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Influence of kinematic hardening on plastic flow
localization in damaged solids

M. K. DUSZEK and P. PERZYNA (WARSZAWA)

THE PAPER aims at the investigation of the influence of the induced anisotropy generated by
large plastic deformations and micro-damage process on the shear band localization conditions.
The constitutive equations are formulated within the framework of the rate type material structure
with internal state variables. To descrite the intrinsic micro-damage precess the porcsily par-
ameter is introduced as a fundamental internal state variable. Particular attention is given to the
formulation of the evolution equation for the tensorial kinematic hardening state variable,
interpreted as the residual stress tensor. The critical value of the rate hardening modulus for
localization of plastic deformations into a shear band ard the directicn of shear band are in-
vestigated. It has been confirmed that two cooperative phenomena, namely the kinematic harden-
ing and the micro-damage process cause that the material is more inclined to instability. The
conditions for localization for some particular examples of the state of stress are considered.

Celem pracy jest zbadanie wplywu anizotropii materialowej wywolanej duzymi plastycznymi
deformacjami oraz procesem mikro-uszkadzania materiatu na lokalizacj¢ odksztalcen plastycz-
nych w postaci pasm $cinania. Roéwnania konstytutywne zostaly sformulowane w ramach
struktury materialowej typu predkosciowego z parametrami wewnetrznymi. W celu opisu
wewnetrznego procesu mikro-uszkadzania wprowadzono parametr porowatosci jako podstawo-
wa wewnetrzng zmienna stanu. Szczegodlng uwage zwrocono na sformulowanie rownania ewolucji
dla tensorowej zmiennej stanu opisujacej kinematyczne wzmocnienie, interpretowanej jako
tensor naprezen resztkowych. Zbadano krytyczng warto$¢ modutu predkosci wzmocnienia dla
lokalizacji plastycznych deformacji w postaci pasma $cinania oraz kierunek pasma $cinania.
Badania potwierdzily, ze dwa wspoéldziatajace zjawiska, a mianowicie kinematyczne wzmocnienie
i proces mikro-uszkadzania powoduja, ze material jest bardziej wrazliwy na wystapienie nie-
stabilno$ci. Zanalizowano warunki wystapienia lokalizacji dla kilku szczegolnych przykladow
stanu naprezenia.

ensio paGoTel ABIAETCA HUCCIEAOBAHME BIIMSIHMSA MaTepPHAILHON aHW3OTDPOIIHMY, BLI3BAHHOMK
GONBIUMHY TUIACTHYECKHMH NedopMauyAMH M NPOLECCOM MUKPOIOBPE:KACHHA MaTepHana,
Ha JIOKAJIH3aLUMIO IUIacTuueckux Aedopmauumit B Buae nojoc caBura. Onpenensiomue ypaBs-
HeHHA cHOPMYIHDOBAHBEI B PAMKaX MaTepHabHON CTPYKTYPbI CKOPOCTHOTO THIIA C BHYTPCH-
HUMM IlapameTpamu. C LEeNbi0 OMHCAaHWA BHYTPEHHETO MPOLECCa MUKPOMOBPEKACHHA, BBEAEH
mapameTp NMOPHCTOCTH KaK OCHOBHAasA BHYTPCHHAA mepeMeHHas cocTtoAHuA. OcobeHHoe BHH-
maHue oOpaieHo Ha (GOPMYJIHPOBKY YpaBHEHHA SBOJIIOUMM IS TEH30PHOM IepeMEHHOMH
COCTOAHHSA, ONHCHIBAIOLICH KHHEMAaTHUYECKOE YIPOUHEHHE, HHTEPIPETHPOBAaHHOH KaK TEH30p
OCTATOYHBIX HanpshKeHuil. MccenqoBaHo KpUTHYECKoe 3HAUYEHHE MOLYJIA CKOPOCTH YHpPod-
HEHHSA JJIA JIOKAJIM3aLMH IUIACTHYeCKHX Aedopmauuii B BHAE IIOJIOCHI CABMIa X HanpaBJICHHE
mosnockl caBHra. FlccrnenoBaHMsA NOATBEPIMIIM, YTO [ABa B3aHMOLEHCTBYIOLIMX SBJICHHA,
MMEHHO KHHEMAaTHUECKOe YIPOYHEHHE H IIPOLIECC MHKPOIOBPEXKIEHHA , IPHBOAAT K ABJIEHUIO,
uTo Marepman GoJsiee UYBCTBHTE/IEH HA BBICTYNAHKE SIBJIEHHs HeCTaOMIBHOCTH. AHAIM3MpY-
IOTCA YCJIOBUSI BBICTYNAHHA JIOKAJIM3aIMK I HECKOJIBKHMX YaCTHBIX CIIy4aeB HANPSyKEHHOTO
COCTOSTHUSA.

1. Introduction

IN THE PREVIOUS paper [3] of the authors the investigation of shear band localization
conditions for finite elastic-plastic rate independent deformations of damaged solids was
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presented. The influence of two main effects, namely the induced anisotropy and the
micro-damage process, on the shear band localization phenomenon was discussed.

The present paper aims at investigating the influence of the induced anisotropy generated
by large plastic deformations on the shear band localization conditions. In comparison
with the paper [3], the evolution equation for the residual stress a is postulated in a different
form. Moreover, the alternative constitutive formulation is presented and discussed. The
particular cases of the state of stress have also been considered.

In Sect. 2, the formulation of the constitutive relations for elastic-plastic solids when
isotropic and kinematic hardening effects and the micro-damage process are taken into
consideration is given.

The constitutive equations are formulated within the framework of the rate type material
structure with internal state variables.

The kinematic hardening effect is generated by finite plastic deformations. The intrinsic
micro-damage process is treated as a sequence of nucleation, growth and coalescence
of microvoids. Both effects are described by means of the internal state variable method.

Particular attention is given to the formulation of the evolution equation for the tensorial
kinematic hardening state variable, interpreted as the residual stress tensor.

The yield criterion is assumed to depend on the first two invariants of the deviator
of the stress difference between the loading point and the center of the yield surface as well
as on the porosity parameter.

To describe the intrinsic micro-damage process, the porosity parameter is introduced
as a fundamental internal state variable. In the evolution equation for the porosity par-
ameter, the first two terms are responsible for the description of the nucleation process
while the third relates to the growth mechanism of microvoids.

As a result of the effects considered, the fundamental matrix L? which describes the
linear relationship between the plastic strain rate and the flux of the Kirchhoff stress is
not symmetric. Consequently the normality does not apply, so the plastic flow direction
and the effective normal to the actual yield surface are not coincident.

In Sect. 3 the alternative constitutive formulation is presented provided the yield
criterion has a different form.

In Sect. 4 the conditions for localization of plastic deformations into a shear band are
investigated. These conditions determine the direction of the shear band and the critical
value of the hardening modulus rate for localization.

Section 5 presents a discussion and investigation of different effects on the localization
phenomenon. Particular attention is focused on kinematic hardening. It has been found
that the form of the evolution equation for the residual stress e has a very important
influence on the results obtained.

It has been confirmed that two cooperative phenomena, namely kinematic hardening
and the micro-damage process account for the fact that the material is more inclined to
instability.

In Sect. 6 some particular examples of the state of stress are considered. For these
particular cases the critical values of the hardening modulus rate have been investigated.

In the last Section final conclusions are collected.
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2. Constitutive relations

The yield criterion is postulated in the form (cf. [7, 8])

2.1) () ==
The yield function f(-) is assumed as
@2 FO =V + @m0,
where
= ~ 3 1 ~ o~
(2.3) =7 J= —Z‘TUT:'J"
(2.9 Ty = Tuy— %y,

t denotes the Kirchhoff stress tensor, & the residual stress tensor which specifies the current
center of the yield surface; by the prime the deviatoric part of the tensor is denoted, #,
and », are the material constants and £ denotes the void volume fraction or porosity
parameter.

The isotropic hardening-softening parameter is as follows():

2.5 x:%0+hﬂ%Lu§y
where x, is the yield stress for the matrix material, k, denotes the isotropic hardening
constant, &F is the porosity at fracture and &P is the equivalent plastic deformation defined
by the relation

! t 1
(2.6) &P = f éPdt = f (% D;’J-ij)zdt
0 V]

if D? is the rate of the plastic deformation tensor.
The material function » (cf. Eq. (2.5)) satisfies the fracture criterion

2.7 #le—er = 0.

It is noteworthy that the influence of the micro-damage process on localization within
the shear band is of great importance practically in its initial stage only.

To investigate this conjecture in depth, let us consider the typical variation of tensile
stress with porosity, Fig. 1. The trajectory tensile stress-porosity represents the real deforma-
tion process for a mild steel tensile specimen subjected to a constant strain rate. The process
starts at the initial porosity &, and when the tensile stress reaches the threshold value for
nucleation, the nucleation process begins. The process goes on, the tensile stress peaks
up at the value of porosity £™ and dramatically breaks down to attain at £ = &° the point
at which coalescence of microcracks begins. The segment of the trajectory marked by
the broken line represents the mechanism of final fracture.

The expected localization within shear bands can take place in the segment of the

(') For physical justification of the assumption (2.5), see Refs. [7, 8.
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trajectory marked by a bold face line. The growth mechanism is assumed to occur during
plastic deformation, so it may also influence the criterion of localization.

This heurestic consideration explains why the micro-damage process (i.e. nucleation
and growth mechanisms) in its initial stage only can have an influence on the localization
of plastic deformations within shear bands.

The evolution equation for the porosity parameter & was derived in [3] in the form
(cf. with GURSON [4])

(2.8) i ’i(fL? tr(RDP) +1(J,, )J, +5(e?, £)(1 - E)trDP,

where k and ! denote the nucleation material functions and = denotes the growth material
function. The first term in the right-hand side of Eq. (2.8) describes debonding of second-
phase particles from the matrix, the second term is responsible for the cracking of the second-
phase particles and the third term describes the microvoid growth process.

Postulating a flow law associated with the yield function (2.2), we obtain the rate
of the plastic deformation tensor as follows:

29) Dy =4 ( i +Aa,,.),
2V 7,

where

(2.10) A=n+né

and the scalar coefficient /1 has to be determined from the consistency condition, f = 7.
This leads to the relation

1 7 Ty v v
2.11 Df; = [ UT +A46; ][ kT +(4+C) 6k1}(”fki — Uk1),
@1 T H| oy, I 2V7,
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where ¥ denotes the Zaremba-Jaumann flux of the stress tensor =,
(2.12) C= [n;lLH (1+ko s")] I(7:, %)

and the isotropic hardening modulus H is as follows:

- 5 3 TIJ )]2
5185 Hwghgfl—n + A6, U4 A0,
el * ( § )[ (21/12 ,)(2]/ R

= [+ k] [ 2 e 000 (

I

+Amo.

iy
2V,
We postulate the evolution equation for the kinematic hardening internal state variable
a in the form (3)

@1, 4,- —— 1 {[ T +(A+C)6,‘,]Z-,‘,}%U,
H+HH VT, +4+0)i) L2V 7,

where

(2.15) H* = %[1+6A(A+C)]

and r is the material constant.

The evolution equation (2.14); in comparison to the postulate

T
(2.14), au =0 [( ki—— + Aaﬂ)'ﬁsl] Ty
2V7,
assumed in the paper [3] has some advantages. It satisfies the condition that g vanishes

when D? = 0 and for the states near to the neutral state, gz is small.
Making use of Eq. (2.14),, the relation (2.11) can be written in the form

v

(2.16) Df; = L Ti,

where

2.17) L ( ! +Aa,,)[ L 4(4+C) ak,]
2V 7, 1/

and the isotropic-kinematic hardening modulus rate

(2.18) h= H+H*

depends explicitly on the kinematic hardening constant r.
The loading criterion is as follows:

(2.19) f==x -—[ ] +(A+C)6kz]'sz > 0.
2 Jz

(%) The kinematic hardening rule (2.14), has been developed in the forthcoming paper of the authors.
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From Egs. (2.16)-(2.18) it follows that, in general, for C # 0 the normality rule does
not apply. In view of the consitutive assumptions: n, > 0, %o > 0, £&F > 0, ko > 0,22 > 0
and Eq. (2.12), the necessary condition for C # 0 is I(J,, & # 0. Therefore we can con-
clude that the nucleation mechanism generated by cracking of second-phase particles is
responsible for the deviation of the plastic deformation rate tensor D? from the direction
normal to the yield surface.

For the evolution equation for a applied in [3] in the form (2.14),, the constitutive
matrix LPy,, has the form

@20) L =i( o) [—‘— # (a4 _€ ! )a]
h\ 2V 7, 2V, 1-0[V 7, +(4+0)F]
Then the deviation of the plastic deformation rate tensor D? from the direction normal
to the yield surface depends also on the kinematic hardening parameter Q.
For small elastic strains(®), assuming the additivity of elastic and plastic rates of deforma-
tion and the generalized Hooke’s law in the elastic range, we finally have

v
(2.21) Dy = Dij+ Dy = Lijy T,
where

1 1 1
222) L= el (Oik 01+ 041 0) + ('ﬁ - —6_(—?—) 15 O

+%(Z;JA%HFEf+M+Q%}
2]"]2 2VJ2

The inverse of Eq. (2.22) has the form

v
(2.23) Ty = M Dy,

where

2
(224)  Mp = G( 0yy+ O 60 + (K— 3 G) 0150

1 G G
- S %4 3KA6.-J-) [i T+ 3K(4+C) a]
h+G+9KA(A+C) ( |/J2 V7,

Equations (2.23)-(2.24) together with the evolution equations: (2.8) for the porosity
parameter & and (2.14), for the residual stress tensor a, provide a set of the constitutive
relations for elastic-plastic solids whose response involves the kinematic hardening as well
as the intrinsic micro-damage process.

Neglecting the kinematic hardening, i.e. H* = 0, and making the following formal
identifications:

(2.25) A=1f, A+C=o b

(®) The assumption concerning the small elastic strain is not restrictive for the consideration of the
localization phenomenon in metallic materials.
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where £ is called the dilatancy factor and y the internal friction coefficient, the constitutive
equations (2.23)-(2.24) yield the constitutive relation obtained by Rudnicki and Rice
(cf. Eq. (13) in [14]).

For A = C =0 and H* = 0 the constitutive relations (2.23)-(2.24) simplify to the
form of the Prandtl-Reuss equations.

3. Alternative constitutive formulation

In the literature the classical Huber—Mises yield criterion is applied in two equivalent
forms: J, = %3 or }/J, = %, (e.g. HILL [5] and PRAGER [10]). The generalization of the
Huber-Mises yield criterion for dilatant, pressure-sensitive or damaged materials can be
made starting from each of these forms; however, final results then obtained are no more
identical.

In Sect. 2 the yield criterion (2.1)-(2.2) obtained by the generalization of the Huber-
Mises condition in the form y/ J, = %, was applied. This approach was used in [10, 3].
The other approach which has been applied by GURsON [4] in the formulation of the yield
criterion for porous materials will be utilized now and the results obtained will be compared
with those derived in Sect. 2.

The yield criterion is postulated in the form

G.1) ) =%,

where the yield function f( -) and the isotropic hardening-softening parameter * are assumed
as follows:

(3.2) f() :jz [1+(”1+?125—§12—],
(3.3) %= x5(1+ko&?) (1 - Ei )

Application of the same procedure as in Sect. 2 and the evolution equations (2.8) and
(2.14), for the internal state variables & and a, lead to the constitutive relations in the form

Ay
(3-4) -ij = LjuTu
and
A 1 -

(3.5) Ll =T[ L) +A5u][ L +(A+C)5m],

A A Vi,
where
(3.6) h=H+H*,

3.7) H—xok( ?4})[3( fE;T+AAa,J( iy +A“&,J)]2
2

[anf+ F(l+k0£’)][ Tu+ (l_é)au]( ’;jm +A6U)
: = .

2
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\ J,
(3.8) A — (n1 +H2 5)?)
(3.9) é= [jlzﬂz'*' 2 (1+k e")] Ll
¢ 2V J,
(3.10) ;kl = I-ij - {[ :E;L; + (/i\'i' é) 611] g’u} Tuts
H+HHVL+A4+0)ig \L 2V ],
(3.11) H* =%[1+6,€(A‘+é)].

Comparison of Eq.A(3.5) with Eq. (2.17) indicates an analogical form of the constitutive
matrices Lfj; and Lfy for both forms of the yield criterion. The forms of the material
functions are, however, slightly different. This difference can be detected by the identifica-
tion procedure for particular materials.

4. Conditions for localization

Making use of the constitutive relations (2.23) and (2.24) for the elastic-plastic damaged
solid with isotropic and kinematic hardening effects, we shall look for the conditions for
localization of plastic deformations into a shear band. Our aim is to determine the direction
of the shear band and the critical hardening modulus.

The theory of localization of plastic deformations into a shear band was developed
mainly by Rick [11, 12], Rice and Rubpnicki [13], RupnNick! and RICE [14] and NEEDLEMAN
and RICE [6]. We use here the notation and follow, the consideration presented by
RupniIckl and RICE [14] and in our previous paper [3].

Let n be the unit normal to the surface of the shear band across which certain components
of the velocity gradient may admit jumps. Let us introduce rectangular Cartesian coordinates
X; in such a way that n is in the x,-direction (cf. Fig. 2).

For the constitutive relation (2.23), the necessary condition for a localized shear band
to be formed is

(4-]) det[M2jk2] — 0.

Xz

Ty __|

-
Xy

—
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Solving Eq. (4.1) for the hardening modulus yields

h

(42 GFoKA(A+C)
T —1 (4 o

(Grsa+34K VT, )[GHi+3K(A+ OV, |+ (T G+K)G(—;z'§+rz'§)

-1.

J, (% G+K) [G+9KA(A+C)]

Let ny, ny, nyp denote the corresponding components of the unit normal to the plane
of shear band localization in the principal directions of tensor .
Denoting by 71, Ti, Ty the principal stresses, we assume

(43) T = Ty > Tinr -

The orientation of the plane within which shear band localization first takes place
can be found from the requirement of 4 to be maximum with respect to ng.
The solution has the form

nt = G-t e+ O+ Vi, —#(—v) ],
(4.4) Ry — 0)
nin= (- {QA+ O+ Vi, —#(1—»)—7).

Denoting by 6 the angle between the vector m and the 7,;; direction, we obtain

oz ny _ C+"Q{min'—Tmln )1’2

43 anf = (‘”rm,vg—w;: ’

where

4.6) (= QRA+O)(A+»)— (T—)(1—7)

and

4.7 “jL‘ =T, o =T “ji_ = i
l/iz l'/juz '/jz

(4'8) iz—-i—: ‘Mmlxy 'il.l,—:‘: Ma ~al—1_]—— = ‘dmln'
V7, V7, V7,

The critical hardening modulus for a localized shear band to be formed is finally obtained
in the form

N,

4.9) e = (

1+v)C2_ 1+v
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The critical hardening modulus 4., /G that was obtained by the authors in the previous
paper [3] for the evolution equation for a postulated by Eq. (2.14), has the following
form

he, 1+v (c 2 14y ex
(4.10) c = ( 1—-1') ‘P) 5 (T—.M+2A+ 7) i

where
P=1-0[V7, +(4+0)J)].

In that case, since P is a function of Q, 4 and C, the influence of two cooperative phenom-
ena, namely the kinematic hardening and the micro-damage process, is different then for
the case considered in the present paper when k.. /G is described by Eq. (4.9). This explains
why in the previous case we had such a pronounced synergetic effect.

On the other hand, the result (4.9) shows that the influence of kinematic hardening
on the critical value of the hardening modulus, for the evolution equation for a postulated
in the form (2.14),, is mainly described by the relation (2.18).

Of course, for @ = 0 (i.e. when the kinematic hardening is neglected) Eq. (4.10) co-
incides with Eq. (4.9).

5. Discussion and comments

The solution of Eq. (4.9), for the critical hardening modulus as a function of the di-
mensionless mean principal value of the stress deviator 7, may be represented by the family
of parabolas, as it has been plotted in Fig. 3 by a solid line.

The origin of the parabola described by Eq. (4.9) moves along the trajectory ¢ given
by the parametric equations (see Fig. 3),

B 1+» s
o ) - [1)er
(5.2) T=o-24+C),

o,n:’

2A0

H">0.A<0,00.A54, / / 2AsC '

H"0,8-0,00.A° Ag 2A+C- A

0

H™0,A-0,G-0,A-A,
FiGc. 3
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where, for ¢t = 0, it is assumed:
(5.3) A:A0:n1+nz£0, CZO, MZO.

When kinematic hardening is neglected (i.e. H* = 0 and &« = 0), Eq. (4.9) reduces
to the form

(5.9 (T+24 + C)2.

G G 1—» 2

This result is analogous to Eq. (20) obtained by Rudnicki and Rice [13] for a “pressure-
sensitive dilatant material”.

The parabola described by Eq. (5.4) is plotted in Fig. 3 by a broken line. Its origin
moves along the trajectory ¢’ given by the parametric equations

(5.5) (”°t) =(1+”)02, T— —24-C,
max

hee _ He _ ( l+v)C2__1+v

G 1—»

where, for ¢t = 0, the initial conditions (5.3) are satisfied.
When both the kinematic hardening and the micro-damage process are neglected
(i.e. Egs. (5.3) are satisfied for any instant of time #), then Eq. (4.9) simplifies to the form
P H, 1+

(56) G = — G = — ""7" (T+2A0)2-

This equation describes the parabola plotted in Fig. 3 by the dotted line.
It follows from Eq. (4.9) that the critical hardening modulus takes the maximum
value

h 1+
5.7 Ler. (2" Y2
( ) ( G )max ( 1_"’ )C
for
(5.8) T=o-24-C.

Therefore it is clear that the micro-damage process makes the parabolas shift up and
the value of £, increases almost for any state of stress, thus the material is more inclined to
instability by localization of plastic deformations.

Kinematic hardening has no influence on the maximum value of A, but it affects the
value of T for which /., reaches its maximum. The parabola shifts left for & > 0 and
right for &/ < 0. Therefore the influence of kinematic hardening on localization depends
strongly on the actual state of stress represented by the dimensionless mean principal
value of the stress deviator T (see Fig. 3). On the other hand, as it follows from Eq. (2.18),
because # > H, the localization may set in earlier (for smaller strains) than in the case
when the material is hardening isotropically only.

For C =0 (i.e. when there is no cracking of the second phase particles), Eq. (4.9)
takes the form

h 14+»
59 LS . L 2
(5.9) G 3 (T— <7 +24)2.

Thus, in this case the parabolas are shifted down below the T axis and A, < 0. This
means that the material is less sensitive to localization. The onset of localization of plastic
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deformations into a shear band may occur when the material is unstable (falling part
of stress-strain curve).

For the alternative form of the yield condition described by Egs. (3.1)-(3.3) and the
constitutive relations (3.4)-(3.9), the critical hardening modulus for localization, 4.,
is given by the relation (analogical to Eq. (4.9)):

(T—of +24+C)?,

hee [14v )2, 1+4v
) T—(l—v)c 2

where A, C are defined by Eqgs. (2.8) and (3.9).

Hence all results and conclusions obtained for the situation described by Eq. (4.9)
are valid in the case of the alternative formulation of the constitutive relations (3.4)-(3.9)
when the critical hardening modulus is governed by Egq. (5.10).

6. Particular cases

In this Section we intend to consider several particular cases of the state of stress which
are of great importance in practical applications.

6.1. Axially-symmetric “extension”
Let us assume
(6.1) T > t" - Tlll'

The assumption (6.1) is satisfied for the states of stress as follows:
6.1.1. Uniaxial extension. We have

(6.2) Ty > 0, Ty = T — 0.

6.1.2. Plain stress axially-symmetric compresion. Let us consider a flat sheet compressive specimen
and assume

(6.3) 7w=0, Tyu= 1t <0.
According to the relations (4.7), and (6.1), we obtain
(6.4) o= =TV E, 20, o =-3TVE »0.
Substitution of the relations (6.4) into the relation J, = %(ﬁz—[—fﬁ-{-f;ﬁ) yields:

6.5 T=-1/y3+4.

The critical hardening modulus for localization can be determined from Eq. (4.9) as
follows:

i y 1 &
(6.6) hG =(itv)C2—(1;y)(—7?+2A+C).
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Depending on the values 4 and C, localization may set in either while the material
is continually hardening (k. > 0) or when it is softening (#., < 0).

Assuming that for J; < 0 second phase particles do not fracture and therefore C = 0,
then for the plain stress axially-symmetric compression we obtain

Ber 1+» 1 2
= —— | _ —— < L
6.7) = 5 ( " +2A) 0

Localization may set in only when the material is perfectly plastic or softening.

6.2. Axially-symmetric “compression”
We assume
(6.8) T = Tn > Tur-

This assumption is satisfied for the following important cases:
6.2.1. Uniaxial compression. We have

(6.9) n=tmtm=0, 7u<0.
6.2.2. Plane stress axially-symmetric extension. This case is characterized by
(610) T, = Ty > O, Ty = 0.
The relation (4.7), for the assumption (6.8) yields
(6.11) B=ly=TVE 50, dg=—3TVE 20
and therefore
(6.12) T=1/y3+.
The critical hardening modulus A, takes the value

h 1+» 14+ 1 2
6.13 L = Cc?*— ——+24+C
13 G (1—”) 2 (.1/3 +2+I)

which, for the most practical situations, is negative.
Again, assuming that for J, < 0 we have C = 0, then Eq. (6.13) simplifies to the form

he 1+» 1 2
. = ———— | — 0.
619 o (127 ()
The onset of localization can occur only for a negative value of the hardening modulus
(when the material is progressively softening).

6.3. Pure shear state

We assume the state of stress as follows:
(6.15) Tm= -7, ™wm=0,
then
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(6.16) Jy=0, C=0, T=0 and & =0.
Equation (4.9) reduces to

(6.17) ”G = —2(14») A2 < 0.

The onset of localization may take place only when the material is perfectly plastic
or softening.

6.4. Plane plastic strain state
We require
(6.18) D% = 0.
From Eq. (2.9) it follows that the condition (6.18) is satisfied when

——ﬁ;__'I‘A:O.

2V,

Making use of Eqs. (2.4), (4.7), and (4.8),, Eq. (6.19) leads to

(6.19)

(6.20) T=of—24.

Substituting Eq. (6.20) into Eq. (4.9), we find

hee (49?1 (h)
G =~ 20=9 C "2\ G Ju ¥

A non-negative value of the critical hardening rate indicates that the states, like plane
strain, are particularly sensitive for localization. This is the expected result since in this
case the direction of maximum shear stress lies in the plane of the shear band.

(6.21)

7. Final conclusions

It has been confirmed (cf. conclusions in [3]) that two cooperative phenomena, namely
kinematic hardening and the micro-damage process, account for the fact that the material
is more inclined to instability.

The results obtained are different for axially-symmetric compression than for axially-
symmetric tension.

It has been found that the form of the evolution equation for the residual stress a
has a very important influence on the criterion of localization within a shear band.

The results obtained are qualitatively in good accord with the experimental observa-
tions of initiation of localization (cf. CHAKRABARTI and SPRETNAK [2] and ANAND and
Seitzic [1]).
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