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Simple shear and torsion of a perfectly plastic single crystal
in finite transformations

J. BOUKADIA and F. SIDOROFF (ECULLY)

THE TWO-DIMENSIONAL plane behaviour of a single crystal is investigated under large deforma-
tions and rotations. Attention is restricted to the rigid plastic case with or without isotropic
hardening. After recalling the basic equations, the conditions under which a single crystal can
be treated as two-dimensional is discussed; this results in two plane single crystal models. One
of them is then considered, and a general geometrical method is presented to investigate its
behaviour under prescribed stress or strain conditions. This is then applied to simple shear
and sample torsion. Particular attention is devoted to the rotation of the lattice and its
asymptotic behaviour. In particular, it is shown that in both cases this orientation stabilizes to
some values which are characterized. As a conclusion, the implications of these results for
phenomenological models of anisotropic plasticity in large deformations are discussed.

W pracy analizuje si¢ zachowanie tzw. plaskich pojedynczych krysztaldow w zakresie duzych
deformacji i obrotéw. Rozwazany jest sztywno-plastyczny model materialu ze wzmocnieniem
izotropowym lub bez. Po przypomnieniu podstawowych réownan dyskutuje si¢ warunki, ktore
musza zosta¢ spetnione by pojedynczy krysztal moégt byé traktowany jako plaski. Prowadzi
to do dwoch plaskich modeli pojedynczego krysztatu. W dalszej czgéci tylko jeden z tych modeli
Jest rozwazany. Przedstawiono ogélng metode geometryczna do badania zachowania sig plaskiego_
krysztalu przy danych warunkach naprezeniowych lub odksztalceniowych. Nastgpnie zastoso
wano ja do prostego $cinania i do analizy asymptotycznego zachowania si¢ krysztatu. W szcze-
g6Inosci wykazano, ze w obu rozwazanych przypadkach orientacja sieci stabilizuje si¢ osiagajac
pewne wartosci, ktore zostaly opisane w pracy. Na zakorczenie przedstawiono wnioski, ktore
nalezaloby uwzgledni¢ przy formutowaniu modeli fenomenologicznych dla osrodkoéw plastycznie
anizotropowych w zakresie duzych odksztalcen.

B paGore asanu3upyercst moBeAeHHe T. Ha3. IUIOCKHX eJHHHYHLIX KPHCTALUIOB B 00JacTH
Gonemmnx medopmaruit ¥ BpamieHuii. PaccMaTpHBaeTCsi KECTKO-IUIACTHYECKAs MoJeNs Ma-
TEpHaIa C M30TPOMHBIM YNpouHeHHeM M 6e3 ympousenusi. Ilocie mpuBegeHUsT OCHOBHBIX
VDaBHEHHIT, o0CYKIAIOTCA YCIOBHS, KOTOPBIE JOJDKHBI OBbITh YIOBIETBOPEHBI, UTOOBI €mu-
HMUHBI KPHCTAIUT MOXXHO TPaKTOBaTh KaK IUIOCKHH. ODTO NMPHBOAMT K IBYM INIOCKHM MO-
JenAM eQMHHYHOro Kpucrayuia. B mameHelimeil yacTu paccMaTpHMBaeTCA TONBKO OJHA M3 3THX
mopesneii. [IpencraBneH obLuMiA reoMeTPHUECKHI METOX A HCCIEAOBaHUA IOBEACHHUS ILIOC-
KOTO KPHCTaJUla, IIPH 32JaHHBIX HAINPSMKEHHBIX WIH AeOPMALMOHHEIX YCJIOBHAX. 3aTeMm
OH TIPHMEHEH K IIPOCTOMY CIOBHIY M K 2HAJIM3Y aCHMITOTHYECKOIO IIOBENEHHs KPHCTaJLIa.
B yacrHOoCcTH moOKasaHo, YTO B 0DOMX DACCMATPHBAEMBIX CIIyYasX, OPHEHTHPOBKA DeIIeTKH
CTabHIIH3UPYeTCs, MOCTHTas HEKOTOPHIX 3HAUeHHH, Koropble ObLIM omucaHel B pafote.
B sarmoueHrn npejcTaBiieHbl CJIEACTBHSA, KOTOPBIE CJIeAYeT YUMTHIBAaTh NPH (OPMYyJIH-
poBKe (hEeHOMEHOTOTHUECKHX MOEIEH IS IIIaCTHYECKH AHH30TPOIHBIX Cpefl B 00sacTH 6ob-
mux nedopManuii.

1. Introduction

LARGE STRAIN anisotropic plasticity is a controversial subject. Kinematic hardening has
been extensively investigated and many propositions have been made about the objective
derivative to be used [1-5]. Initial anisotropy can be treated in the same way introducing
a rotating frame formalism [6-8] and similar results are obtained. For instance, use of the
corotational frame results in an oscillatory behaviour in simple shear, which can be elim-
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498 J. BoURADIA AND F. SIDOROFF

inated by using, for instance, the proper rotating frame. In [8] these oscillations have
been shown as essentially related to the asymptotic behaviour of the rotating frame for
increasing shear: a regularly increasing rotation (as in the case of the corotational frame)
results in an oscillatory behaviour, while a bounded rotation stabilizing to a fixed position
results in a stabilized behaviour.

The definition of the rotating frame in which the anisotropic constitutive equations
are to be written therefore appears as a constitutive assumption, the only one in fact
to be specific of large strain, because all the other components of the model are already
present in the small strain case [8]. Whenever possible, this phenomenological assumption
must rely on some microstructural information resulting from the microscopic origin
of anisotropy. In metals the basic anisotropy is the crystal structure and much information
about phenomenological plasticity can be gained from single crystal analysis.

The mechanics of a single crystal, however, is not so simple [9] and many problems
are still to be settled in connection, in particular, with slip indetermination. Moreover,
even if the plasticity of single crystals is naturally formulated in large strain [10], very few
simulations have been performed in situations involving the large rotations which are
necessary to settle the issues discussed above. A step towards that direction has been made
in [11] which proved that in case of a f.c.c. “viscous” single crystal, the corotational frame
was to be used and that an oscillatory behaviour was in that case actually obtained. But
the extension of these results to the plastic or viscoplastic case is not available.

The purpose of the present work is to analyze a plastic f.c.c. single crystal in simple
shear and torsion. Elasticity will be neglected and hardening will not be taken into account,
but it will be shown that the main results remain true for most hardening cases.

2. The basic mechanical framework

The kinematics of a rigid plastic single crystal is described, as in Fig. 1, by the decomposi-
tion
2.1 F=RP, PP'=2pM, M =gQn

for the deformation gradient F [10]. In this relation R’ denotes the rotation of the crystal
lattice while P is the “plastic” contribution to F resulting from dislocation motions. Each

Co ct)
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F1G. 1. Large strain of the rigid plastic single crystal.
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slip system is characterized by the unit normal to the slip plane #°* and the gliding direction
2°. These vectors are fixed in the isoclinic configuration C(¢) while the corresponding
Eulerian vectors g° and »* are rotated by R’

The classical decomposition follows from the relations (2.1) for the velocity gradient L,

the rate of deformation D = L® and the spin W = L4

j Ql_{_RIl:'.P-lRIT, Ql — RIRIT,
2.2 : 4
( ) D= RI(PP_I)SRlT, W= QI'{-R,(PP_I)ARIT,

but it is more convenient to rotate these tensors in C(r)
(2.3) D = R'DR' = (PP™)* = Zp*MS,
(2.9 R7wR! = Q'+ 2y M, Q' =R'TR.

The behaviour of the single crystal follows from the slip law which relates the slip rate
y* on each system to the resolved shear stress

(2.5) T=gTn*=T:M'=T:M°, T=RTRT,
In the following, attention will be focussed on perfect plasticity
y¥=z0 if °=1,,
(2.6) =0 if —70< 7°< 710,
Y0 if = —1y,

with a constant critical shear stress 7,. The constitutive equation then results from the
climination of the slip rates y° (s = 1, ..., N) from the relations (2.2) and (2.6). More
precisely, for an imposed kinematics L (trL = 0), the relations (2.2) and (2.6) provide
8+ N equations for 8 + N unknowns (N slip rates 3, 5 components of the deviatoric part
T? of T and 3 components of Q).

However, these equations can be treated in two steps: at first, the relations (2.3) and
(2.6) provide N+5 equations for T and $°, and after this system has been solved, the
lattice spin Q! is directly obtained from Eq. (2.4). The essential part, therefore, is the
determination of 4* and T from D and this is exactly the usual algebraic small strain problem
[9] with the well-known slip indetermination. As mentioned in the introduction, the large
strain analysis of single crystals is simply obtained by complementing the usual small
strain analysis by the rotation description and evolution equation (2.4). In other words,
and using the terminology introduced in [8], the constitutive model is the usual small
strain single crystal written in the isoclinic rotating frame defined by Q = R* and can be
followed by Eq. (2.4) which is obviously a special case of the general form discussed in
[8].

In the viscous case (7° = uyp°) this equation can be explicitly derived and in the case
of a f.c.c. single crystal, it has been obtained as ' = W [11]. Unfortunately, such an explicit
form cannot be obtained in the plastic case and our purpose in the following will be to
analyze this evolution in some simple situations involving large rotations: simple shear
and torsion.

2%
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3. The F.C.C.P2 single crystal

We shall now consider a f.c.c. single crystal in which the 12 slip systems are associated
to the planes {111} and directions {110). They will be denoted according to Table 1.

Table 1. The 12 slip systems.

System n g
1 (111) [110] Y3 1,  0,y2) ( 0 1,0
2 (111) [101] 3 1, 0,2 3(—v2, 1,1
3 (111) [011] 3 1,  0,v2) =2, -1,1)
4 (111 [101] 1/3(=1,  0,¥2) 1 v2, 1,1
5 (111) [110] 1/3(-1,  0,y2) ( 0, 1,0
6 (111) [011] 1y3i(-1, 0,2 1 vz, -1,1)
7 (111) [101] 3 1, y2, o) 1(-y2, 1,1)
8 (111) [011] 131, vz, o) 1 y2,-1,1)
9 (111) [110] 131, vz, 0) ( 0, 0,1
10 (111) [017] 13 1, -y2, 0) 3(-y2, -1,1)
11 (111) [110] 1/3( 1, -y2, 0) ( 0 0,1
12 (111) [101] 11v3( 1, -v2, 0) 1 2, L)

In the following we shall be concerned with plane situations where the rate of deforma-
tion and stress tensors D and T in C(¢) have the following form:

. lel fm 0 - Qll 212 0
(3.1) T = le T22 0 3 D = D12 D22 - 0 - .
0 0 0 0 0 —(Dy1+D32)

However, the compatibility of these two forms requires that x; is a symmetry axis for the
crystal, namely, a {100) or {110> direction. In this paper we shall consider the plane
single crystal f.c.c.P2 which is a f.c.c. single crystal under plane stress and strain in a {110}
plane (the f.c.c.P1 single crystal corresponds to a {100} plane, but it seems more difficult
for our purpose). The basis vectors e, , €,, &; in the isoclinic frame C(¢) are, respectively,
chosen along the [001], [1-1-0] and [110] directions. The resulting components of »°® and g*
are given in Table 1, and the tensors M® and resolved shear stress 7° are easily obtained
for all systems. Let us consider, for instance, the systems 2 and 6:

. [-V20 -2 g [=p* 8 =
#2:"7: 1 0 '/5 i MG = — 1 0 —1/2_ )
2Y/3 1 0y2 Wit o ¥z
1 _ o
) ey o8 o ,_.__(Tu—l/z Ty:).

23

The systems 2 and 6 are symmetric and it is reasonable to assume that 2 = $¢. The con-
tribution of these two systems to PP-! therefore is
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o l-vzo oo
POEAM=T_| 1 0 0|=aN,
V3l o oy2
which is a plane strain. The two systems 2 and 6 are degenerated in one single plane pseudo-
slip system defined by N2. A similar analysis can be performed on the other systems:
the systems 9 and 11 disappear while the 10 remaining systems can be symmetrized into 5
plane pseudo-slip systems (Tabl. 2).

Table 2. The 5 plane pseudo-slip systems.

= o - 1 00
l .1=-1_;5 O'I:T 3 le _[ ]
o V=2 12/1/ 2v3 |2 0
. G & — o = " 1 —1/2
2 a2 =4y~ g2 = (T;;—}/Z T”)/2}/3 N2 = -—‘:[ ]/2 0]
2¥y3 1L 1 0
. Vi, @ — - - — 1 20
3 a3 = —p3—9* ¢ = (T +Y2T1)2Y3 Y=
a y-r 0o (T, lv/ 11) 'l/ N 21/3 [ ) 0]
g S — it iz - — 1 5
4 ot = 9"+ ot = (T12+]/2(T11—T22))/2V/3 N* = "‘V?[Kf _2 2]
. . ) — e - s 1 —1/
5 aS=p%—y12 of= (le“l/z(Tu"Tzz))/zl/3 N* = '2—5‘[_:/2 l/%]

With these notations, the plane single crystal f.c.c.P2 is defined by

(3.2) F =RP, PP-!— &N,

where & is related to o° = T:N° by the slip law which in the plastic case is
@=0 if ¢ = 19,

3.3) =0 if —73<06°< 7,
<0 if 0y, = —Tg.

Formally these relations are identical with the three-dimensional case of Sect. 2, but they
are much simpler. In particular, the lattice rotation R' is a plane rotation

cosf sinf 0 060
3.9 R' = | —sinf cosf 0|, QX =|-600

0 0 1 000
so that the spin equation (2.4) becomes a scalar relation
(3.5) w=0+w’, of= %(36:“‘—#3&5——2&‘—-&2-—&3),

4y/3

where w = w,, is the total spin. Similarly, the relation (2.3) becomes

D, = —lf @+ —a5—32), Dy = '_lg‘ (@®—a*),
(3.6) b ]
Dy, = ——— (2 + &2+ &> +a* +a).

43



502 J. BoukaDIA AND F. SIDOROFF

For given kinematics, we then have to solve Egs. (3.3) and (3.6) for the 8 unknowns &°
and T while the lattice spin 6 is obtained afterwards from the relation (3.5). Of course
it is not possible to obtain the 5a° from the 3 equations (3.6). However, it will be convenient
to solve these three equations in the form

ol = l/21(3512—‘501’—5):
3.7 o= ]/T3 [§— ]/5(1311 +522)], a® = ,/—;" [E+ ]/5(511 +D,,)],

at = L;‘ (512 +@P — 1/2—522); &’ = "Vzi (512—}—(0”4- l/iﬁzz)s

which gives &* in terms of D and two indeterminate quantities & and w?.

4, Strain rate space representation

A geometrical representation will prove most convenient to describe the constitutive
relation between T and D. These tensors are therefore considered as points in three-di-
mensional vector spaces. An orthogonal basis is introduced in both spaces:

X1=i1, Xz=fzz; X3=l/§i2,

Y, = Els Y, = 522; Y;= 1/5512-
In the stress space X, the constitutive relation is represented by the plasticity surface which
is the boundary of the plastic convex |v°| < 7,. These 5 conditions are easily expressed
through Table 2 and the corresponding domain is a decahedron which is represented in
Fig. 2. Each face corresponds to the activity of one slip system. For instance, on the face

1* = CDEF we have 1! = + 1, and &' > 0. The corresponding strain rate is normal
to this face and represented in the strain rate space by the direction ¥3 > 0, Y, = Y, = 0.

Fi1c. 2. Plasticity surface in the stress space.



SIMPLE SHEAR AND TORSION OF A PERFECTLY PLASTIC SINGLE CRYSTAL 503

More generally, because of rate insensitivity, the strain rate space may be considered
as the two-dimensional space of all (oriented) directions in the vector space Y. A plane
representation is obtained by defining a direction by its intersection with two parallel
planes. In the following, we shall represent the strain space in the planes Y; = +1. Of
course the directions which are parallel to these planes are rejected at infinity, but this
is easily dealt with in projective geometry. The construction proceeds as follows (Fig. 3)
from the decahedron in the X-space.

F1G. 3. System activity in the strain rate space.

a) On each face of the decahedron, the strain rate direction is normal to this face
resulting in a point in the ¥3 = +1 planes. The 10 points are easily obtained either from
this normality condition or directly from the relations (3.6) with the only non-vanishing
o

b) An edge such as CF = 1*4* is the intersection of two faces ¢! = + 14, 0* = + 1.
The corresponding strain rate is defined from the relations (3.6) with «! = 0, a* > 0
(@2 = a® = &3 = 0). Straightforward calculations show that the corresponding point
in the Y3 = +1 plane lies on the segment 1*4+ and that &' and &* are proportional to the
barycentric coordinates of this point with respect to 1* and 4*. For an edge such as AB =
= 3*2-, this works in a similar way, although some complications arise from the fact
that the corresponding segment 3*2~ goes through infinity. This can be avoided by using
different planes, ¥; = +1 for instance, but this will not be necessary.

¢) An apex like C is the intersection of 3 faces ¢! = ¢3 = o* = + 1, so that «* > 0,
a® > 0 and &* > 0 (&® = &% = 0). Again it is easily shown that the corresponding point
lies in the triangle 1*4*3* and that &', &3, «* are determined as proportional to the barycen-
tric coordinates of this point.

d) An apex like A4 is the intersection of 4 faces 0* = ¢® = —0%? = —0° = 7, s0 that
«?>0,a*>0, 62<0, «*<0 and &' = 0. The corresponding point still lies in the
quadrangle 4+3*%2-5-. However, the slip rates &3, &*, &2, &°> are no longer determined
from this point, i.e. from the knowledge of D. This is the well-known slip indetermination.
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This representation of the strain rate space is the basic element for the analysis of the
single crystal under prescribed kinematics. For each value of D it gives the active systems,
the localization of the stress point in the X plane and, when possible, the individual slip
rates.

5. Simple shear

Simple shear is defined in a fixed coordinate system by

190 0ro Nz 0
5.1 F=|010], L=]|00 0}, T=|t N, 0},
001 000 0 0 O
where the shear rate I" = y is assumed constant (y = I't). The rotated strain rate D is
- — I . — r
(5.2) D22 - _Dll - —2— SIHZG, D12 = TCOSZB

and it depends on the lattice rotation which is unknown. In the strain rate representation
described above, the corresponding point is given by

V2 : :
—Y, =Y, =-"%__ = >
Y,=1, 2tg20 in Y;=+1 if co0s26 >0,
Yl R Yz - m mn Y3 - —1 lf Cosze { 0
and it lies on the straight line ¥, = — Y, parametrized by 6 (Fig. 4). Simple shear analysis

follows from the superposition of this diagram representing the prescribed kinematics
with the constitutive diagram of Fig. 3 which characterizes the considered plane single
crystal,

Fi1G. 4. Simple shear in the strain rate space.
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In our special case, it follows from this superposition that when 26 goes from 0 to
27, the strain rate direction successively describes the edges 1*5*4-1-5-4+1+ and that
double slip occurs for almost all values of 0; there is no slip indetermination. More precisely
the system activity is described as a function of 6 in Table 3 with tg20, = 2}/2.

Since double slip corresponds to an edge of the plasticity surface, the components
of the stress tensor Ty,, T.,, Ty, are not completely determined: more precisely, since
we are only concerned with systems 1, 4 and 5, the expressions in Table 2 show that the
activation condition will involve Ty, and (Ty;—T3,) only while Ty, + T, will remain
undetermined. To be more specific, let us consider, for instance, the edge 1*5* = DE
(0 < 26 < 260,). The activation conditions give

(54 ol = iz/l/g =Ty, 0°= [iz“' l/i(fu—fzz)]/zl/g = To
which can be solved

. . 3
(5-5) T, = To]/3 s T:,—Ty = ]/7‘50-

This gives the rotated stress tensor T; the applied normal and shear stress N,, N,, = are
obtained through the lattice rotation as

Nl—Nz = To‘/‘j-(zsinza—#cosze),
(5.6)

7= 1,3 (c0529+ 211/5

A similar analysis can be performed for the other cases and the following results are obtained
on 5*4~ = A'B: (20, < 20 < n—206,,)

Nl _"Nz = —T9 I/ECOSZG

(57) 3
T= 1 ]/7 sinZB

sin20)_

L 74 | | \
“ /! R /o l \
r / 1| [\ // | by
L ' [ [
e ;o] I /A ' \\
B / ! I \ / I | \
o2/ | | \ / | | \
/ | I \ ! | | \
o/ | 45| \ / 135 \
i T 41 s S (I Ly ) i Ly | o
0/ LN \% / N \ 780 20
1/ | LN \
/ vooN \ Vo \
/ \/ \
4 ¥ Ny-N,

F1G. 5. Shear stress in simple shear.
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and on 471~ = C'F' (m—20, < 20 < n)

Ny—Ny = 7¥3 (—Zsin29— % cos26),
(5.8)

- 1
7= 1oy 3|—cos260+——sin26).
b ( 22 )
The corresponding curves are given in Fig. 5. It should be noted that the stresses depend
on the applied shear only through the lattice orientation 0. This dependence results from

the crystal anisotropy and it could have been analyzed in a small deformation context

(Tabl. 3).

Table 3. System activity in simple shear,

Activation Active
condition systems
0>
1+5+ = = 1 a'>0,a°=0
26, >
5+4- === 1 a5=0,*<0
n—20, >
4-1- = T= =19 a*< 0,0l <0
26 1 4 >
1=5- = 1= -1 a' <0,a*<0
n+20, >
5-4+ T==75= 1, a5<0,a*=20
28-20, >
4+1+ = 1= T at=0,a! =0
2z )

6. Evolution of the rotation

The specific aspect of large deformations is thus concentrated in the evolution equation
for the rotation (3.5) which becomes

. I
(6.1) =5 —wP.

It follows from Table 3 that the systems 2 and 3 are never activated, &> = a* = 0
so that Eqgs. (3.7) are reduced to £ = 0 and

ﬁ ( cos20— w")

3
6.2) at = -L/;— (g cos20— ]/jf' sin26+w"),

I

o’ L;—(?cos29+ ]/2 sm29+w").

The value of w? and § therefore directly follows from the active systems.
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For the 175* zone (0 < 26 < 26,) for instance, * = 0 so that w?, a* and &° are given
by

w? = g (stin?_ﬂ—cosZB),

6.3) _ N
it = # (4cos20— Y/Zsin20), &5 = $2stin20.

The evolution equation (6.1) then gives 6/I' = df/dy as
6.9 % = %(1 +c0520—/2sin26), 0 < 26 < 26,.
The other cases are analyzed in a similar way and the results are

do 1
6.5 =7 (1—3cos26), 26, < 20 < m—20,,

db | = .
(6.6) i) (1+cos260+ y2sin20), =—20, <20 < m,

while Eq. (6.4) is found again for n < 26 < =+20,, etc.
This function df/dy = h(0) is represented in Fig. 6. The evolution of f with y is obtained
by integration of this function:

0

s
J e "

(6.7
ae/dy b

10

08

06

04

02

0 45 90 135 180 28

FIG. 6. Plastic spin in simple shear.

where 60, is the initial value of @ for ¥ = 0. The behaviour of the rotation, which as dicussed
earlier is the essential issue about large strain in a single crystal, directly results from this
function df/dy = h(0). It is a positive function vanishing for 260 = 20,, # and 2n—20,
with a non-zero derivative. This shows that 6 is an increasing function of ¥ which tends
to one of the three limit values 26,, 7 and 27— 26, for infinitely large . This behaviour is
recapitulated in Fig. 7a.

As described in [8], the shear response, 7(y) for instance, results from the composition
of two functions. The first function 7(6) was constructed in Sect 5, Fig. 5, and it describes
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26

Simple shear Simple torsion

FiG. 7. Lattice rotation in simple shear and torsion; a) simple shear, b) simple torsion.

the crystal anisotropy. The second function 6(y), investigated here, is the basic featur
of large strain behaviour of a single crystal. The asymptotic behaviour of z(y), in particula:
essentially depends on this function. Here the stress tensor T like 0 tends to a fixed value fo

large .

7. Simple torsion

Another similar situation is obtained in simple torsion with controlled y = I't:

e’ ey 0 - 070
(1.1) F=[0 &5 0 , T=|z0o0]|.
0 0 e ®&ute 000

This is for instance what happens in the torsion of a thin tube [12]. For a single crystal
of course, this is a rather academic problem, but it will allow us to investigate anothe
situation frequently analyzed in large strain plasticity. The tensors D and W are

: . 1
Dy, =&, Dy;y=¢, D= 793‘_8’]1,
(7.2) {
W= Wu =7681—82I1 (y=I‘t).

The situation in this case is somewhat simpler: starting from the Cauchy stress tensor T
the rotated stress T and resolved shear stress ¢ are computed
(7.3) —Tyy = T35 = 7sin20, T, = rcos26,
o' = 27co0s20/2 |/§,
0% = 7(cos20+2sin20)/2y/3,
(7.4) o = 7(cos20—25in20)/2)/3,
o* = 1(cos20—2)/2sin26)/2)/3,
0 = 7(cos20+2)/2sin20)/2y/3.
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For a given 6 there will usually be one active system corresponding to the maximum absolute
value of these 5 quantities. The value of = then follows from setting this value to the critical
shear 7,. A direct analysis of this maximum as a function of 6 leads to Table 4 and the
corresponding function z(f) is represented in Fig. 8.

Table 4. System activity in torsion.

Activation Active
condition system
[ _7 42,5
1+ = gy al =0
T
5+ = 7, a5=0
at <0
20 N
al<0
<0
ot =0
04+
02+
- | 1 1 i 1 1 1 1 | I L 1 -
g 45 90 135 160 28

FiG. 8. Shear stress in torsion.

Knowing the active system, the kinematical analysis directly proceeds from the relations
(3.6) and (3.5). Let us, for instance, consider the case a! > 0 (|26 < =/2—26,). It then
follows from the relations (3.6)

= ,_ _ i
(7.5) D,=D,,=0, D=

2y/3
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Coming back to D through the lattice rotation 6 and identifying with the tensors (7.2),

there comes
1 ot
-D12 = 7 el = —4.00526,

2y3

which gives &' from the prescribed I

e V3 el
(7.6) % = T os20

The time derivatives &,, £, and 6 are then easily obtained from the relations (7.2), (3.6)
and (3.5). This provides a nonlinear differential system which, by integration, gives ¢,, ¢,
and 0 as a function of y = I't. We shall not develop this further but for the rotation ¢
which is our main interest here.

8. Rotation in torsion

We shall now restrict our attention to the evolution equation (3.5) for 6. Using the
tensors (7.2) and the nonactivation of the systems 2 and 3 (Table 4), this gives

. 1 1
0 =—erl— —— (3a*+345—2a!
(8.1) 3 3 ( )
while the non-vanishing slip rate is obtained from the tensors (7.2) and (3.6)
— — | -~ 1 .
Dy, = -Dyy=——(°—a*), D,=—=Qa'+a*+0a%,
(8 2) 22 11 ]/6 ( ) 12 4 '/3 ( )

Dy, = -;— e = D,,c0820+D,,sin28.

If the_active system is the system 1 then, as described above, Egs. (8.2) give &' by Eq. (7.6)
and 0 is obtained by Eq. (7.5) as

: 1 1 4 41
: 2 = — — - <20 --26,.
(8.3) e 0 3 (1+ cosze)’ 5 +26, < 26 5 26,
Similarly, when the active system is the system 4,
D= ——L & Bn=—_a B=—Y_ (cos20-2y/Zsin20),
®84) 6 4y3 4y3
. - 23 el
oa" = — >
c0s20—2)/2 sin20
(8.5) e — i(1— 3 )
2 cos26—2}/2 sin26
and when the active system is the system 5,
(8.6) eI = i(l - - )
2 cos20+2)/2 sin26
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This =79 = ¢*~*:df/dy = h(b) is represented in Fig. 9 and again the evolution of the
rotation follows from this function. The situation is, however, more complex that in simple
shear, and different situations may be found according to the initial value 6, of 6.

- -Efd_g_
" " J \_4
10 ! [~

06 +
04+

02

—— -
0 /\45 90 735’\ 180 2g

Fi1G. 9. Plastic spin in torsion.

If [204] < m/2—20,, then df/dy is positive and 20 increases until it reaches, in a finite
time since h(6) > 1, the limit value 7/2 —20,. Then it can neither decrease because df /dy >
> 0 for 20 < m=/2—20,, nor increase because df/dy < 0 for 20 > m/2—20,. It must
therefore remain stationary at this value with a double slip situation (&' = 0, &® > 0).
To analyze it further, we start from Egs. (8.1) and (8.2) written for 20 = n/2—20, (cos20 =
= 2)/2/3, sin2 = 1/3)

1 1 o La 22 a5 1 2(dr+ad)
et =— (2a' +4&° +—=7a = == 5
2 4y/3 ( iy ye 3 3V6
. 155 25 __ A4l
6:2((1-!-3)_30: Ea _0
36 4y/3
and the slip rates @' and &® are obtained from these two equations
. 3efi—5]" - 3ef -] =
8.7) t="—(9-4y2), F=-"—"-—-(6+4y2).
( 202 (0-4v2) 20)/2 (6+4v2)

If 7/2—26, < 26, < 20,, then d0/dy is negative and 20 decreases to the same limiting
value 7/2—26, and double slip situation (8.7).

If 20, < 26, < m/2, then df/dy is negative and 26 decreases towards the limiting value
20, where dfjdy = 0 and which is reached in an infinite time.

The other cases are analyzed in the same way and the results are summarized in Fig. 7b.
The situation is quite different from simple shear, Fig. 7a: the 3 limiting values 20,, =
and 27— 26, still exist but their attraction zone is much more limited and they are reached
through different asymptotic behaviour (8—6, ~ e~** in simple shear, A4/t in torsion)
and three new limit values 7/2—26,, x/2+20, and 3z/2 appear which are reached in
finite time.
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9. Conclusion

Our main objective was the evolution of lattice rotation in simple shear or torsion
in a single crystal. In the special case investigated, this analysis has been fully completed
and the results are summarized in Fig. 7. Different situations may be encountered, according
to the initial value 20, of the lattice orientation, but in any case this lattice rotation always
stabilizes to a fixed value resulting in a stabilized behaviour for the crystal. The plastic
behaviour, therefore, is entirely different from the viscous one [11] where an ever increasing
rotation and oscillatory behaviour was found. Coming back to phenomenological large
strain plasticity which was our starting point, this is an indication that in the plastic case
the rotating frame must be chosen in such a way that it stabilizes under simple shear.

This analysis was performed in a restricted case: perfect plasticity of a special plane
single crystal. Among these restrictions one is not essential: most of the results obtained
about the rotation will remain true under reasonable assumptions about hardening. First,
in the case of isotropic hardening (the critical shear stress 7, increases but remains the
same for all systems, Taylor’s assumption), the stress response as described in Figs. 5
or 8 will be modified by a scale factor but nothing will be changed as regards system activity
and the resulting lattice rotation.

Under more general hardening conditions (different critical shear stress on the 5 systems)
a more refined analysis is required. In simple shear our analysis is purely kinematical
except for the construction of the strain rate space (Fig. 3) which directly follows from the
plasticity surface (Fig. 2). Changing the critical shear stress T will change the position
of the different faces. But as long as this plasticity surface keeps the same topography, the
basic diagram in Fig. 3 and the resulting rotation analysis (Figs. 6 and 7a) does not change.
Differences will only occur if one of the involved edges, ED or A’B for instance, disappears,
but this will require a very drastic hardening. In torsion the active systems resulting from
the relations (7.4) will be changed, but under reasonable hardening this may change the
extent of the different regimes in Table 4, but not their nature, so that Fig. 7b will remain
qualitatively valid but with modified boundaries.

The other assumptions are more essential. A similar analysis can be performed for
a viscoplastic single crystal or for another single crystal; this still remains to be done.
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