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Simple shear and torsion of a perfectly plastic single crystal 
in finite transformations 

J. BOUKADIA and F. SIDOROFF (ECULLY) 

THE TWo-DIMENSIONAL plane behaviour of a single crystal is investigated under large deforma­
tions and rotations. Attention is restricted to the rigid plastic case with or without isotropic 
hardening. After recalling the basic equations, the conditions under which a single crystal can 
be treated as two-dimensional is discussed; this results in two plane single crystal models. One 
of them is then considered, and a general geometrical method is presented to investigate its 
behaviour under prescribed stress or strain conditions. This is then applied to simple shear 
and sample torsion. Particular attention is devoted to the rotation of the lattice and its 
asymptotic behaviour. In particular, it is shown that in both cases this orientation stabilizes to 
some values which are characterized. As a conclusion, the implications of these results for 
phenomenological models of anisotropic plasticity in large deformations are discussed. 

W pracy analizuje si~ zachowanie tzw. plaskich pojedynczych krysztal6w w zakresie dui:ych 
deformacji i obrot6w. Rozwai:any jest sztywno-plastyczny model materialu ze wzmocnieniem 
izotropowym lub bez. Po przypomnieniu podstawowych r6wnati dyskutuje siC( warunki, kt6re 
musZ(l zostac spelnione by pojedynczy krysztal m6gl bye traktowany jako plaski. Prowadzi 
to do dw6ch plaskich modeli pojedynczego krysztalu. W dalszej cz~sci tylko jeden z tych modeli 
jest rozwai:any. Przedstawiono og611Ul metod~ geometryczn~ do badania zachowania siC( plaskiego_ 
krysztalu przy danych warunkach napre(i:eniowych lub odksztalceniowych. Naste(pnie zastoso 
wano j~ do prostego scinania i do analizy asymptotycznego zachowania siC( krysztalu. W szcze· 
g61nosci wykazano, i:e w obu rozwai:anych przypadkach orientacja sieci stabilizuje siC( osi~gaj~c 
pewne wartosci, kt6re zostaly opisane w pracy. Na zakoticzenie przedstawiono wnioski, kt6re 
nalei:aloby uwzgle(dnic przy formulowaniu modeli fenomenologicznych dla osrodk6w plastycznie 
anizotropowych w zakresie dui:ych odksztalceti. 

B pa6oTe aHaJIH31-lpyeTcH rroBe):leHlfe T. Ha3. IIJIOCI<l{X e.n;lfHWIHhiX I<pl-lCTaJI.JioB B o6JiaCTlf 
6oJibi.Ill{X .n;ecpopMa~Illi If Bparn;eHilli. PaccMaTplfBaeTcH meCTI<o-IIJiaCTJNeci<aH: Mo.n;eJib Ma­
TepH:a.ria c lf3oTpoiiHbiM yrrpotiHeHHeM 1-1 6e3 yrrpotiHeHH:H. IlocJie rrpHBe.n;eHH:H ocHoBHhiX 
ypaBHeHn.H:, o6cym.n;aiOTCH ycJioBH:H, I<oTopbie .n;oJimHbi 6biTb y.n;oBJieTBopeHhi, trro6hi eAH:­
HlftiHhrn I<pH:CTaJI.JI MomHo Tpai<ToBaTb I<ai< rrJioci<n.H:. 3To rrpH:Bo.n;Kr I< .n;ByM rrJioCI<H:M Mo­
.n;eJIHM e.n;lfHWIHoro I<pHCTaJIJia. B .n;aJibHe.H:rneH: qaCTH paccMaTplfBaeTcH TOJibi<O o.n;Ha lf3 3TIIX 
Mo.n;erreH:. Ilpe.n;crasrreH o6~H:M: reoMeTp~-~qeci<H:M: MeTo.n; .n;JIH H:ccJie.n;oBaHH:H rroBe):leHH:H rrJioc­
Horo I<pH:crarrrra, rrpH: 3a.n;aHHhiX HarrpHmeHHhiX HJIH: .n;ecpopMa~H:OHHhiX yCJioBWIX. 3aTeM 
oH rrpnMeHeH I< rrpocroMy c.n;B~try If I< aHaJIH:3y acnMrrToT~-~qeci<oro rroBe.n;eHH:H I<plfCTaJI.Jia. 
B qaCTHoCTlf rroi<a3aHo, trro B o6olfX paccMaTpnBaeMhiX cJiyqaHx, oplfeHTlfpoBI<a perneTI<H: 
CTa6l{JIH:3lfpyeTCH, )l;OCTH:raH Hei<OTOpbiX 3HaqeHitii, I<OTOpbie 6biJil{ OillfcaHbi B pa6oTe. 
B 3al<JilOqeHI.J:H: rrpe.n;CTaBrreHbi CJie.n;CTBlfH, I<oTopbie crre.n;yeT yqH:TbiBaTh rrplf cpopMyJil{­
poBI<e cpeHoMeHorrorHqecJ<H:x Mo.n;eJieH: .n;JIH rrJiacr~-~qeci<H: aHH:3oTporrHhiX cpe.n; B o6Jiacm 6oJib­
WHX .n;ecpopMa~Hil. 

1. Introduction 

LARGE STRAIN anisotropic plasticity is a controversial subject. Kinematic hardening has 
been extensively investigated and many propositions have been made about the objective 
derivative to be used [1-5]. Initial anisotropy can be treated in the same way introducing 
a rotating frame formalism [6-8] and similar results are obtained. For instance, use of the 
corotational frame results in an oscillatory behaviour in simple shear, which can be elim-
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498 ]. BoUKADIA AND F. SIDOROFF 

inated by using, for instance, the proper rotating frame. In [8] these oscillations have 
been shown as essentially related to the asymptotic behaviour of the rotating frame for 
increasing shear: a regularly increasing rotation (as in the case of the corotational frame) 
results in an oscillatory behaviour, while a bounded rotation stabilizing to a fixed position 
results in a stabilized behaviour. 

The definition of the rotating frame in which the anisotropic constitutive equations 
are to be written therefore appears as a constitutive assumption, the only one in fact 
to be specific of large strain, because all the other components of the model are already 
present in the small strain case [8]. Whenever possible, this phenomenological assumption 
must rely on some microstructural information resulting from the microscopic origin 
-of anisotropy. In metals the basic anisotropy is the crystal structure and much information 
about phenomenological plasticity can be gained from single crystal analysis. 

The mechanics of a single crystal, however, is not so simple [9] and many problems 
are still to be settled in connection, in particular, with slip indetermination. Moreover, 
even if the plasticity of single crystals is naturally formulated in large strain [I 0], very few 
simulations have been performed in situations involving the large rotations which are 
necessary to settle the issues discussed above. A step towards that direction has been made 
in [II] which proved that in case of a f.c.c. "viscous" single crystal, the corotational frame 
was to be used and that an oscillatory behaviour was in that case actually obtained. But 
the extension of these results to the plastic or viscoplastic case is not available. 

The purpose of the present work is to analyze a plastic f.c.c. single crystal in simple 
shear and torsion. Elasticity will be neglected and hardening will not be taken into account, 
but it will be shown that the main results remain true for most hardening cases. 

2. The basic mechanical framework 

The kinematics of a rigid plastic single crystal is described, as in Fig. 1, by the decomposi­
tion 

(2.1) F = R'P, pp-1 = .EysMs, Ms = gs®iis 

for the deformation gradient F [IO]. In this relation R1 denotes the rotation of the crystal 
lattice while Pis the "plastic" contribution to F resulting from dislocation motions. Each 

C(t) 

___ F __ II11fl!f 

FIG. 1. Large strain of the rigid plastic single crystal. 
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SIMPLE SHEAR AND TORSION OF A P ERFECTLY PLASTIC SINGLE CRYSTAL 499 

slip system is characterized by the unit normal to the slip plane ns and the gliding direction 
gs. These vectors are fixed in the isoclinic configuration C(t) while the corresponding 
Eulerian vectors gs and ns are rotated by R1

• 

The classical decomposition follows from the relations (2.1) for the velocity gradient L, 
the rate of deformation D = L5 and the spin W = LA 

L = Q 1+R1PP- 1R1T, Q.1 = R1R1T, 
(2.2) 

D = Rl(Pp-l)SRIT, w = Ql+R'(:PP-l)ARIT, 

but it is more convenient to rotate these tensors in C(t) 

(2.3) fi = RITDRZ = {Pp-l)S = L'ysMss, 

(2.4) 

The behaviour of the single crystal follows from the slip law which relates the slip rate 
.ys on each system to the resolved shear stress 

(2.5) 

In the following, attention will be focussed on perfect plasticity 

ys ~ 0 if Ts = To, 

(2.6) ys = 0 if -To~ Ts ~ To, 

Ys ~ 0 if T s = -To , 

with a constant critical shear stress r 0 • The constitutive equation then results from the 
elimination of the slip rates .ys (s = I , ... , N) from the relations (2.2) and (2.6). More 
precisely, for an imposed kinematics L (trL = 0), the relations (2.2) and (2.6) provide 
8+N equations for 8+N unknowns (N slip rates ys, 5 components of the deviatoric part 
TD of T and 3 components of Q.1). 

However, these equations can be treated in two steps: at first, the relations (2.3) and 
(2.6) provide N + 5 equations for T and yS, and after this system has been solved, the 
lattice spin Q 1 is directly obtained from Eq. (2.4). The essential part, therefore, is the 
determination of ys and T from D and this is exactly the usual algebraic small strain problem 
[9] with the well-known slip indetermination. As mentioned in the introduction, the large 
strain analysis of single crystals is simply obtained by complementing the usual small 
strain analysis by the rotation description and evolution equation (2.4). In other words, 
and using the terminology introduced in [8], the constitutive model is the usual small 
strain single crystal written in the isoclinic rotating frame defined by Q = Rt and can be 
followed by Eq. (2.4) which is obviously a special case of the general form discussed in 
[8]. 

In the viscous case ( 7:
5 = flY 5

) this equation can be explicitly derived and in the case 
of a f.c.c. single crystal, it has been obtained as Q 1 = W [11]. Unfortunately, such an explicit 
form cannot be obtained in the plastic case and our purpose in the following will be to 
analyze this evolution in some simple situations involving large rotations: simple shear 
and torsion. 

2* 
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500 J. BoUKADIA AND F. SIDOROFF 

3 • . The F. C. C.P2 single crystal 

We shall now consider a f.c.c. single crystal in which the 12 slip systems are associated 
to the planes {111} and directions (110). They will be denoted according to Table I. 

Table 1. The 12 slip systems. 

System D g 

(111) [llO] 1/y3( 1, 0, y'2) ( 0, 1, 0) 

2 (111) [lOI] 1/y3( 1, 0, y'2) t(-y'2, 1, 1) 

3 (111) [01[] 1/y3( 1, 0, y'2) t( -y'2, -1, 1) 

4 (11 f) [101] 1Jy'3( -1, 0, y'2) t( y'2, 1, 1) 

5 (11l) [llO] 1/y3(-1, 0, y'2) ( 0, 1, 0) 

6 (11l) [011] 1/y3( -1, 0, y'2) t( y'2, -1, 1) 

7 (Ill} [101] 1/y3( 1' y'2, o) t( -y'2, 1, 1) 

8 (Ill) [011] 1Jy3( 1, y'2, o) t( y'2, -1, 1) 

9 (lll) [110] 1Jv'3 ( 1, y'2, 0) ( 0, 0, 1) 

10 {111) [01l] 1/y3( 1, - y'2, o) t(-y'2,-1,1) 

11 {111) [110] 1/y3( 1, - y'2, o) ( 0, 0, 1) 

12 (Ill) [101] 1Jy'3( 1, -JI2, 0) t( y'2, 1, 1) 

In the following we shall be concerned with plane situations where the rate of deforma­
tion and stress tensors D and T in C(t) have the following form: 

(3.1) 

However, the compatibility of these two forms requires that x3 is a symmetry axis for the 
crystal, namely, a (100) or ( 110) direction. In this paper we shall consider the plane 
single crystal f.c.c.P2 which is a f.c.c. single crystal under plane stress and strain in a {110 } 
plane (the f.c.c.Pl single crystal corresponds to a {100} plane, but it seems more difficult 
for our purpose). The basis vectors el' e2' e3 in the isoclinic frame C(t) are, respectively, 
chosen along the [001], [flO] and [110] directions. The resulting components of iis and g-s 
are given in Table 1, and the tensors :Ms and resolved shear stress r are easily obtained 
for aJJ systems. Let us consider, for instance, the systems 2 and 6: 

M 2 
= w

1
1_ 1 0 v'2 ' [

- y'2 0 -21 
2 ., 3 1 0 J/2-

2 6 
1 (-T w/--

T = T = 
2 

y3' 12- y 2 T11). 

The systems 2 and 6 are symmetric and it is reasonable to assume that y2 = y6
• The con­

tribution of these two systems to pp-l therefore is 
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y2(M2 +M6) = y- 1 o o = &2N2, • 2 [- y2 0 01 
V3 o o ¥2 

which is a plane strain. The two systems 2 and 6 are degenerated in one single plane pseudo­

slip system defined by N2. A similar analysis can be performed on the other systems: 

the systems 9 and 11 disappear while the 10 remaining systems can be symmetrized into 5 

plane pseudo-slip systems (Tabl. 2). 

Table 2. The 5 plane pseudo-slip systems. 

1 ~} = yl-yS a 1 = T12!Jl3 - 1 [0 0] 
N

1 
= 2 y3 2 0 

2 ~2 = y2+y6 0'
2 = <ft2-y2 ~t)/2y3 - 2- _ 1 [-¥2 0] 

N - 2y3 1 0 

3 ~3 = -y3- y4 0' 3 = (7; 2 + y2 ~ l)/2 y3 - 3 __ 1 [¥2 0] 
N - 2y3 1 0 

4 ~4 = -y7+ y8 a 4 = (r12 + v'2<~1- f :22))12v3 - 1 [¥i 2 ] 
N• = 2}13 -1 -y2 

5 ~~ = .y1o_.y12 a 5 = (f; 2 -y2(~1- f; 2))/2y3 - 1 [ -y2 2] 
Ns = 2y3 -1 y2 

With these notations, the plane single crystal f.c.c.P2 is defined by 

(3.2) 

where &s is related to cr = T: :Ns by the slip law which in the plastic case is 

fJ.s ~ 0 if cr = To , 

(3.3) as = 0 if -To ~ cT ~ To, 

Formally these relations are identical with the three-dimensional case of Sect. 2, but they 

are much simpler. In particular, the lattice rotation R1 is a plane rotation 

(3.4) r 
cos 0 sin 0 0] 

R1 = -sinO cosO 0 , 
0 0 1 1

- 0 0 OJ 
n' = -iJ o o 

0 0 0 

so that the spin equation (2.4) becomes a scalar relation 

(3.5) w = O+wP, wP = ~(3a4 +3a5 -2a1 -&2 -a3) 
4)1'3 ' 

where w = w12 is the total spin. Similarly, the relation (2.3) becomes 

- 1 · 3 • 4 · s • 2) D- 1 ( · s • 4) D 11 = y
6 

(ex +ex -ex -ex , 22 = )1'
6 

ex -ct , 

jj12 = ~ (2iJ.l + (x,2 + fi3 + &4 + a,s). 
4y'3 

(3.6) 
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502 J. BoUKADIA AND F. SIOOROFF 

For given kinematics, we then have to solve Eqs. (3.3) and (3.6) for the 8 unknowns &s 
and T while the lattice spin rJ is obtained afterwards from the relation (3.5). Of course 
it is not possible to obtain the 5~s from the 3 equations (3.6). However, it will be convenient 
to solve these three equations in the form 

• 1 Jf3 (3D- l:) 
ot = -2- 12-wP-s- ' 

(3.7) 
"2 y3 ~1- - -
ot = -

2
- [;- v2 (Du +D22)], 

"4 Jf3 - p --
ot = -

2
- (D12 +w - y2D22), 

which gives a_s in terms of D and two indeterminate quantities ; and wP. 

4. Strain rate space representation 

A geometrical representation will prove most convenient to describe the constitutive 
relation between T and D. These tensors are therefore considered as points in three-di­
mensional vector spaces. An orthogonal basis is introduced in both spaces: 

X1 = Tu, X2 = T22' x3 = y2T;.2, 

Y1 = Du, Y2 = D22' Y3 = y2i512. 

In the stress space X, the constitutive relation is represented by the plasticity surface which 
is the boundary of the plastic convex 1 rl ~ To. These 5 conditions are easily expressed 
through Table 2 and the corresponding domain is a decahedron which is represented in 
Fig. 2. Each face corresponds to the activity of one slip system. For instance, on the face 
1 + = CDEF we have T1 = +To and ~1 ~ 0. The corresponding strain rate is normal 
to this face and represented in the strain rate space by the direction Y3 > 0, Y1 = Y2 = 0. 

8' 

FIG. 2. Plasticity surface in the stress space. 
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More generally, because of rate insensitivity, the strain rate space may be considered 
as the two-dimensional space of all (oriented) directions in the vector space Y. A plane 
representation is obtained by defining a direction by its intersection with two parallel 
planes. In the following, we shall represent the strain space in the planes Y3 = ± I. Of 
course the directions which are parallel to these planes are rejected at infinity, but this 
is easily dealt with in projective geometry. The construction proceeds as follows (Fig. 3) 
from the decahedron in the X-space. 

FIG. 3. System activity in the strain rate space. 

a) On each face of the decahedron, the strain rate direction is normal to this face 
resulting in a point in the Y3 = ±I planes. The IO points are easily obtained either from 
this normality condition or directly from the relations (3.6) with the only non-vanishing 
&_s. 

b) An edge such as CF = 1 + 4 + is the intersection of two faces a1 = + T 0 , if" = + T 0 • 

The corresponding strain rate is defined from the relations (3.6) with <X1 ~ 0, <X4 ~ 0 
(oc2 = <X.3 = &5 = 0). Straightforward calculations show that the corresponding point 
in the Y3 = + I plane lies on the segment I+ 4 + and that <X1 and &4 are proportional to the 
barycentric coordinates of this point with respect to 1 + and 4+. For an edge such as AB = 
= 3+2-, this works in a similar way, although some complications arise from the fact 
that the corresponding segment 3+2- goes through infinity. This can be avoided by using 
different planes, Y1 = ±I for instance, but this will not be necessary. 

c) An apex like C is the intersection of 3 faces a1 = a3 == a4 = +To so that <X1 ~ 0, 
&3 ~ 0 and &4 ~ 0 (a 2 = <X 5 = 0). Again it is easily shown that the corresponding point 
lies in the triangle I+ 4 + 3 + and that <X.1 , &3 , <X.4 are determined as proportional to the barycen­
tric coordinates of this point. 

d) An apex like A is the intersection of 4 faces if" = a3 = - a2 = - a5 = T 0 so that 
ci3 ~ 0, a4 ~ 0, a2 ~ 0, <X. 5 ~ 0 and <X.1 = 0. The corresponding point still lies in the 
quadrangle 4+3+2-s-. However, the slip rates &3 , &4, &2 , &5 are no longer determined 
from this point, i.e. from the knowledge of D. This is the well-known slip indetermination. 
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This representation of the strain rate space is the basic element for the analysis of the 
single crystal under prescribed kinem,atics. For each value of D it gives the active systems, 
the localization of the stress point in the X plane and, when possible, the individual slip 
rates. 

5. Simple shear 

Simple shear is defined in a fixed coordinate system by 

(5.1) 
[
1 y OJ 

F= 010, 
0 0 1 

[
or oJ 

L= 0 0 0 , 
0 0 0 

where the shear rate r = y is assumed constant (y -= Ft ). The rotated strain rate :0 is 

(5.2) 
- - r. 
D 22 = -D11 = 2 sm20, 

- r 
D12 = 2 cos20 

and it depends on the lattice rotation which is unknown. In the strain rate representation 
described above, the corresponding point is given by 

v'2 in y3 = +1 if cos20 ~ 0, -Yt = Y2=--

(5.3) 
2tg20 

Jf'2 
Yt = -Y2 =--- in y3 = -1 if cos20 ~ 0 

2tg20 

and it lies on the straight line Y1 = - Y2 parametrized by 0 (Fig. 4). Simple shear analysis 
follows from the superposition of this diagram representing the prescribed kinematics 
with the constitutive diagram of Fig. 3 which characterizes the considered plane single 
crystal. 

FIG. 4. Simple shear in the strain rate space. 
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In our special case, it follows from this superposition that when 20 goes from 0 to 
2n, the strain rate direction successively describes the edges 1 +5+4-1-5-4+ 1 + and that 
double slip occurs for almost all values of(); there is no slip indetermination. More precisely 
the system activity is described as a function of () in Table 3 with tg20p = 2 y2. 

Since double slip corresponds to an edge of the plasticity surface, the components 
of the stress tensor T11 , T22 , T12 are not completely determined: more precisely, since 
we are only concerned with systems 1, 4 and 5, the expressions in Table 2 show that the 
activation condition will involve T12 and (T11 - T22) only while T11 + T22 will remain 
undetermined. To be more specific, let us consider, for instance, the edge 1 + 5+ = D~ 
(0 ~ 20 ~ 20p). The activation conditions give 

(5.4) a1 = T12/V3 = To, a5 = [Tu + yi (Tu- f;2)]/2 y3 = To 

which can be solved 

(5.5) T,. =To f3, r •• -T11 = -.1 ~To-
This gives the rotated stress tensor T; the applied normal and shear stress N 1 , N 2 , -r are 
obtained through the lattice rotation as 

N1 -N2 = To J1'3 (2sin20- :1. cos20), 

T = T0 f3 (cos20+ 
2 
~2 sin20). 

(5.6) 

A similar analysis can be performed for the other cases and the following results are obtained 
on 5+4- = A'B: (20p ~ 20 ~ n-20p) 

N1 -N2 = -To y6 cos20 
(5.7) 

T = To -.1 ; . sin20 

r 

1.0 T 

OB 

06 
I I \ I I 

\ I I \ I I I 
04 \ I I I \ I I 

\ I I I 
02 \ I I I 

\ I I 135 1 \ I I I \ ~ I ll I ~ I I ., 
0 I I 1 ' I \ 90 I I I \i \ 180 28 

I 11 ' I \ I I I \~ \ 
I v \~ \ I v \ 

I \ I \ 
I v N1-N2 

FIG. 5. Shear stress in simple shear. 
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and on 4-1- = C'F' (n-20, ~ 20 ~ n) 

(5.8) 

N1 -N2 =To y'3 ( -2sin28- :z cos28), 

T =To ¥3( -cos28+ 2 ~2 sin28). 

The corresponding curves are given in Fig. 5. It sfiould be noted that the stresses depend 
on the applied shear only through the lattice orientation 0. This dependence results from 
the crystal anisotropy and it could have been analyzed in a small deformation context 
(Tabl. 3). 

Table 3. System activity in simple shear. 

Activation 
condition 

Active 
systems 

0 )----------------------------------------
t+s+ 

28, ) 
s+4-

n-28, ) 
4-1-

28 1C ) 

1-s-
n+28, ) 

s-4+ 
21£-28, ) 

4+J+ 
2n) 

6. Evolution of the rotation 

The specific aspect of large deformations is thus concentrated in the evolution equation 
for the rotation (3.5) which becomes 

. r 
(6.1) 0 = 2 -w". 

It follows from Table 3 that the systems 2 and 3 are never activated, &2 = &3 = 0 
so that Eqs. (3. 7) are reduced to e = 0 and 

a• = v; ( 3
{ cos28-w•), 

(6.2) ""= ~3 (; cos28- v;r sin28+w•), 

as= v; (; cos28+ v;r sin28+w•). 

The value of w" and o· therefore directly follows from the active systems. 
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For the 1 + s+ zone (0 ~ 20 ~ 20p) for instance, ci4 = 0 so that wP, ci1 and ci 5 are given 
by 

r .;-
mP = T (r 2 sin20-cos20), 

(6.3) 

&1 = y!r ( 4cos20- ¥2 sin20), . s y3r 2 .. ;2- . 20 a = -2- r sm . 

The evolution equation (6.1) then gives OfF= dOfdy as 

d() 1 .. ;-
(6.4) -dy = 2 (1 +cos20- r 2 sin20), 0 ~ 20 ~ 201,. 

The other cases are analyzed in a similar way and the results are 

(6.5) 
d() 1 
dy = 2 (1-3cos20), 

(6.6) 
d() 1 .. ;-
dy = 2 (1 +cos20+ r 2 sin20), 

while Eq. (6.4) is found again for n ~ 2() ~ n+20p, etc. 
This function d() fdy = h(O) is represented in Fig. 6. The evolution of() with y is obtained 

by integration of this function: 

(6.7) 

d8/d~ 

1.0 

0.8 

06 

0 

8 

I d() 
h(O) =y, 

8o 

45 90 135 

FIG. 6. Plastic spin in simple shear. 

where 00 is the initial value of() for y = 0. The behaviour of the rotation, which as dicussed 
earlier is the essential issue about large strain in a single crystal, directly results from this 
function d()jdy = h(O). It is a positive function vanishing for 20 = 20P, n and 2n-20P 
with a non-zero derivative. This shows that () is an increasing function of y which tends 
to one of the three limit values 20P, nand 2n-20p for infinitely large y. This behaviour is 
recapitulated in Fig. 7a. 

As described in [8], the shear response, r(y) for instance, results from the cdmposition 
of two functions. The first function r(O) was constructed in Sect 5, Fig. 5, and it describes 

http://rcin.org.pl



508 J. BoUKADIA AND F. SIDOROI 

a b 

Simple shear Simple torsion 

FIG. 7. Lattice rotation in simple shear and torsion; a) simple shear, b) simple torsion. 

the crystal anisotropy. The second function O(y), investigated here, is the basic featur 
oflarge strain behaviour of a single crystal. The asymptotic behaviour of r(y), in particula1 
essentially depends on this function. Here the stress tensor T like 0 tends to a fixed value fo 
large y. 

7. Simple torsion 

Another similar situation is obtained in simple torsion with controlled y = Ft: 

(7.1) [
0 r OJ 

T = T 0 0 . 
0 0 0 

This is for instance what happens in the torsion of a thin tube [12]. For a single crystal 
of course, this is a rather academic problem, but it will allow us to investigate anothe 
situation frequently analyzed in large strain plasticity. The tensors D and W are 

Du = £1, D22 = e2, D12 = ~ e't-ezr, 
(7.2) 

1 
w = w12 = 2 ee,-ezr (y = Ft). 

The situation in this case is somewhat simpler: starting from the Cauchy stress tensor T 
the rotated stress T and resolved shear stress as are computed 

(7.3) 

(7.4) 

- T11 = T22 = rsin20, T12 = rcos20, 

0'1 = 2rcos28/2 y3, 
a2 = r( cos 20 + 2 sin 20) /2 y'3, 
a3 = r(cos20-2sin20)/2 y'3, 
a4 = T(cos28-2 y'2 sin20)/2 y'3, 
a 5 = T(cos20+2 y2 sin20)/2 y3. 

http://rcin.org.pl



SIMPLE SHEAR AND TORSION OF A PERFECTLY PLASTIC SINGLE CRYSTAL 509 

For a given() there will usually be one active system corresponding to the maximum absolute 
value of these 5 quantities. The value of T then follows from setting this value to the critical 
shear T 0 • A direct analysis of this maximum as a function of () leads to Table 4 and the 
corresponding function T(()) is represented in Fig. 8. 

Table 4. System activity in torsion. 

Activation Active 
condition system 

n 
--+20p > 

2 
1+ Tl = To cx1 ~ 0 

n 
--20 > 2 p 

s+ Ts = To cx5 ~ 0 
n 

291 

-> 2 
4- T4 = -To cx4 ~ 0 

n 
-+20p >· 

I 2 
1- Tl = -To cx1 ~ 0 

n 
3--20 > 2 p 

s- Ts =-To cx5 ~ 0 
n 

3 - > 
2 

4+ r4 = 0 cx4 ~ 0 
n 

3- +20p > 
2 

r 

1.0 

0.8 

0.6 

0 45 90 135 

FIG. 8. Shear stress in torsion. 

Knowing the active system, the kinematical analysis directly proceeds from the relations 
(3.6) and (3.5). Let us, for instance, consider the case rt1 > 0 (12()1 < n/2- 2()p)· It then 
follows from the relations (3.6) 

(7.5) D 11 = D22 = 0, 
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Coming back to D through the lattice rotation () and identifying with the tensors (7 .2), 
there comes 

1 6 -6 &:1 
D12 =- e 1 2r = ---- cos20 

2 2 v'3 ' 
which gives &:1 from the prescribed r 

(7.6) 

The time derivatives e1, e2 and 0 are then easily obtained from the relations (7.2), (3.6) 
and (3.5). This provides a nonlinear differential system which, by integration, gives c1, c2 
and () as a function of y =Ft. We shall not develop this further but for the rotation (} 
which is our main interest here. 

8. Rotation in torsion 

We shall now restrict our attention to the evolution equation (3.5) for 0. Using the 
tensors (7.2) and the nonactivation of the systems 2 and 3 (Table 4), this gives 

(8.1) iJ = _!_ ee1-e,r-~ (3~4+3~5 -2~1) 
2 4y3 

while the non-vanishing slip rate is obtained from the tensors (7.2) and (3.6) 

(8.2) 

- - 1 ('5 '4) D22 = -Du = y6 (X -(X ' 

D12 = ~ e61
-

62r = D12 cos2(}+D22 Sin20. 

If the active system is the system 1 then, as described above, Eqs. (8.2) give &:1 by Eq. (7.6) 
and 0 is obtained by Eq. (7.5) as 

(8.3) e62
-

81FO = _!_ (1 + - 1-) -~ + 2() ~ 2() ~ ~- 2() 2 cos2(} ' 2 P 2 p • 

Similarly, when the active system is the system 4, 

(8.4) 

- 1 '4 
D22 =- V6 (X, 

(8.5) 

- 1 '4 
D12 =----:=-(X , 

4JI3 

'4 

D12 = ~ (cos2{}-2J/2 sin20), 
4y3 

e82
-

61FO = _!_ (1 _ 3 ) 
2 cos20- 2 v'2 sin2() 

and when the active system is the system 5, 

(8.6) 
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This e
62

-
61 lYJ = e

62
-

81 d0fdy = h(O) is represented in Fig. 9 and again the evolution of the 
rotation follows from this function. The situation is, however, more complex that in simple 
shear, and different situations may be found according to the initial value 00 of 0. 

FIG. 9. Plastic spin in torsion. 

If 1200 1 < n/2-20P, then dOfdy is positive and 20 increases until it reaches, in a finite 
time since h(O) > 1, the limit value n/2-20r Then it can neither decrease because dOfdy > 
> 0 for 20 < nf2-20p, nor increase because dOfdy < 0 for 20 > n/2-20p. It must 
therefore remain stationary at this value with a double slip situation (~1 ~ 0, ~s ~ 0). 
To analyze it further, we start from Eqs. (8.1) and (8.2) written for 20 = n/2-20P (cos20 = 

= 2 y2/3, sin20 = 1/3) 

__!_ e81-e2r = ~ (2~1 +~5) 2 v2 + ~~ _!__ = 2(~1 +~5) 
2 4]/ 3 3 y 6 3 3 y 6 

. 2(~1 +~5) 3~5 -2~1 
0= - =0 

3)16 4y3 

and the slip rates ~1 and ~ 5 are obtained from these two equations 

(8.7) 

If n/2-20p ~ 200 ~ 20P, then dOfdy is negative and 20 decreases to the same limiting 
value n/2- 20P and double slip situation (8.7). 

If 20p ~ 200 ~ n/2, then dO fdy is negative and 20 decreases towards the limiting value 
20P where dOfdy = 0 and which is reached in an infinite time. 

The other cases are analyzed in the same way and the results are summarized in Fig. 7b. 
The situation is quite different from simple shear, Fig. 7a: the 3 limiting values 20P, n 
and 2n-20P still exist but their attraction zone is much more limited and they are reached 
through different asymptotic behaviour (0-0

00 
"' e-Kt in simple shear, Aft in torsion) 

and three new limit values n/2-20P, n/2+20P and 3n/2 appear which are reached in 
finite time. 
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9. Conclusion 

Our main objective was the evolution of lattice rotation in simple shear or torsion 
in a single crystal. In the special case investigated, this analysis has been fully completed 
and the results are summarized in Fig. 7. Different situations may be encountered, according 
to the initial value 200 of the lattice orientation, but in any case this lattice rotation always 
stabilizes to a fixed value resulting in a stabilized behaviour for the crystal. The plastic 
behaviour, therefore, is entirely different from the viscous one [II] where an ever increasing 
rotation and oscillatory behaviour was found. Coming back to phenomenological large 
strain plasticity which was our starting point, this is an indication that in the plastic case 
the rotating frame must be chosen in such a way that it stabilizes under simple shear. 

This analysis was performed in a restricted case: perfect plasticity of a special plane 
single crystal. Among these restrictions one is not essential: most of the results obtained 
about the rotation will remain true under reasonable assumptions about hardening. First, 
in the case of isotropic hardening (the critical shear stress r0 increases but remains the 
same for all systems, Taylor's assumption), the stress response as described in Figs. 5 
or 8 will be modified by a scale factor but nothing will be changed as regards system activity 
and the resulting lattice rotation. 

Under more general hardening conditions (different critical shear stress on the 5 systems) 
a more refined analysis is required. In simple shear our analysis is purely kinematical 
except for the construction of the strain rate space (Fig. 3) which directly follows from the 
plasticity surface (Fig. 2). Changing the critical shear stress r will change the position 
of the different faces. But as long as this plasticity surface keeps the same topography, the 
basic diagram in Fig. 3 and the resulting rotation analysis (Figs. 6 and 7a) does not change. 
Differences will only occur if one of the involved edges, ED or A'B for instance, disappears, 
but this will require a very drastic hardening. In torsion the active systems resulting from 
the relations (7.4) will be changed, but under reasonable hardening this may change the 
extent of the different regimes in Table 4, but not their nature, so that Fig. 7b will remain 
qualitatively valid but with modified boundaries. 

The other assumptions are more essential. A similar analysis can be performed for 
a viscoplastic single crystal or for another single crystal; this still remains to be done. 
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