁ—-g;f if,d

d®R and this result leads to
—JIR) - ¥N,(fi(+ +)—fi(= =))d*d°R =
R

G ) ;

=——| - | F|{IR)R-1 | i(R)dR'|N,fid*rd*Rd*R

2~ [eoncs [ o] mseienei

R
e (o[ (R)R| N/ d%d*Rd°R

so that balance of energy assumes the following form:

R
dos e+ [ of i(R)dR')N, f,d*r d*Rd*R)

(4.15) = +

R
o(¥t— [ t[I®R~1 [ i(R)dR]N, f,d*rd*Rd*R 2
+ 2 =

3 s (SpPy — 0,1, o),

1 denotes the unit tensor.
The form of this balance suggests the definition of the density of potential energy
0,£” in the dumbbells and of the energy flux J® due to the dumbbell interaction

R
(4.16) o:® = [ ([ iRYAR) N.f,d?7 PRa°R,
0

R
#.17) ¥° = [ [I®R-1 [ iR)dR | N, f, & PRER.
0
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4.5, Balance of internal energy

The energy density g, e} constains a kinetic energy, viz.g—' u}. This part is usually split
off and we denote the remainder by o,¢}:
@18)  euet = puet—Lut = [ DL (- (- )N, fi(+ +) (= )RR,

01(e¥+€P) is called the internal energy and this quantity is assumed to be a scalar under
rotations and translations which the total energy is not.

Similarly, the energy flux J% + J? contains convective terms, viz. p, (s{ + % u+ a”) u,

and the power of the stresses tf+t° on the motion of constituent 1, viz. (t¥+t%)u,. The
remainder — which is assumed to be a vector under rotations and translations — will be
called flux of internal energy of the dumbbell constituent and will be denoted qf+q°,
where

@19 o = [T (b-0) (b-u) (F-uIN(AGH D) (- -)d% R

so that g° comes out as

R
(4.20) =~ (i—-u,)[l(n)n—i ] i(R’)dR']N,l f,d*rd*Rd>.
[1]

q° is the contribution of the dumbbells to the flux of internal energy.
The energy balance of the dumbbell constituent can thus be written as

1 oo 2
@20 o (drtua+e) + L @rat-@rem) = Z (oo ),

where again ‘! denotes the rate of change in the frame that moves with constituent 1.
Multiplication of the momentum balance by u, gives the balance of kinetic energy and

if we subtract that from the above energy balance we obtain the balance of internal energy

of the dumbbell constituent, viz.

2

Pl o4 k
. Spt}.

“2) ou(eh+eD 2 (@ +e?) = (e e T

_i_&'_ Sptk is the production of internal energy of constituent 1 which is due to the inter-
1

action of the constituents 0 and 1.

5. On the determination of t°, q° and £”
5.1. Constitutive equations
So far we have identified the dumbbell contributions to the stress, the specific internal

energy and the flux of internal energy in terms of the distribution functicen f; (r, I, R, R, 7).
But what we really want of course in continuum mechanics are constitutive equations
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which relate t?, q° and &” to the fields of densities and velocities of the constituents. From
the solution of similar projects in the kinetic theory of gases we expect that this objective
can only be reached approximately and I shall now show how we might proceed in the
present case.

First of all, to simplify notation we introduce the expectation value [g] by the de-
finition
(5.1) [elv:(r, R, 1) = [ g(r, &, R, R)f,(r, 7, R, R, 1)d% d°R
for any function g(r, ¥, R, R). Thus we may write t°, g° and &° from Egs. (4.9), (4.16),
and (4.20) in the forms

t°= [ IR)RN, p,(r, R, )d°R,

R
(5.2) e = [ ( 5[ i(R)dR) Nyyi(r, R, )R,

R
¢° = - [ ([i]-u) [I®R-1 of i(R)AR | Ny 9, (r, R, )d°R.

We conclude that in order to obtain constitutive equations for t?, q° and ” we need to
know y(r, R, t) and [F] in terms of the fields of continuum mechanics.

5.2. Equations of balance

Multiplication of the equations of transfer for f; (3.5 by a function g(r, i, R, R)
and subsequent integration over all ¥ and R leads to a general balance equation

sy 2w, Astle,., 3E3Rlv1 E ; g;
+§Tl(i "°('+_R) ( ))g§+ - (so(r+ 5 %)
“""(r__k)))aa; Nt mi I—;-_%Hi

We assume that the relations

e L8} smfe-La)

1 1 dug
2 ~tlo(r) and ug(r'!' ZR)‘-llo(r—TR N_—a_l_'_R
are approximately valid. Furthermore we set
a=f-u, and A= l'l—-a—u'i-R

or
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: 1
and we write down particular cases of Eq. (5.3) by choosing g as 1, A, a, AA— 3 A-Al,

Aa, aA,ax—%a-:ﬂ:

p] o[r oIR
(5.4) ;l + [aEwl + [aaw1 - 0’
o[ Aly, 3[Ar]v1 3[AR]%
-3 . T or R Ty,

e .o - .7

o[aly, . ofatly, | ofaRly, T 9 .0 a0 )T 2t
a T ar R |ar+"a7+n“a'f 2 ¥ . a1

2y
Y =2 = }';; [A]?l ’

aH(AA—-l-A-M)F v, a“(AA-—%A-Ai)ﬁ"v,
o - = e aR =

+~$1-(I[A]+[A]l-~§-l-[A]]1)w, H +R6R)(AA AM

- ---—~2“AA—-—-A Af "

d [A‘h'l 4 [A'i'l'l"l a [A'R}%
& T or Y S

Mo .o «a\.T
“Il('a—t' a +R aR)AI_ i
OlaAly, | o[sArly, . o[aAR]y, 4
at 8 TR i, [

Mo ..o . 58\..7 28
—u(“a;'l'ra'l‘nﬁ‘) lAjfh = _"Ezlmlvu

3 aﬂ(--i:"')ﬂm aﬂ"--i-*-“%‘i

|
at
iffe .o 4 @ 1 1
—M-37+r—éF+Ra—R)(as-—-§-a a1)_11p,

The most important one of these equations is (5.4), the one correspondmg tog= l,
because we shall rely upon it to determine the function y,. However, before Eq. (5.4)

can be of any use, we have to know the fields [¥] and [R] that occur in it. I shall now
proceed to show how Egs (5.5) lend themselves to the formulation of an iterative

scheme by which approximate expressions for [f] and [R] can be found.

7 Arch, Mech. Stos. nr 2/79
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5.3. An iteration for the determination of [R] and [ ]
As the initiation agreement of the proposed iterative scheme we shall assume that
fi(r, &, R, R, t)is of the form

(5.6) fi(r,t,R,R, 1) =p,(r,R, 1)

o Al )

This is the Maxwellian distribution function corresponding to the situation that the two
partial masses of a dumbbell molecule are in equilibrium with the solvent at their respective
positions. Here and in the sequel the field of temperature is assumed to be uniform. One
can easily re-write the distribution function in the form

(5'7) .fl(r’ i's R, ka t) - '}’1(1', R, t)

]
*V 27 Y k7T €

By use of Eq. (5.7) one may calculate expressions for the expectation values [g] that
occur in Egs. (5.4) and (5.5) and these will be considered as zero-th iterates and will be
denoted by [g]°. We have

k k

(=0, [AP=0, [as]'=3—T7 [AAP=12_—T,

T -0

(5.8) ’ -——-a ai
N Em]" =0, [8AP=0, [aAA]° =0, [AAAJ° = 0.

I =o, [aA]° = 0

-0, |

We assume that the two relations [a-a] = 3 ;k— Tand [A-A] = 12 mi T are generally
1 1

valid—not only in equilibrium; these relations define temperature in non-equilibrium.
[a-a] determines the expectation value of the kinetic energy of the centers of mass of the
dumbbells and [A-A] determines the expectation value of the kinetic energy of the relative
motion within a dumbbell. Clearly, those two expectation values might be different in
general in non-equilibrium. This would lead us to two different temperatures which pres-
ents a complication that should be avoided at this stage.

The first step in the iteration is now taken as follows: We introduce the zero-th iterates
on the left hand side of Eqgs. (5.5) and calculate first iterates by solving these equations

aa—%a- al “ on their

for the quantities [A], [a], WAA—-;—A- Aiﬂ, [Aa], [aA],

right hand sides. In this manner we obtain

6(u° my \00
o 2{' 2 2kT ¥y
(5.9) [RY = —% R 4 I(R)- "¢ R’

T ml“’“ E Xn Y1
[ “( ") T2 T
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where }30 is the rate of change of u, for the observer who moves with the constituent 0.
The superscript 1 in [R]' and [#]* refers to the first iterative step. It is a simple matter
to derive Egs. (5.9) from Eq. (5.5);,, according to the above prescription; it is equally

[ war foar

easy, and quite straight-forward to calculate " AA—-—A Al

| but the results are not given here beceause they are little suggestive and

Lo

because we shall not need them.

The iteration proceeds to the second step by insertion of the first iterates — whose
calculation was just indicated — into the left hand side of Eqs. (5.5). The second iterates
for [R] and [i] are then calculated by solving Egs. (5.5),,, for [R] and [] on their right
hand sides.

If we wish to calculate third iterates for [R] and [], we need more equations than

those given in Egs. (5.5) because we need second iterates to “ AA- —A- Al H [Aa] , [aA]

and

aa—%a al |l It is easily observed that with increasing order of iteration the

necessary number of equations of balance increases and so does the amount of labour
involved.

n
What we get in the nth iterative step is a correction of order (f-‘-) to the result of

o
the (n—1)* step and since ( ; ) typically is a time of the order of magnitude of 107125,

we see that corrections are very small indeed. Because of this, one is usually content with
the first iterates and this is all we shall consider here from now on.

5.4. The diffusion equation for y,

Insertion of the first iterates (5.9) for [¥] and [R] in Eq. (5.4) gives rise to the equa-
tion

A 0 (3ﬁ R——Z- I(R))
(5.10) oy, 3 Ho¥r a"o'!’l kT o*y, + or ¢ ke _ 2kT Py, 0
’ ot or 2 or? R ¢t OR? *
where the abbreviation 1'1:'0 has been introduced for uo— 22 ‘o

This equation—or a simplified version of it—is called the diffusion equation in the
literature, e.g. see the review paper [1] by BIRD, WARNER and EVANS. These authors assume

it w0, 2 i sp(a“I

. 3 ) 0 so that the solvent motion is isochoric, further-

more the authors assume that %n-r"— is constant. Thus they have the simpler equation

P 2

Te
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They derive this equation by assuming that the relative motion of the partial masses in
a dumbbell is governed by the diﬂ‘erence of the Stokes drag force on the masses and by

a “Brownian motion force” kT ! that gives rise to the term with the temperature.

3R
One advantage of the present treatment is that the Brownian motion force arises
naturally in the first step of the iterative scheme described before. Another advantage is

that Eq. (5.10) exhibits the effects of accelerated and non-isochoric motion, in which%lo

and v, may also depend on r.

The disadvantage of Eq. (5.10) is of course its complexity. Indeed, while it is possible
to find interesting approximate solutions of Eq. (5.11) —at least upon a further simpli-
fication of that equation (e.g. see [1] § 6) — no solution of Eq. (5.10) has yet been found
which reflects the complications of that equation as compared with Eq. (5.11).

If we had such a solution, it would be in terms of the velocity u° and its derivatives;
the desired constitutive equations for t®, 2 and £° would then result from the insertion
of the solution y, into the relations (5.2).

5.5. Flux of internal energy

Indeed, after the interaction force I(R) within the dumbbell has been chosen, the only
unknown in the expressions (5.2),,, for t® and £ is the function y,(r, R, #) and in the
first step in our iteration this function has to be calculated as the solution of the differential
equation (5.10). The determination of g°, however, according to Egs. (5.2); requires the
knowledge of y, — [f]. Now the first iterate of [f] is given by Eq. (5.9), and, if that
is inserted into Eq. (5.2); we obtain

R
oy ___"3 . st 3
Q= -(u un)f(l(n)n 1!‘(}{)‘”{‘)”1 v, (r, R, 1)d°R

’;g aa f (I(R)R 1 f :(R')dR’)Nltpl(r R,0d°R
or, by use of Eq. (5.2),,,:
(5.12) = _(“l—“o) (t°- 9159‘)"' kT 3______—(?—915"1)

or

Thus we conclude that in the present case of constant temperature the dumbbell contri-
bution to the flux of internal energy can be determined from the contributions of the
dumbbells to stress and internal energy. Note that q® vanishes, when ¥, is independent
of r, when the acceleration ‘noo is zero and when u! = u,, so that the dumbbells do not
drift with respect to the solvent molecules. In particular, therefore, we have g =0 in
the case in which the différential equations (5.10) has reduced to Eq. (5.11).



STRESS AND HEAT FLUX IN A DUMBBELL SOLUTION 249

References

1. R. B, Brp, H. R. WARNER, D. C. EvANS, Kinetic theory and rheology of dumbbell suspensions with Brown-
ian motion, Advances in Polymer Science, 8, p. 1, Springer Berlin, Heidelberg, New York 1971,

2. C. F. CurrTiss, R. B. BIrD, O. HASSAGER, Kinetic theory and rheology of macromolecular solutions, Adv.
in Chem. Physics, 35, p. 31, John Wiley and Sons, Inc. 1976.

GESAMTHOCHSCHULE PADERBORN, BRD.

Received December 21, 1977.





