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Stress and heat flux in a dumbbell solution(*) 

I. MOLLER (PADERBORN) 

IN THE KINETIC theory of macromolecular solutions the macromolecules are modeiied as dumb­
bells whose dimensions exceed the dimensions of the fluid particles of the solvent and therefore 
the interaction between the different parts of the dumbbells contributes to the stress in the 
solution. The present paper has been motivated by the idea that, if the macromolecules contri­
bute to the stress because of their nonlocal interaction, they should also contribute to the inter­
nal energy and the flux of internal energy. It is therefore the objective of this paper to identify 
the macromolecular contribution to stress, internal energy and heat flux and to point out the 
means by which these quantities can be related to the fields of continuum mechanics. 

W teorii kinetycznej roztwor6w makromolekulamych makroc14Steczki modelowane ~ ,dwu­
biegunami" o wymiarach przekraczajilcych wymiary CZi\Steczek cieczy rozpuszczalnika; w zwii\Z­
ku z tym oddzialywanie mi~dzy poszczeg6lnymi cz~ami ,biegunami" wplywa na stan na­
pr~Zc:nia w roztworach. U podstaw pracy lezy pogli\d, 2:e w sytuacji, gdy makrOCZi\Steczki wply­
wajil na napr~i:enie, z uwagi na ich nielokalne oddzialywania, powinny one r6wnief wplywac na 
energi~ wewn~trzni\ i jej strumien. Celem pracy jest zatem identyfikacja makromolekulamego 
wkladu do stanu napr~zenia, energii wewn~trznej i strumienia ciepla oraz wskazanie sposobu 
w jaki wielko8ci te zwi~c moina z polami mechaniki o8rodk6w ci~glych. 

B I<HHeTU'lleCJ<OH TeopUH Mai<pOMOJICJ<YJVIPHI>IX pacrBOpoB Ma!<pOMOJICJ<YJihl MOACJIHpYJOTCH 
,6HIIOJUOCilMH" 0 pa3Mepax npeBbiiWUOIUHX pa3Mephl MOJICJ<YJI >l<lmKOCTH pacrBOpHTeml, 
B CBH3H C 3THM B3aHMOAeitCTBHe Me>K,Zzy OTAeJII>HI>IMH ,nOJIOCilMH" BJIHHeT Ha HaiipiDKeHHOC 
COCTOHHHe B paCTBopax. B OCHOBax pa6oThi JIC>KHT MBeHHe, 'llTO B arryainm, KOrA& Mai<po­
MOJICJ<YJihl BJIWIIOT,Ha HanpiDKeHHe, H3·3a HCJIOKaJII>HOrO B3&11MOACHCTBIUI, OHH TO>Ke AOJDI<Hhl 
BJIHHT& Ha BJ:IYTPCHmOIO 3Heprmo H ee nOTOK. Uem.ro pa6oThl cneAOB&TeJILHo HBMCTCJI ~eu­
m<PHKamm MaKpoMoJieJ<YMpHoro BKJI&Aa B HanpJDKeHHoe cocromme, BByTpeHmOIO 3Heprmo 
H UOTOK Tenna, a TaK>Ke YKa3aHHe, KaKHM o6pa30M 3TH BCJDI'CIHHhl MO>KHO CBH3B8TL C UOJIJIMII 
MeXaHHKH CUJIOIIIHbiX cpeA. 

1. Introduction 

MANY solutions of macromolecular substances exhibit normal stress effects and secondary 
flows which a continuum theory can des~ribe by assuming non-Newtonian constitutive 
equations. Such equations are nonlocal and non-instantaneous in the sense that they 
relate the stress not only to first spatial derivatives of the velocity- as in a newtonian 
fluid- but to space and space-time derivates of higher order of the velocity. 

In the kinetic theory of macromolecular solutios the macromolecules are modelled 
as dumbbells whose dimensions exceed the dimensions of the fluid particles of the 
solvent and therefore the interaction between the different parts of the dumbbells 
contributes to the stress in the solution. That contribution has often been derived and 
a particularly suggestive derivation can be found in the article [1] by BIRD, WARNER. 

and EvANs. Recently, this subject has been systematized and considerably generalized 
in [2] by BIRD, CuRTISS and HASSAGER who have also treated molecular models different 
from the dumbbell model. 

(*)Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland, 
August 28th- September 2nd, 1977. 
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2. Basic concepts 

l.l. The model 

I. MOLLER. 

For the purpose of the formulation of the statistical theory we represent a polymer 
solution as a mixture of two constituents: 

Constituent 0, the solvent has molecules which we consider as point particles of mass m0 • 

The state of the molecule i is therefore characterized-by the position r01 and the velocity ;0 , 

and the index i runs over all values from I to N 0 , the number of molecules of constituent 0. 
Constituent I, the solute, consists of macromolecules whose structure we considerably 

simplify in that we consider them as dumbbell molecules of mass m1 whose two partial 
masses are equal. The state of molecule a is characterized by the position r1« and the 
velocity r1cx of the center of mass Sand by the distance vector Hex between the two masses 
and its rate of change (see the Fig. 1). The index a runs from I to N 1 where N1 is the 
total number of dumbbells. 

FIG. 1. 

In a dilute polymer solution the interaction between different dumbbells may be ignor­
ed. The two partial masses of the dumbbell molecule a interact with each other and the 

interaction force on the mass at r1«+ ~ Hex will be denoted by ±r. These two masses 

No 

also interact with the solvent molecules and we write 2 r; for that interaction force 
I-I 

on the mass at r1cx+ ~ Ha. The equations of motion for the two masses thus read in the 

absence of external forces 

(2.1) 

We assume that~~ depends on r1cx+ ~ Ha- r0 and that J« depends on R". It is then useful 

to introduce the fields F and I, such that 

(2.2) . I 
~~ = F(r 1« + T Ha- ro,) and lex = I(Rcx). 
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STIU!SS AND HEAT FLUX IN A DUMBBELL SOLUTION 23S 

Summation and subtraction of the two equations for r1 :x=F ~ Rccleads to equations for the 

motion of the center of mass and of the relative motion respectively, viz. 

(2.3) 

2.2. ProbabiUty densldes 

The state of a mixture is in this model fully characterized by the presc,ription of the 
values 

i=l,2, ... ,No, 

ex = I, 2, ... , N1 • 

The state of an ensemble of such mixtures is therefore characterized by the density function 

f =/(rot··· roN0 • .. rOh i'oN0 , ru ··· r1N1 , i'u ··· ftN1 , R1 ··· RN1 , Rt ... RN1 , t) 

which is normalized by the requirement 

f fdx =I, 

N1 N, 

where dx stands for the integration element fl d 3r01 d3 r01 fl d 3rtt,d3
; 1,d

3R,.d3R,. With 
1 .. 1 «•I 

this normalization we may interpret/as the probability density for the state roh roh rtcu ftcc, 

Rcc, R, in a single mixture. This interpretation off implies that 

(2.4) /J1 (r', r', r' r' R, R, t) = 

= f 6(ro,- r') 6(r01 - r')6(r1p- r) 6(r1"- t)c5(R.,-R) c5{i11 -R)fdx 

is the probability density of finding the molecule i of constituent 0 in the state r', r' and 
the molecule P of constituent 1 in the state r, .t, R, R. 

Integration of f:/t over all r', r' leads to the probability density f~(r, t, R, R, t) of 
finding the molecule p of constituent 1 in the state r, r, R, R and we have 

(2.5) ff(r, t, R, R, t) = f 6(r~ 11 -r)c5(it 11 -r)c5(Rp-R)c5(R11 -R)fdx. 
We define 

N1 
~ 11 • 

L.J ft(r, t, R, R, t) 
(2.6) /

1
(r, t, R, R) = fJ._=_• _____ _ 

Nt 

and this is the probability density of finding any molecule of constituent I in the state 
r,t,R,R. 
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236 I. MiJu..ER 

In particular,/1 ( r ± ~ R, f± ~ it, R, it, t) is therefore the probability density of find­

ing a partial mass m1 /2 of a dumbbell with R, Rat the position r and with a velocity r 
when the center of mass lies at r± ~ Rand has the velocity r± ~ :R. 

2.3 • .Expectadoa values 

With the probability densities / 1 { r ± ~ R, t± -} it, R, R, t) one can now define the 

expectation values at the point r of the mass density (!1 , the momentum density !h u1 , the 
momentum flux tensor P 1 , the kinetic energy density (he~, and the flux of kinetic energy Jf 
as follows: 

(2.7) 

J1 _ m1 N f r · r . [ 
1-- 1 -r 2 2 

where the index 1 throughout stands for constituent 1 and where / 1(±, ±) stands for 

f. ( r± ~ R, r± ~ R, R, R, t). All expressions on the left hand side are functions of r 
andt. 

3. Equations of transfer 

The continuity equation for the probability density f expresses the fact that the number 
of mixtures in the ensemble is constant and it reads 

(3.1) 

We shall assume that/tends to zero rapidly for great values of r0 , rJCu Ra, Rcx and that 
the expectation values of the normal velocity of both constituents vanish at the wall. Under 
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STRESS AND HEAT FLUX IN A DUMBBELL SOLUTION 237 

these assumptions the integration of the continuity equation (3.1) over all variables 
ro, ro, ftc:u ft(U Roe,~ except ft8' ft/h Rp, Rp and subsequent summation over all p 
results in the equation of transfer for the probability density h : 

oft • oft • oft a ( 1 ) 
(3.2) at+ rar +R oR+ or fn; (F+ +F_)ft + 

+-!([2_(F+-F-)-_i_I(R)]ft) = 0. oR mt mt 

Here F ± denote the expectation values of th~ force which the particles of constituent 0 

exert on the partial masses at r± 4 R, respectively, of a dumbbell whose state is character­

ized by r, r, R, Ji. More explicitly, we have 

~ J F (r± + R- ro,)!Jf(ro, ro, r, r, R, R, t)d3 ro,d3ro; 
F =~~·~~~----~------~--------~----------------± • • 

Ntft(r, r, R, R) 
(3.3) 

A special assumption is made regarding the expectation values of the forces between the 
partial masses of a dumbbell molecule and the solvent molecules: It is assumed that F ±. 

is proportional to the velocity difference 

between the partial mass and the solvent. Therefore we write 

(3.4) 

and obtain as the equation of transfer for f 1 

(3.5) oft +r oft +R oft-~~ [(r- uo(•+}It) +o.(r--}R)')ftl 
ot or oR mt or 2 

-!: a~ [(R- (u• (•+ ~ R) -Do (•- -}~t))}t·l- ~. a~ (I(It)/,) = o. 

The relation (3.4) is known as the assumption of the Stokes drag law and the coefficient 
of propartionality C in that law is related to the viscosity of the solvent. 

Integration of Eq. (3.5) over · all r and R leads to 

·(3.6) a J . · a· J. . · J oRft . . Tt ftdrdR+a, rftdrdR+ aJr drdR = 0, 

if ft tends to zero fast enough with increasing r, R so that integrals over distant surfaces 
in the (r, R)-space can be neglected. 
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238 I. MOu.ER 

The definitions (2. 7) for density (!, velocity u1 , etc. of constituent 1 suggest that we are 

particularly interested in the values off1 that belong to the arguments r± ~ R, r± ~ R, R, 

R. Obviously· we can write 

oJ1(r, t, R, :R,t} 
or = 

iJf, ( r± + R, r±-}it, R, i, t) 
1 • 1. • or 

r± lR,r± jR,R,R 

oft(r, t, R, :R, t) I 
oR 1 • 1. • 

r±jR,r± 2a,R,R 

and similar expressions hold for the derivatives of f 1 with respect tor and R. It is then 
easy to show that Eq. (3.5) is equivalent to the following equation of transfer for 

(3.7) /,(r±}R,H ~ it,R,it,t): 
oft<±±) oift(± ±) oRft(± ±) 2C a [(· ( 1 1) ( 

of + or oR - m1 Tr r- ±2+2 °0 r 

+(± ~- ~)R)+(± ~- ~)u.(r+(± ~ + ~)R)]/1 (±±) 

-!: :i([R-uo(r+(± ~ + ~)R)+uo(r+(± ~- ~)R)1/1(±±) 

4(± ~) iJ 4 iJ 
+ T-"(I(R)f1(± ±))---. (I(R)/1(± ±)) = 0. 

m1 ur m1 oR 

When the two equations implied by Eq. (3. 7) are added, one obtains 

(3.8) oft<+ + > + !t (- - > at(ft < + + > + f1 (- - >) a:R(rt < + + > + f1 (- - >) 
. ot + or + oR 

- ~~([r-uo(r)](ft( + +)-ft(- -))) 
ml or 

- ~.!..(£R-uo(r+R)+u0(r)]f1 ( + + )+ [li-u0(r)+uo(r-R)]fl(--)) 
m1 oR 

+ ~~ :r (I{R){/1 ( + +)-/1(--))- ~~ iJ~ {I{R)(/1 ( ++)+.f.(--)))= 0. 
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STRESS AND HEAT FLUX IN A DUMBBELL SOLunON 239 

4. Equations of balance 

4.1. General equations of balance 

Multiplication of the equation of transfer (3.8) by a function g(r' r' R, R) and inte­
gration over all r, R leads to the general equation of balance(!) 

(4.1) 

+a~ J Rg(f. < + + > + 1. <- ->)a; aR-J [ ~; + r ;; + R :i] <!.( + + > 

+/1(-- ))d;dR+ ~ j" ~~ (r-uo(r)] (ft( + + )+/1(-- ))d;d.R 
m1 ur 

+- -. {(R-u0 (r+R)+u0(r))/1 ( + + )+(R-uo(r) 2c Jog · · 
m1 oR 

. . 2 Jog . · +u0(r-R))/1(-- )}drdR-- ~I(R){/1( + + )-/1(- )drdR 
m1 ur 

+- -. I(R){/1(++)+/1(--})d;dR = 0, 4 Jog · 
m1 oR 

4.2. Balance of mass of tbe dumbbell constituent 

With g = ~t N1 Eq. (4.1) delivers the balance of mass at the point r of those dumb­

bells whose distance vectors are R: 

The mass balance of constituent I results from Eq. (4.2) by integrating over R and­
by use of the definitions (2.7)- we may write it as 

(4.3) 

(1) Here and in subsequent formulae we assum~ that / 1 tends to zero sufficiently rapidly for great 
; ' R' R' so that integrals over the distant surfaces in the spaces of the variables r, R and R can be neglected. 
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240 I. MULLER 

4.3. Balance of momentum of the dumbbell constituent 

We choose g = ~1 N 1 r in Eq. (4.1) and obtain 

+/1(--))d3;d3R+ a~f ~~ NLrR(ft( + + )-/~(-- ))d3;d3R 

+ !: J ~1 
Ndr-uo(r)](/1(++)+/t(- -))d3rd 3R 

- 2_f m~N1l(R) {ft( + + )-/1(-- ))d3;d3R = 0, 
m1 2 

which represents the contribution of those dumbbells to the balance of momentum at the 
point r whose distance vectors are R. Integration over all R yields the balance of momentum 
of constituent 1 which- by use of the definitions (2. 7) - can be written as 

(4.5) oe~u1 + 
0~1 -JI(R)Nt{ft(++)-ft(--))d3rd3Rd3R= -~e~<u~-uo). 

ut ur r 
The third term in this balance is due to the interaction force between the partial masses 
of the dumbbell molecules. If / 1 varies sufficiently slowly in its first two variables over the 
ranges of Rand R, we may approximate that term by use of a truncated Taylor expansion: 

where the argument of / 1 on the right hand side is r, i', R, R. Thus we obtain the relation 

(4.7) - f I(R)Nt{ft( + + )-/1(-- ))d3;d3Rd3R = . 

= :r (-f I(R)RNtfl(r, r, R, R)d3;d3Rd3R) 
whence follows the momentum balance in the form 

(4.8) oe~;1 + :r (P1 - f I(R)RN1/ 1 (ri'RR)d3;d3Rd3R) = - ~: e1 (ut-uo), 

which suggest the definition of the stress tensor t 0 due to the dumbbell interaction: 

(4.9) 

The momentum flux P 1 contains a convective part, viz. (!1 u1 u1 , and it is usefull and 
customary to split that part off and introduce the stress t~, defined as 
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STRESS AND HEAT FLUX IN A DUMBBELL SOLUTION 241 

With this definition the momentum balance can be written in the form 

(4.11) 

where ' 1 denotes the rate of change in the frame that moves with the dumbbell constit­

uent. t~ +t~ is the total stress of that constituent and the term - ~ e1 (u1 -u0 ) on the 
mt 

right hand side represents the momentum production of constituent 1 due to the inter­
action of the two constituents 0 and 1. 

4.4. Balance of energy of the dumbbell constituent 

We choose g = -~1 N1r · r in the general equation of balance (4.1) and obtain 

(4.12) a f m1 N r · i(~" ( ) 1 ( ))d3• d3R· Tt 2 12 J1 ++ +Jl -- r 

a j m1 rr . (I' < ) .I' < )d3 .d3 • a j m1 rr it( I' ( ) +ar TN12r Jl ++ +Jl --) r R+ oR TN12 J1 ++ 

+/1(--))d3rd3R+ !: J ~1 Ntr[i-uo(r)](/1(++)+/t(--))d3rd3R 

- ~1 f ~1 N1 ri(R)(/1( + + )-/1(-- ))d3rd3R = 0. 

This equation represents the contribution of the dumbbells with the distance vector R 
to the energy balance at r. Upon integration over all R Eq. (4.12) will deliver the balance 
of energy of constituent 1 which- with the definitions (2. 7)- can be written as 

(4.13) oel e' oi~ J I( ). (I' ( ) !: ( ))d3. 3 d3 • -----at+ar- R rN1 11 ++- J -- rd R R = 

Here again the third term on the right hand side is due to the interaction between the 
partial masses of a dumbbell. We transform that term by use of a truncated Taylor expansion 
(4.6) and obtain 

-f I(R)i:N1(ft(++)-/1(--))d3;d3Rd3R = 

= :r (- f I(R) · rRN1/1d3;d3Rd3R)- f I(R) · iRN1 0:: d3 ;d3Rd3R 

= :r (-J I(R) · iRN1/1d3;d3Rd3R)+ J I(R) · RN1/1d3rd3Rd3R. 
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242 I. MOLLER 

For a further transformation of the second integral it is assumed that I(R) is a central 
force so that 

(4.14) I(R) = i(R) ~ 

holds. Thus I(R) can be written as il~ (! i(R')dR') and we have 

-f I(R) · rNt(ft( + + )-ft(-- ))d3 j.d3Rd3R = 

R 

= :r (- JI(R) · tRN1ftd3;d3Rd3R} + J 0~ (J i(R')dR') RN1f 1 d 3;d3Rd3R 
0 

R • 

= :r (- f I(R)· rRN1/ 1 d3;d3Rd3R)-f (f i(R')dR')N1 °!~ d 3;d3Rd3R. 
0 

By Eq. (3.6)theexpressionf a~;~ drdR can be written as- :r I ftd 3;d3R- :rf rftd3r 

d3 R and this result leads to 

- ji(R) · rNt(ft( + + )-ft(-- ))d3rd3R = 
R 

= :r (- f r[I(R)R-1 f i(R')dR']N1f 1 d3;d3Rd3R) 
0 

R 

+ :t f (J i(R')dR')N1/ 1 d 3;d3Rd3R 
0 

so that balance of energy assumes the following form: 

R 

o{et e~+ f (f i(R')dR')N1/ 1 d3;d3Rd3R) 
(4.15) _________ o ____ ~ot _____________ + 

R 

o{Jt- f r(I(R)R-1 / i(R')dR')Ntftd3j.d3Rd3R 
2
C 

+ = ..... - (SpP1 -(!t Ut Uo), or r.nl 

1 denotes the unit tensor. 
The form of this balance suggests the definition of the density of potential energy 

e1 eD in the dumbbells and of the energy flux JD due to the dumbbell interaction 
R 

(4.16) e1eD = f ( f i(R')dR')N1/ 1 d3;d3Rd3R, 
0 

R 

-(4.17) J» = f r [I(R)R-1 f i(R')dR' ]Ntftd3;d3Rd3R. 
0 
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STRESS AND HEAT FLUX IN A DUMBBELL SOLUTION 243. 

4.5. Balance or Internal energy 

The energy density e1 e~ constains a kinetic energy, viz. ~1 u~. This part is usually split 

off and we denote the remainder by e1 e~: 

(4.18) e1et = e1e~- ~ u~ = f ~1 (r-o1)(r-u1)N1/1(++)+/1(--)d3rd3Rd3R. 

e1 (e~ + e0
) is called the internal energy and this quantity is assumed to be a scalar under 

rotations and translations which the total energy is not. 

Similarly, the energy llux J~ + J 0 contains convective terms, viz. (!1 ( ·~ + ~ u~ + £") u1 

and the power of the stresses t~ +t0 on the motion of constituent l, viz. (t~ +t~u1 . The 
remainder- which is assumed to be a vector under rotations and translations- will be 
called flux of internal energy of the dumbbell constituent and will be denoted q~ + q0

,_ 

where 

(4.19) q~ = J ~1 (r-u1)(r-u1)(r-u1)N(/1(+ +)+/1 (-~))d3;d3Rd3R 

so that q0 comes out as 

R 

(4.20) q0 =- f (r-u1)[1(R)R-1 J i(R')dR' ]N1f1d3rd3Rd3
• 

0 

q0 is the contribution of the dumbbells to the flux of internal energy. 
The energy balance of the dumbbell constituent can thus be written as 

(4.21) 11.(~+-}u~+E")" +:, (q~+q~-<~+t")a,) = !: (Spt~-e.(u,-u.)u,), 
where again ' 1 denotes the rate of change in the frame that moves with constituent I. 

Multiplication of the momentum balance by u1 gives the balance of kinetic energy and 
if we subtract that from the above energy balance we obtain the balance of internal energy 
of the dumbbell constituent, viz. 

a au 2C 
(4.22) e1 (s~+e0)' 1 + or (q~+q0) = (t~+t0) o: +~Spt~. 
~ Spt~ is the production of internal energy of constituent 1 which is due to the inter­
m1 
action of the constituents 0 and 1. 

5. On the determination of t 0
, q0 and s0 

5.1. Constitutive equations 

So far we have identified the dumbbell contributions to the stress, the specific internal 
energy and the flux of internal energy in terms of the distribution function/1 (r-, r, R, R, t). 
But what we really want of course in continuum mechanics are constitutive equations 
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which relate t 0
, q0 and e0 to the fields of densities and velocities of the constituents. From 

the solution of similar projects in the kinetic theory of gases we expect that this objective 
can only be reached approximately and I shall now show how we might proceed in the 
present case. 

First of all, to simplify notation we introduce the expectation value [g] by the de­
finition 

(5.1) 

for any function g(r, r, R, R). Thus we may write t 0
, g0 and e0 from Eqs. (4.9), (4.16), 

and (4.20) in the forms 

t 0 = f I(R)RN1 'f'1(r, R, t)d3R, 

R 

(5.2) (]t£
0 = f (f i(R')dR')N1 'f'1(r, R, t)d3R, 

0 

R 

q0 =- j([r]-u1)[I(R)R-1 J i(R')dR']N1'f'1(r,R,t)d3R. 
0 

We conclude that in order to obtain constitutive equations for t 0
, q0 and e0 we need to 

know 'P(r, R, t) and [;] in terms of the fields of continuum mechanics. 

S.l. Equadons of balaDce 

Multiplication of the equations of transfer for /1 (3.5) by a function g(r' r, R, R) 
and subsequent integration over all r and R leads to a general balance equation 

(5.3) o[g]'P1 + o[gr]'l'1 + o[gR]'Pt _ -~~ ~ + •
1 

og_ +R og_-11"' 
ot or oR _ ot or oR_ 1 

2~ -1(· uo(r+-}R)+u.(r- ~ R)) og (· · ( ( 1 ) +- r- -. + R- u0 r+-R 
m1 I 2 Ol 2 

--

We assume that the relations 

u.{r+ ~ R)+uo(r- ~ R) ( ) ( ) 
2 ~ Uo(r) and Uo r+ ~ R - Uo r- ~ R ~ a:: R 

are approximately valid. Furthermore we set 

a= r-uo and 
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STRESS AND HEAT FLUX IN A DUMBBELL SOLUOON 245 

and we write down particular cases of Eq. (5.3) by choosingg as 1, A, a, AA- ! A· A1, 

I Aa, aA, aa- 3 a· a1: 

(5.4) 

(5.5) 

a[AA-+A·A1]'f• a[(AA-+A·A+]'I', aW{AA-+A·A1)R],, 
-- ot + . or + oR 

+ ~~ (I[A]+ [A] I- ~ I· (A]1) 'I'•-[( :t H !r +il :R)(AA-+A · A1 )] 'f• 

=- ~c 2WAA--}A·A1], 
1 - -

o[Aa]tp1 c3[Aar]tp1 o[AaR]'Pt 4 I[ ] 
ot + or + oR + m

1 
a 'Pt 

-[(! H :. +il :R) Aa] 'f• = - ·!: 2lAa),,, 
o[aA]tp. o[aAr]tp, a[aAR]tp, 4 [ ]I 

ot + or + oR + tm1 
8 'Pt 

-~~ ( a . a . a ) -~~ 2C - -+r-+R-- aA tp1 = --2[aA]tp1 _ ot or oR _ m1 ' 

a[aa--}a· a1],, 
at 

The most important one of these equations is (5.4), the one corresponding to g = 1, 
because we shall rely upon it to determine the function tp1 • However,,before Eq. (5.4) 

can be of any use, we have to know the fields [r] and [R] that occur in it. I shall now 
proceed to show how Eqs (5.5) lend themselves to the formulation of an iterative 

scheme by which approximate expressions for [i] and [R] can be found. 

7 Arch. Mecb. Stos. or 2(19 
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5.3. An lteradon for the determlnadon of [it] and [ i'] 

As the initiation agreement of the proposed iterative scheme we shall assume that 
!J(r, r, R, R, t)'is of the form 

(5.6) !J(r, t, R, R, t) = 1p1 (r, R, t) 

m1 
{(• 1 • ( 1 ))

2 

(• 1 • { 1 ))
2

} -. ;---;n;--3 .. ;--,;;- - 4kT r- 2 R-ao r- 2 R + r+ 2 R-u0 r+ 2 R 

x Jl 2nkT Jl 8nkT e 

This is the Maxwellian distribution function corresponding to the situation that the two 
partial masses of a dumbbell molecule are in equilibrium with the solvent at their respective 
positions. Here and in the sequel the field of temperature is assumed to be uniform. One 
can easily re-write the distribution function in the form 

(5.7) / 1(r, r, R, R, t) = VJ1(r, R, t) 
mt • 2 nit ( • allo )2 /--Vs§; --(r-uo(r)) --- R--R _ m

1 
m

1 
2kT BkT aa 

x V 2nkT 8nkTe 

By use of Eq. (5.7) one may calculate expressions for the expectation values [g] that 
occur in Eqs. (5.4) and (5.5) and these will be considered as zero-th iterates and will be 
denoted by [gr. We have 

[a]0 = 0, [A]0 = 0, [a· a]0 = 3 :
1 

T, [AA]0 = 12 :
1 

T, 

(5.8) [aa--}a· a1]
0 

= 0, [AA--}A·A1J = 0, [aA]0 = 0, 

[aaa]0 = 0, [aaA)0 = 0, [aAA]0 = 0, [AAA]0 = 0 . 

We assume that the two relations [a · a] = 3 .~ T and [A · A] = 12 ~ T are generally 
m1 m1 

valid-not only in equilibrium; these relations define temperature in non-equilibrium. 
[a· a] determines the expectation value of the kinetic energy of the centers of mass of the 
dumbbells and [A· A] determines the expectation value of the kinetic energy of the relative 
motion within a dumbbell. Clearly, those two expectation values might be different in 
general in non-equilibrium. This would lead us to two different temperatures which pres­
ents a complication that should be avoided at this stage. 

The first step in the iteration is now taken as follows: We introduce the zero-th iterates 
on the left hand side of Eqs. (5.5) and calculate first iterates by solving these equations 

for the quantities [A], [a], [AA- ! A· A1l [Aa], [aA], [ aa- -}a· a1] on their 

right hand sides. In this manner we obtain 

(5.9) 

http://rcin.org.pl



STRESS AND HEAT R.UX IN A DUMBBELL SOLUTION 247 

where ~0 is the rate of change of o0 for the observer who moves with the constituent 0. 
The superscript 1 in [R]! and [r ]I refers to the first iterative step. It is a simple matter 
to derive Eqs. (5.9) from Eq. (5.5)h2 according to the above prescription; it is equally 

- -1 

easy, and quite straight-forward to calculate ll AA- ! A· At 11 : [Aa]t, [aA]I and 
- -1 - -

~ aa- +a· a1 Jl but the results are not given here beceause they are little suggestive and 

because we shall not need them. 
The iteration proceeds to the second step by insertion of the first iterates -whose 

calculation was just indicated- into the left hand side of Eqs. (5.5). The second iterates 
for [R] and [r] are then calculated by solving Eqs. (5.5)1, 2 for [R] and [r] on their right 
hand sides. 

If we wish to calculate third iterates for [R] and [i], we need more equations than 

those given in Eqs. (5.5) because we need second iterates to [AA- ! A · A 1]. [Aa], [ aA] 

and [ aa- ! a· at]. It is easily observed that with increasing order of iteration the 

necessary number of equations of balance increases and so does the amount of labour 
involved. 

What we get in the nth iterative step is a correction of order (m~ r to the result of 

the (n-1)" step and since (m~) typically is a time of the order of magnitude of I0-12 s, 

we see that corrections are very small indeed. Because of this, one is usually content with 
the first iterates and this is all we shall consider here from now on. 

5.4. The diffusion equation for 1p 1 

Insertion of the first iterates (5.9) for [i] and [R] in Eq. (5.4) gives rise ~o the equa­
tion 

(5.10) 

where the abbreviation -i'o has been introduced for u0 - ~C lfo. 

This equation-or a simplified version of it-is called the diffusion equation in the 
literature, e.g. see the review paper [I] by BIRD, WARNER and EVANS. These authors assume 

that il'o = 0, a;• = 0 and Sp ( ~:·) = 0 so that the solvent motion is isochoric, further-

more the authors assume that 
0
; 0 is constant. Thus they have the simpler equation 

(5.11) o1p1 + ~ { ou
0 

R1p
1 

_ 2kT . 01p1 _ 2 I (R)¥
1

} = 0 ot oR or c oR c · 
7* 
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They derive this equation by assuming that the relative motion of the partial masses in 
a dumbbell is governed by . the difference of the Stokes drag force on the masses and . by 

a "Brownian motion force" kT 
01
::1 that gives rise to the term with the temperature. 

One advantage ·of the present treatment is that the Brownian motion force arises 
naturally in the first step of the iterative scheme described before. Another advantage is 

that Eq. (5.10) exhibits the effects of accelerated and non-isochoric motion, in which o;o 
. and tp1 may also depend on r. 

The disadvantage of Eq., (5.10) is of course its complexity. Indeed, while it is possible 
to find interesting approximate solutions of Eq. (5.11) -at least upon a further simpli­
fication of that equation (e.g. see [I] § 6)- no solution of Eq. (5.10) has yet been found 
which reflects the complications of th~t equation as compared with Eq. (5.11). 

If we had such a solution;. it would be in terms of the velocity u0 and its derivatives; 
the desired constitutive equationsfor t 0 , q0 and e0 would then result from the insertion 
of the solution tp1 into the relations (5.2). 

5.5. Flux of Internal eaergy 

Indeed, after the interaction force I(R) within the dumbbell has been chosen, the only 
unknown in the expressions (5.2)H2 for t 0 and e0 is the function 'Pt (r, R, t) and in the 
first step in our iteration this function has to be calculated as the solution of the differential 
equation (5.10). The determination of q0

, however, according to Eqs. (5.2h requires the 
knowledge of 1p1 - [r]. Now the first iterate of [r] is given by Eq. (5.9)1 and, if that 
is inserted into Eq. (5.2)3 we obtain 

R 

q8 = -(a1 - ~) f (I(R)R-1 f i(R')dR') N1 tp1 (r, R, t)d3R 
0 

R 

+ ~[ :, f (I(R)R-1 f i(R')dR')N, tp1 (r, R, t)d3R 
0 

or, by use ofEq. (5.2)~. 2 : 

(5.12) qD = -(ut-wio) (t»-e.eD1)+ kT ~(tD-e.eo1). 
· 2C or 

Thus we conclude that in the present case of constant temperature the dumbbell contri­
bution to the flux of internal energy can be determined from the contributions of the 
dumbbells to stress and· internal energy. Note that qD vanishes, when 'Pt is independent 
of r, when the acceleration lfo is zero and when u1 = u0 , so that the dumbbells do not 
drift with respect to the solvent molecUles. In particular, therefore, we have qD = 0 in 
the case in which the differential equations (5.10) has reduced to Eq. (5.11). 
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