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Influence of kinematic hardening on plastic flow 
localization in damaged solids 

M. K. DUSZEK and P. PERZYNA (WARSZAWA) 

THE PAPER aims at the investigation of the influence of the induced anisotropy generated by 
large pla~tic deformations and micro-damage proce~ on the shear band localization conditions. 
The constitutive equations are formulated within the framework of the rate type material structure 
with internal state variables. To describe the intrinsic micro-damage prcce~s the porosity par­
ameter is introduced as a fundamental internal state variable. Particular attention is given to the 
formulation of the evolution equation for the tensorial kinematic hardening state variable, 
interpreted as the residual stress tensor. The critical value of the rate hardening modulus for 
localization of plastic deformations into a shear band and the direction of shear band are in­
vestigated. It has been confirmed that two cooperative phenomena, namely the kinematic harden­
ing and the micro-damage process cause that the material is more inclined to instability. The 
conditions for localization for some particular examples of the state of stress are considered. 

Celem pracy jest zbadanie wplywu anizotropii materialowej wywolanej duzymi plastycznymi 
deformacjami oraz procesem mikro-uszkadzania materialu na lokalizacj~ odksztalcen plastycz­
nych w postaci pasm scinania. R6wnania konstytutywne zostaly sformulowane w ramach 
struktury materialowej typu pr~dkosciowego z parametrami wewn~trznymi. W celu opisu 
wewn~trznego procesu mikro-uszkadzania wprowadzono parametr porowatosci jako podstawo­
w~ wewn~trzn~ zmienn~ stanu. Szczeg61n~ uwag~ zwr6cono na sformulowanie r6wnania ewolucji 
dla tensorowej zmiennej stanu opisuj~cej kinematyczne wzmocnienie, interpretowanej jako 
tensor napr~zen resztkowych. Zbadano krytyczn~ wartosc modulu pr~dkosci wzmocnienia dla 
lokalizacji plastycznych deformacji w postaci pasma scinania oraz kierunek pasma scinania. 
Badania potwierdzily, ze dwa wsp6ldzialaj~ce zjawiska, a mianowicie kinematyczne wzmocnienie 
i proces mikro-uszkadzania powoduj~, ze material jest bardziej wrazliwy na wyst(lpienie nie­
stabilnosci. Zanalizowano warunki wyst(lpienia Iokalizacji dla kilku szczeg6lnych przyklad6w 
stanu napr~zenia. 

Uenoro pa6oThi HBJIHeTCH J::tccJie,l.loaamre ammHWI MaTepMaJihHOH aHM3oTponHH, Bbi3BaHHoH: 
6oJibiiiMMH: WiaCTINeci<HMH ,l.lecpopMaiU{.R.I\\H ~r npo~eccoM M~r~<ponoapem,l.leHH:H MaTep:H:ana, 
Ha JIOI<aJIH3ai.Ufi<> rmacnrqeci<HX ,l.lecpopMa~H:H a BH:,l.le nonoc C,l.lBHra. Onpe,l.leJI.RIOIUHe ypaa­
HeHH:.R ccpopMyJIH:pOBaHbi B paMI<ax MaTepH:aJibHOH CTpYI<Typbl CI<OpOCTHOrO T:H:na C BHyTpeH­
HHMH: napaMeTpaMM. C ~eJibro onHcaHH.R BHyTpeHHero npo~ecca MHI<ponoapem,l.leHH.R, aae,l.leH 
napaMeTp llOpHCTOCTH I<al< OCHOBHa.R BnyTpeHH.R.R nepeMeHHa.R COCTOHHH.R. 0co6eHHOe BHH­
MaHHe o6paiUeHO Ha cpopMyJIHpOBI<Y ypaBHeHHH 3BOJIIO~HH ,l.lJI.R TeH30pHOH nepeMeHHOH 
COCTOHHH:H, Ollli:CbiBaiOIUeH l<HHeMaTiflieCI<Oe ynpol!HeHMe, HHTepnpenrpoBaHHOH I<al< TeH30p 
ocraTotiHhiX nanp.RmeHH:H. Hccne,l.loBaHo I<pHTHlieci<oe 3HatieHHe MOJ.lYJIH ci<opoCTH ynpoq­
HeHH:H ,l.lJI.R JIOI<aJIH3~1:l WiaCTH:t~eCI<HX ,l.lecpopM~ B BH,l.le llOJIOCbl C,l.lBHra H HanpaBJieHHe 
llOJIOCbl C,l.lBHra. llcCJie,l.lOBaHHH llO,l.lTBep,IUIJIH, 'tiTO ,l.lBa B3aHMO,l.leHCTByiOIUIIX .RBJieHH:H, 
HMeHHo I<HHeMaTH:t~eci<oe ynpol!HeHHe H npo~ecc MHI<ponoapem,l.leHH.R, npHBOJ.lHT I< HBJieHH:IO, 
liTO MarepHan 6onee qyBCTBH:TeJieH na BbiCTynaHHe HBJieHH:H necra6H:JibHOCTH:. AHanH3Hpy­
IOTCH yCJIOBHH BbiCTynaulr.R JIOI<aJIH3a~H:H ,l.lJIH HeCI<OJibl<HX tiaCTHbiX cnyqaeB Hanp.R>I<eHHoro 
COCTOHHHH. 

1. Introduction 

IN THE PREVIOUS paper [3] of the authors the investigation of shear band localization 
conditions for finite elastic-plastic rate independent deformations of damaged solids was 
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presented. The influence of two main effects, namely the induced anisotropy and the 
micro-damage process, on the shear band localization phenomenon was discussed. 

The present paper aims at investigating the influence of the induced anisotropy generated 
by large plastic deformations on the shear band localization conditions. In comparison 
with the paper [3], the evolution equation for the residual stress ex is postulated in a different 
form. Moreover, the alternative constitutive formulation is presented and discussed. The 
particular cases of the state of stress have also been considered. 

In Sect. 2, the formulation of the constitutive relations for elastic-plastic solids when 
isotropic and kinematic hardening effects and the micro-damage process are taken into 
consideration is given. 

The constitutive equations are formulated within the framework of the rate type material 
structure with internal state variables. 

The kinematic hardening effect is generated by finite plastic deformations. The intrinsic 
micro-damage process is treated as a sequence of nucleation, growth and coalescence 
of microvoids. Both effects are described by means of the internal state variable method. 

Particular attention is given to the formulation of the evolution equation for the tensorial 
kinematic hardening state variable, interpreted as the residual stress tensor. 

The yield criterion is assumed to depend on the first two invariants of the deviator 
of the stress difference between the loading point and the center of the yield surface as well 
as on the porosity parameter. 

To describe the intrinsic micro-damage process, the porosity parameter is introduced 
as a fundamental internal state variable. In the evolution equation for the porosity par­
ameter, the first two terms are responsible for the description of the nucleation process 
while the third relates to the growth mechanism of microvoids. 

As a result of the effects considered, the fundamental matrix L' which describes the 
linear relationship between the plastic strain rate and the flux of the Kirchhoff stress is 
not symmetric. Consequently the normality does not apply, so the plastic flow direction 
and the effective normal to the actual yield surface are not coincident. 

In Sect. 3 the alternative constitutive formulation is presented provided the yield 
criterion has a different form. 

In Sect. 4 the conditions for localization of plastic deformations into a shear band are 
investigated. These conditions determine the direction of the shear band and the critical 
value of the hardening modulus rate for localization. 

Section 5 presents a discussion and investigation of different effects on the localization 
phenomenon. Particular attention is focused on kinematic hardening. It has been found 
that the form of the evolution equation for the residual stress ex has a very important 
influence on the results obtained. 

It has been confirmed that two cooperative phenomena, namely kinematic hardening 
and the micro-damage process account for the fact that the material is more inclined to 
instability. 

In Sect. 6 some particular examples of the state of stress are considered. For these 
particular cases the critical values of the hardening modulus rate have been investigated. 

In the last Section final conclusions are collected. 
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2. Constitutive relations 

The yield criterion is postulated in the form (cf. [7, 8]) 

(2.1) ](·)=X. 

The yield function j( ·) is assumed as 

(2.2) f(-) = P, +(nl +n2;)1J;I, 
where 

(2.3) 

(2.4) 

597 

't" denotes the Kirchhoff stress tensor, ex the residual stress tensor which specifies the current 

center of the yield surface; by the prime the deviatoric part of the tensor is denoted, n 1 

and n2 are the material constants and ; denotes the void volume fraction or porosity 
parameter. 

The isotropic hardening-softening parameter is as follows(!): 

(2.5) "= "o(l+ko ••) ( 1- :F), 
where x0 is the yield stress for the matrix material, k 0 denotes the isotropic hardening 
constant, ~F is the porosity at fracture and e~' is the equivalent plastic deformation defined 
by the relation 

(2.6) 

if DP is the rate of the plastic deformation tensor. 
The material function x (cf. Eq. (2.5)) satisfies the fracture criterion 

(2.7) 

It is noteworthy that the influence of the micro-damage process on localization within 

the shear band is of great importance practically in its initial stage only. 
To investigate this conjecture in depth, let us consider the typical variation of tensile 

stress with porosity, Fig. 1. The trajectory tensile stress-porosity represents the real deforma­

tion process for a mild steel tensile specimen subjected to a constant strain rate. The process 
starts at the initial porosity ; 0 and when the tensile stress reaches the threshold value for 

nucleation, the nucleation process begins. The process goes on, the tensile stress peaks 

up at the value of porosity ;m and dramatically breaks down to attain at ; = ;c the point 

at which coalescence of microcracks begins. The segment of the trajectory marked by 
the broken line represents the mechanism of final fracture. 

The expected localization within shear bands can take place in the segment of the 

e) For physical justification of the a~urnption (2.5), see Refs. [7, 8]. 
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trajectory marked by a bold face line. The growth mech~nism is assumed to occur during 
plastic deformation, so it may also influence the criterion of localization. 

This heurestic consideration explains why the micro-damage process (i.e. nucleation 
and growth mechanisms) in its initial stage only can have an influence on the localization 
of plastic deformations within shear bands. 

The evolution equation for the porosity parameter ~ was derived in [3] in the form 
(cf. with GuRSON [4]) 

(2.8) 

where k and I denote the nucleation material functions and E denotes the growth material 
function. The first term in the right-hand side of Eq. (2.8) describes debonding of second­
phase particles from the matrix, the second term is responsible for the cracking of the second­
phase particles and the third term describes the microvoid growth process. 

Postulating a flow law associated with the yield function (2.2), we obtain the rate 
of the plastic deformation tensor as follows: 

(2.9) Dl!. =A ( :r;1 
- +A<51 ·) 

IJ 2 y ]2 J ' 

where 

(2.10) 

and the scalar coefficient A has to be determined from the consistency condition, j = x. 
This leads to the relation 

(2.11) 
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\1 
where 't' denotes the Zaremba-Jaumann :flux of the stress tensor 't', 

(2.12) 

and the isotropic hardening modulus H is as follows: 

(2.13) 

We postulate the evolution equation for the kinematic hardening internal state variable 
Cl in the form (2) 

(2.14)1 

where 

(2.15) 
r 

H* = "2[1+6A(A+C)] 

and r is the material constant. 

The evolution equation (2.14)1 in comparison to the postulate 

\1 [( ~~ )\1 ]· (2.14)2 rxtJ = Q 
2 
y j

2 

+Ac5kl Tkt TtJ 

assumed in the paper [3] has some advantages. It satisfies the condition that : vanishes 

when D' = 0 and for the states near to the neutral state, ~ is small. 
Making use of Eq. (2.14)1 , the relation (2.11) can be written in the form 

(2.16) 

where 

(2.17) Lf," = ~ c;;
2 

+AJu)[ );
2 

+(A+C)6 .. ] 

and the isotropic-kinematic hardening modulus rate 

(2.18) h = H+H* 

depends explicitly on the kinematic hardening constant r. 

The loading criterion is as follows: 

(2.19) 

e) The kinematic hardening rule (2.14)1 has been developed in the forthcoming paper of the authors. 
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From Eqs. (2.16)-(2.18) it follows that, in general, for C ::/: 0 the normality rule does 
not apply. In view of the consitutive assumptions: n2 ~ 0, "o > 0, ~F > 0, k 0 > 0, E~' ~ 0 
and Eq. (2.12), the necessary condition for C ::/: 0 is l(i 1 , ~) ::/: 0. Therefore we can con­
clude that the nucleation mechanism generated by cracking of second-phase particles is 
responsible for the deviation of the plastic deformation rate tensor DP from the direction 
normal to the yield surface. 

For the evolution equation for ex applied in [3] in the form (2.14h, the constitutive 
matrix Lfjk1 has the form 

(2.20) 

Then the deviation of the plastic deformation rate tensor DP from the direction normal 
to the yield surface depends also on the kinematic hardening parameter Q. 

For small elastic strains(3), assuming the additivity of elastic and plastic rates of deforma­
tion and the generalized Hooke's law in the elastic range, we finally have 

(2.21) 

where 

(2.22) 

The inverse of Eq. (2.22) has the form 

(2.23) 

where 

(2.24) Mli., = G( "•• 61} + 6kJ 611) + ( K- ~ G) 61} <~., 

- h+G+9~(A+C) ( y'~ r;J+3KA<~l}) [ J/~2 T~1 +3K(A+C)<~.,]-
Equations (2.23)-(2.24) together with the evolution equations: (2.8) for the porosity 

parameter ~ and (2.14)1 for the residual stress tensor ex, provide a set of the constitutive 
relations for elastic-plastic solids whose response involves the kinematic hardening as well 
as the intrinsic micro-damage process. 

Neglecting the kinematic hardening, i.e. H* = 0, and making the following formal 
identifications: 

(2.25) 
1 

A+C=-f-l, 
3 

(l) The assumption concerning the small elastic strain is not restrictive for the consideration of the 
localization phenomenon in metallic materials. 
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where fJ is called the dilatancy factor and p the internal friction coefficient, the constitutive 
equations (2.23)-(2.24) yield the constitutive relation obtained by Rudnicki and Rice 
(cf. Eq. (13) in [14]). 

For A = C = 0 and H * = 0 the constitutive relations (2.23)-(2.24) simplify to the 
form of the Prandtl-Reuss equations. 

3. Alternative constitutive formulation 

In the literature the classica] Huber-Mises yield criterion is applied in two equivalent 
forms: J2 = "5 or y J2 = "o (e.g. HILL [5] and PRAGER [10]). The generalization of the 
Huber-Mises yield criterion for dilatant, pressure-sensitive or damaged materials can be 
made starting from each of these forms ; however, final results then obtained are no more 
identical. 

In Sect. 2 the yield criterion (2.1)-(2.2) obtained by the generalization of the Huber­
Mises condition in the form Jl J2 = "o was applied. This approach was used in [10, 3]. 
The other approach which has been applied by GURSON [4] in the formulation of the yield 
criterion for porous materials will be utilized now arid the results obtained wi11 be compared 
with those derived in Sect. 2. 

The yield criterion is postulated in the form 

(3.1) 

where the yield function]( ·) and the isotropic hardening-softening parameter ~ are assumed 
as follows : 

(3.2) 
A ... ~ 

[ 

""2 ] 
f( ·) = J2 1 + (n1 +n2 ~ j

2 
, 

(3.3) ;; = "W + ko •') {I - t}. 
Application of the same procedure as in Sect. 2 and the evolution equations (2.8) and 
(2.14)1 for the internal state variables~ and tl, lead to the constitutive relations in the form 

(3.4) 

and 

(3.5) 

where 

(3.6) h = Ii +H*, 
1 

(3.7) H = ,.~k. ( 1- : n ~ ( 
2 
~j2 +16") L ~12 +A"·j) r 

- [nJf + ;~(I +ko ••>][ 1 :~ ii)+E(I-~) 61)]( 
2 
;;

2 

+A <I,;) 
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(3.8) 

(3.9) 

(3.10) 

(3.11) " r " " " H* = "2[1 +6A(A+C)]. 

Comparison of Eq. (3.5) with Eq. (2.17) indicates an analogical form of the constitutive 
matrices LfJ,, and Lfj1r.~ for both forms of the yield criterion. The forms of the material 
functions are, however, slightly different. This difference can be detected by the identifica­
tion procedure for particular materials. 

4. Conditions for localization 

Making use of the constitutive relations (2.23) and (2.24) for the elastic-plastic damaged 
solid with isotropic and kinematic hardening effects, we shall look for the conditions for 
localization of plastic deformations into a shear band. Our aim is to determine the direction 
of the shear band and the critical hardening modulus. 

The theory of localization of plastic deformations into a shear band was developed 
mainly by RICE [11, 12), RICE and RUDNICKI (13], RUDNICKI and RICE [14] and NEEDLEMAN 

and RICE [6]. We use here the notation and follow~ the consideration presented by 
RUDNICKI and RicE [14] and in our previous paper [3]. 

Let n be the unit normal to the surface of the shear band across which certain components 
of the velocity gradient may admit jumps. Let us introduce rectangular Cartesian coordinates 
X; in such a way that n is in the x2-direction (cf. Fig. 2). 

For the constitutive relation (2.23), the necessary condition for a localized shear band 
to be formed is 

(4.1) det[M2Jk2] = 0. 

FIG. 2. 
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Solving Eq. (4.1) for the hardening modulus yields 

(4.2) 
h 

G+9KA(A+C) 

(GT;, +3AK VJ;) [Gr;,+3K(A+ c) VJ;] + {-} G+K) G (i~f+i~~) 

j, (: G+K) [G+9KA(A+C)] 

603 

-I. 

Let n1 , n11 , n111 denote the corresponding components of the unit normal to the plane 
of shear band localization in the principal directions of tensor 7r. 

Denoting by Tt, T 11 , r 111 the principal stresses, we assume 

(4.3) 

The orientation of the plane within which shear band localization first takes place 
can be found from the requirement of h to be maximum with respect to nx. 

The solution has the form 

nf = (i~-i{11)- 1 [(2A+C)(l+v)Jij2 -i.'1(1-v)-i{11], 

(4.4) nu = 0, 

nf11 = (1";11 -ii)- 1 [C2A+C)(l +v) JIJ:--i{1(1-v)-ii]. 

Denoting by () the angle between the vector n and the i-111 direction, we obtain 

(4.5) 

where 

(4.6) C = (2A+ C)(l +v)- (T-.91)(1-v) 

and 

(4.7) 

(4.8) 
Cl~ 

}I ]
2 

= .91 max' 

The critical hardening modulus for a localized shear band to be formed is finally obtained 
in the form 

(4.9) her =(l+v)c2- l+v (T-d+2A+C)2. 
G 1-v 2 
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The critical hardening modulus hcr/G that was obtained by the authors in the previous 
paper [3] for the evolution equation for a postulated by Eq. (2.14h has the following 
form 

(4.10) ~ = ( l+v) (_£)2- 1+v (r-d+2A+ _£)2, 
G 1-v , P 2 P 

where 

P = 1-Q[V j 2 +(A+C)~]. 
In that case, since Pis a function of Q, A and C, the influence of two cooperative phenom­

ena, namely the kinematic hardening and the micro-damage process, is different then for 
the case considered in the present paper when hcr/G is described by Eq. (4.9). This explains 
why in the previous case we had such a pronounced synergetic effect. 

On the other hand, the result ( 4.9) shows that the influence of kinematic hardening 
on the critical value of the hardening modulus, for the evolution equation for a postulated 
in the form (2.14)1 , is mainly described by the relation (2.18). 

Of course, for Q = 0 (i.e. when the kinematic hardening is neglected) Eq. (4.10) co­
incides with Eq. ( 4.9). 

S. Discussion and comments 

The solution of Eq. (4.9), for the critical hardening modulus as a function of the di­
mensionless mean principal value of the stress deviator T, may be represented by the family 
of parabolas, as it has been plotted in Fig. 3 by a solid line. 

The origin of the parabola described by Eq. (4.9) moves along the trajectory t given 
by the parametric equations (see Fig. 3), 

(5.1) 

(5.2) 

W>O,J!<O.C>O,A>Ao 

H"•O,.R.=O,C>O,A> A0 

(~) = ( 1 :v) c2, 
G max 1 V 

T= d-(2A+C), 

I 

/ 
/ 

I 

I / 

f 

2A+C -.A 

.b.£. 
G 

I 1 
H•·O,.R-O,C·O A·Aa 

FIG. 3 

T= }.j 
0; 
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where, for t = 0, it is assumed: 

(5.3) A=A0 =n1 +n2 ~0 , C=O, .91=0. 

When kinematic hardening is neglected (i.e. H* = 0 and .91 = 0), Eq. (4.9) reduces 
to the form 

(5.4) her = Her = ( 1 +v) C2- 1 +v (T+2A + C)2. 
G G 1-v . 2 

This result is analogous to Eq. (20) obtained by Rudnicki and Rice [13] for a "pressure­
sensitive dilatant material". 

The parabola described by Eq. (5.4) is plotted in Fig. 3 by a broken line. Its origin 
moves along the trajectory t' given by the parametric equations 

(5.5) (~) = ( 
1 ~v ) C2

, T = - 2A- C, 
G max 1 V 

where, for t = 0, the initial conditions (5.3) are satisfied. 
When both the kinematic hardening and the micro-damage process are neglected 

(i.e. Eqs. (5.3) are satisfied for any instant of time t), then Eq. (4.9) simplifies to the form 

(5.6) 

This equation describes the parabola plotted in Fig. 3 by the dotted line. 
It follows from Eq. (4.9) that the critical hardening modulus takes the maximum 

value 

(5.7) (~) = ( 1~v )c2 
G max 1 V 

for 

(5.8) T= d-2A-C. 

Therefore it is clear that the micro-damage process makes the parabolas shift up and 
the value of her increases almost for any state of stress, thus the material is more inclined to 
instability by localization of plastic deformations. 

Kinematic hardening has no influence on the maximum value of her but it affects the 
value of T for which her reaches its maximum. The parabola shifts left for .91 > 0 and 
right for .91 < 0. Therefore the influence of kinematic hardening on localization depends 
strongly on the actual state of stress represented by the dimensionless mean principal 
value of the stress deviator T (see Fig. 3). On the other hand, as it follows from Eq. (2.18), 
because h ~ H, the localization may set in earlier (for smaller strains) than in the case 
when the material is hardening isotropically only. 

For C = 0 (i.e. when there is no cracking of the second phase particles), Eq. (4.9) 
takes the form 

(5.9) 

Thus, in this case the parabolas are shifted down below the T axis and her < 0. This 
means that the material is less sensitive to localization. The onset of localization of plastic 
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deformations into a shear band may occur when the material is unstable (falling part 
of stress-strain curve). 

For the alternative form of the yield condition described by Eqs. (3.1)-(3.3) and the 
constitutive relations (3.4)-(3.9), the critical hardening modulus for localization, her, 
is given by the relation (analogical to Eq. (4.9)): 

(5.10) her = ( l+v) (y_ l+v (T-d+ 2A+C)2 , 

G l-v 2 

where A~ C are defined by Eqs. (2.8) and (3.9). 
Hence all results and conclusions obtained for the situation described by Eq. (4.9) 

are valid in the case of the alternative formulation of the constitutive relations (3.4)-(3.9) 
when the critical hardening modulus is governed by Eq. (5.10). 

6. Particular cases 

In this Section we intend to consider several particular cases of the state of stress which 
are of great importance in practical applications. 

6.1. Axially-symmetric "extension" 

Let us assume 

(6.1) 

The assumption (6.1) is satisfied for the states of stress as follows: 
6.1.1. Uniaxial extension. We have 

(6.2) T 1 > 0, T 11 = T 111 = 0. 

6.1.2. Plain stress axially-symmetric compresion. Let us consider a flat sheet compressive specimen 

and assume 

(6.3) T 1 =0, T 11 = T 111 < 0. 

According to the relations (4.7)2 and (6.1), we obtain 

(6.4) 

b . . h 1 . - 1 (-'2 -12 -'2) . ld Su stitution of the relations (6.4) mto t e re at10n J2 = 2 T 1 +r11 +r111 yte s: 

(6.5) 

The critical hardening modulus for localization can be determined from Eq. (4.9) as 

follows: 

(6.6) ~ = (~)C2-(~)(-~+2A+C)
2

• G I-v 2 y3 
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Depending on the values A and C, localization may set in either while the material 
is continually hardening (her > 0) or when it is softening (her < 0). 

Assuming that for 11 < 0 second phase particles do not fracture and therefore C = 0, 
then for the plain stress axially-symmetric compression we obtain 

(6.7) 

Localization may set in only when the material is perfectly plastic or softening. 

6.2. Axially-symmetric "compression" 

We assume 

(6.8) 

This assumption is satisfied for the following important cases: 
6.2.1. Uniaxial compression. We have 

(6.9) T 1 = T 11 = 0, T111 < 0. 

6.2.2. Plane stress axially-symmetric extension. This case is characterized by 

(6.10) r 1 =r11 >0, r 111 =0. 

The relation (4.7h for the assumption (6.8) yields 

(6.11) I I TI !J- 0 
TJ = Tn = t' 2 > ' r~u = - 2TV h < 0 

and therefore 

(6.12) 

The critical hardening modulus her takes the value 

(6.13) her = ( 1+v )c2 _ 1+v (~ + 2A+C)
2 

G 1-v 2 }13 l 

which, for the most practical situations, is negative. 
Again, assuming that for 11 < 0 we have C = 0, then Eq. (6.13) simplifies to the form 

(6.14) ~ = - (I ;• )( ~ +2A r < 0. 
The onset of localization can occur only for a negative value of the hardening modulus 
(when the material is progressively softening). 

6.3. Pure shear state 

We assume the state of stress as follows: 

(6.15) 

then 
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(6.16) J1 = 0, C = 0, T= 0 and .91 = 0. 

Equation ( 4.9) reduces to 

(6.17) ~r = -2(1 +v)A2 ~ 0. 

The onset of localization may take place only when the material is perfectly plastic 
or softening. 

6.4. Plane plastic strain state 

We require 

(6.18) Dfi = 0. 

From Eq. (2.9) it fo1lows that the condition (6.18) is satisfied when 

(6.19) 

Making use of Eqs. (2.4), (4.7h and (4.8h, Eq. (6.19) leads to 

(6.20) T= d-2A. 

Substituting Eq. (6.20) into Eq. (4.9), we find 

(6.21) her = (1 +v)l C2 = _!__ (her) ~ 0. 
G 2(1-v) 2 G max 

A non-negative value of the critical hardening rate indicates that the states, like plane 

strain, are particularly sensitive for localization. This is the expected result since in this 
case the direction of maximum shear stress lies in the plane of the shear band. 

7. Final conclusions 

It has been confirmed (cf. conclusions in [3]) that two cooperative phenomena, namely 
kinematic hardening and the micro-damage process, account for the fact · that the material 

is more inclined to instability. 
The results obtained are different for axially-symmetric compression than for axially­

symmetric tension. 
It has been found that the form of the evolution equation for the residual stress a 

has a very important influence on the criterion of localization within a shear band. 
The results obtained are qualitatively in good accord with the experimental observa­

tions of initiation of localization (cf. CHAKRABARTI and SPRETNAK [2] and ANAND and 
SPITZIG [1]). 
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