
Arch. Mech., 40, 5-6, pp. 653-663, Warszawa 1988 

On plastic flow mechanisms in perfectly plastic-slackened structures 

A. GA W~CKI (POZNAN) 

THE WORK concerns the plastic flow mechanisms in so-called "slackened structures". Structure 
slackening means the presence of clearances at structural connections. It has been proved that 
the presence of clearances does not affect the ultimate limit load as well as the corresponding 
plastic flow mechanism if the clearance region is convex and closed. The ultimate load state 
is usually preceded by a sequence of so-called "sublimit states" associated with different flow 
mechanisms and smaller values of the load multiplier. Two examples illustrate the theory. 

Praca dotyczy rnechanizm6w plastycznego plyni~cia tzw. "konstrukcji poluinionych". Poluinie­
nie konstrukcji polega na wyst~powaniu luz6w w w~zlach ukladu. Wykazano, ze obecnosc 
luz6w nie wp}ywa na ostateczn<'\ nosnosc graniCZfl<l, 0 ile obszar luz6w jest zamkni~ty i wypukly. 
Osi<lgni~ie ostatecznej nosnosci granicznej poprzedzone jest zazwyczaj sekwencj<l tzw. stan6w 
,podgranicznych" stowarzyszonych z odmiennymi mechanizrnami plyni~ia i mniejszymi 
mnoznikami obci<l:Zenia. Zal<lczone przyklady ilustruj<l rezultaty rozwa:Zan teoretycznych. 

Pa6pTa KacaeTC.fl MeXaHH3MOB IIJiaCTWieCKoro TetieHWI T. Ha3. "pa3phiXJieHHbiX KOHCTpYKUHH". 
Pa3phiXJieHHe KOHCTpYKIUfil 3ai<JIIOtiaeTc.fl B BhicrynaHnn 3a3opos B y3nax cnCTeMhr. IloKa-
3aHo, liTo rrpl!cyTCTBHe 3a3opos He BJIH.fleT Ha KoHel.IH}'IO rrpe.n;eJihH)'IO Hecynzyro cnoco6HoCTb, 
ecnn TOJihKo o6naCTb 3a3opos 3a.MI<HyTa n BhmyKJia. .UoCTIDKeHne KoHetiHoH: npep;eJihHoH: 
Hec~eH: cnoco6HoCTn o6hitiHO rrpe)J;IIIeCTBYeT nocne.n;osaTeJihHOCTI! T. Ha3. ".n;onpe.n;eJihHhiX" 
COCTO.fiHHH accornmpoBaHHbiX C p;pyrrum MeXaHH3MaMI! TetieHWI I! MeHbiiiHMH MHO>KHTeJUIMH 
HarpymeHHH. Ilpnsep;eHHbre npnMephi nnmocrpnpyroT pe3yJihTaThi TeopeTHtieCI<HX paccym­
.n;eHI!H:. 

1. Introduction 

STRUCTURE "slackening" means the presence of clearances at joints. Thus, in so-called 
"slackened structures", the relative generalized displacements between members and 
connecting elements Uoints) are not fully constrained. In other words, one can introduce 
the idea of generalized clearance hinge where a constrained motion of the member face 
and of the corresponding element is permitted. The problem of slackened structure is part 
of the mechanics of systems with unilateral constraints and, independently of the mechanical 
properties of the structure material, is essentially a nonlinear one. It is known that the 
presence of clearances strongly influences the elastic strength of structures, [1]. Therefore 
a fundamental question arises: "does the connection slackening affect an ultimate collapse 
load?" The present work deals with this problem assuming: 

a perfectly plastic material, 
frictionless reactions at connections, 
small clearances and displacements, 
a quasi-static structure behaviour, 
a geometric stability of a reference "ideal" structure without clearances. 
Thus, the limit load problem generalized in such a way will be considered here within 

the frame of the geometrically linear theory. 
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654 A. GA~KI 

2. Connection slackening 

According to the Finite Element Method formulation, a given structure is assumed 

to be an assembly of deformable rigid-plastic elements and undeformable ideal rigid 
"connecting elements" (joints) of very small dimensions. In the interior of each connecting 

element, a certain point called "node" is distinguished, and the external loads can be 
applied only at the nodes. 

Connecting 
plate bolts 

Connecting 
element (plate) 

Hole in element ''1'1 

Element "1'' 

FIG. 1. Model of slackened connection. 

As an example, consider a model of plane connection with clearances shown in Fig. 1. 
Two bars are joined by four bolts attached to the undeformable connecting plate. Because 
of the presence of gaps between the bolts (treated here as points) and holes drilled in the 
end part of the bars, a relative motion of the bar elements and connecting plate is permitted. 
It is known [3, 4] that in the discrete formulation of plastic structures the displacement 
discontinuities (i.e. longitudinal and transversal relative displacements, and a relative 
angle of rotation) are regarded as the generalized plastic strains at the generalized plastic 

hinge. Similarly, one can introduce the idea of "a generalized clearance hinge" where the 
relative displacements due to clearances are treated as "generalized clearance strains". 
Moreover, one can construct a certain region in the generalized clearance strain space 

bounded by the so-called "clearance surface" that plays the same role as the locking surface 
in the theory of locking materials [5] or structures [6]. The stressless states correspond 
to a "clearance region" interior, whereas nonvanishing generalized stress (i.e. normal 

and shear forces, and bending moment) states can occur only if the respective generalized 
strain point lies on the clearance surface. Since frictionless motions and contacts are 

assumed, the generalized stress vector appears to be orthogonal to the clearance surface 
at the corresponding strain point [7]. Turning now to the example considered above, 

the clearance surface related to the end of element 1 is presented in Fig. 2. 
It is worth noticing that an initial unloaded position of the system may be geometrically 

unstable due to connection slackening and therefore one has to establish a certain "ideal 
configuration" that should be chosen from all the kinematically admissible configurations. 
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FIG. 2. Clearance surface of clearance hinge of element 1. 

Thus the clearance strains as well as connecting element displacements are related to this 
ideal position of the system. Otherwise, the kinematical quantities would not be uniquely 
determined. Note that the connecting plate and bar elements shown in Fig. 1 are situated 
at their ideal positions and the clearance strains in Fig. 2 are related to this ideal configura­
tion. 

Passing on to the mathematical model of connection slackening, assume that the 
clearance region is described by a "clearance function" g( EL): 

(2.1) 

where EL denotes the generalized clearance vector and the cJearance surface equation is 

(2.2) 

The orthogonality of the generalized stress vector a to the clearance surface can be expressed· 
in the form 

(2.3) 

Here g, aL indicates the clearance surface gradient vector and 1p is a non-negative (due to 
unilateral constraints) stress multiplier that satisfies the conditions 

(2.4) 
1p~O if g=O 

1p = 0 if g < 0 

and g = 0, 

and also if g = 0 and g < 0, 

where the dot denotes differentiation with respect to time. By virtue of the conditions 
(2.4), one can state that the following relations hold: 

(2.5) 
V'K = 0, 

VJk = o. 
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It is pointed out that the strain state uniqueness occurs only if the clearance region 
is strictly convex. Then, for the given stress vector, the corresponding clearance strain 
vector can be uniquely determined. The clearance region convexity essentially depends 
on the shapes and dimensions of the element holes. 

Further considerations will be referred to the whole structure. First of all, in order 
to utilize the linear programming method, we assume that the clearance surface can be 
approximated by a hyperpolyhedron. Hence the clearance region is described by a linear 
matrix inequality: 

(2.6) 

where T indicates the matrix transposition, M is a rectangular matrix that collects all the 
external normals of the clearance hyperpolyhedrons of all the clearance hinges; and I 
is the vector that determines the distance of the individual side to the origin. 

In view of the inequality (2.6), it is clearly seen that the clearance region is weakly 
convex and therefore we should be aware of the possibilities of strain state non-uniqueness. 

The normality rule yields 

{2.7) 

where ~ is the vector of the stress multipliers. Taking into account the relation (2.5), 
the following orthogonality condition holds: 

(2.8) 

that is equivalent to 

(2.9) 

Here UL represents so-called "clearance work". After differentiating the condition (2.8) 
with respect to time and using the relations (2.5), we arrive at 

(2.10) 

or 

(2.11) 

(2.12} 

DL = aT£L = 0, 

iJTEL = ~T), 

what results from the relations (2.6) and (2. 7). 
In view of Eqs. (2.11) and (2.12}, we can conclude that a "clearance dissipation" DL 

always equals zero and the stress variations can occur only if a contact condition is satisfied. 
These conclusions are of real value for the structure analysis. 

3. Problem of original structure 

Suppose that a given discrete system is geometrically unstable due to slackening of 
connections. Now, a non-trivial problem arises: "find a non-zero stiffness structure that 
can carry prescribed external loads p0 " [9]. The solution of this problem corresponds to the 
conversion of a mechanism into so-called "original structure" depending on the given 
load vector p0 • The original structure is completely determined by the generalized displace-
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ment vector o0 that describes the positions of all the connecting elements. Usually the 
original structure is statically determinate and, generally, does not depend on material 
properties. 

To formulate the original structure problem, we recall the well-known relations for 
the discrete structures. The fundamental equations can be presented in matrix notations as 
follows: 

equilibrium equations 

(3.1) 

geometric equations 

(3.2) Cu = E£0 , 

where Go and ELo are supervectors that collect all the generalized stresses and strains, 
respectively, of all the structural elements, and C is a rectangular matrix that depends on 
the geometry of the "ideal structure" (i.e. a structure without clearances). Note that 
(3.3) det[CTC] =fi 0, 

what follows from the assumption of geometric stability .of the ideal structure. 
The complete system of relations describing the original structure problem can be 

presented in the form 

I) Co0 = E£0 , 

(3.4) 2) erGo =Po, 

3) Go= M~o' 

4) go= MTELo -I~ 0, 

5) ~0 ~ 0, 

6) ~~g = 0. 
Treating these relations as Kuhn-Tucker's conditions and basing on the exellent 

book by A. BoRKOWSKI [4], we can formulate the proper dual extremum principles in the 
frame of the linear programming method, namely 

(3.5) [F' = u5p0]--. max!MrCu0 -l =:;: 0, 

(3.6) [F" =~~I]--. miniCIM~0 -p0 = 0, ~o;;::; 0. 
One has to be aware of the following possibilities which can arise when the linear 

programming method is applied: 
a) the solution is unique and corresponds to the finite value of the object function, 
b) the solution is non-unique but the corresponding object function appears to be 

unique and finite, 
c) the form of constraints does not allow to reach the finite value of the object function, 
d) the solution does not exist due to the constraint contradiction. 
Cases c) and d) cannot occur, but the appearance of case b) is quite possible. It cor­

responds to the situation when the clearance strain point lies on an individual side of the 
clearance hyperpolyhedron. 

After solving the original structure problem, one can divide g0 , ~0 and M into active 
and passive parts: 

(3.7) 

go = {Ia, g,}; Ia = 0, g, < 0, 

~0 = {~~~,~,} 

M = [M.,M,]. 
This observation will be utilized in further considerations. 
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4. Yield load problem for perfectly plastic-slackened structures 

The common limit load problem for the prescribed reference load vector p0 consists 
in determining a scalar load multiplier p and plastic displacement rate vector u describing 
the corresponding plastic flow mechanism. Assuming a piece-wise linear approximation 
of the yield condition, namely 

(4.1) 

the generalized plastic strain rates Ep can be expressed as 

(4.2) 

together with the orthogonality condition 

(4.3) ).rc = o 
or 

(4.4) DP = aT£P =irk~ 0. 

Here N is a rectangular matrix that collects all the external normals of the yield hyper­
polyhedrons of all the elements, the vector k determines the distances of the separate sides 
to the origin, i is a vector of the plastic strain intensity rates and Dp denotes the non­
negative plastic dissipation. 

It is generally known [4, 8] that the limit load problem for perfectly plastic structures 
can be formulated by means of the dual linear programming method as 

(4.5) 

(4.6) 

[F' =irk]~ minli ~ 0, UTPo = 1, 

[F" = p] ~ maxj-NTa+k ~ 0, cra-,up0 = 0, 

where (4.5) and (4.6) correspond to the kinematical and statical theorems, respectively. 
In the presence of connection slackening, the formulation described above should 

be somewhat modified. The mathematical model in this case may be written in the following 
form: 

1) cu = E:, 7) gil = Mrf:L ~ 0, 

2) era= pp0 , 8) ~rg~~ = o, 
(4.7) 3) E: = EL + i.p, 9) Ep = Ni, 

4) UTPo = 1, 10) i ~ 0, 

5) a =M11~a' 11) f = Nra-k ~ 0, 

6) ~~~ ~ 0, 12) iTf = 0, 

where the subscript a · indicates the active submatrices determined on the basis of the 
original structure solution problem. 

It can be shown [7] that the solution of the system ( 4. 7) is equivalent to the solutions 
of the following dual linear programming problems, namely 

[F' = ~Tk] ~ miniMr(cu-Ni) ~ 0, UTPo = 1' i ~ 0 

[F" = p] ~ maxj-NrMr~a+k ~ 0, CTM11~11 -P,Po = 0, 
(4.8) 

(4.9) ~~~;;:; 0. 
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The solution of both problems allows us to determine kinematical quantities ( £L, £p, ~) 
as well as statical ones (a, p,}. In general, these solutions are different from those obtained 
for the respective structure without clearances, namely the load multiplier usually (always?) 
appears to be less than the one for the ideal structure. Thus, so-called "sublimit plastic 
flow mechanisms" can occur. 

Assume now that kinematical quantities can be uniquely determined (it does not occur 
always!) and the uniform motion of plastic flow is observed. Then, after integrating with 
respect to time, one obtains 

(4.10) 

ti = uo+tu, 

EL = ELO +tEL, 
Ep = Epo + !Ep, 

where u0 and E£
0 

are related to the ideal structure position and t denotes the "time" meas­
ured from the moment when the plastic flow just begins. A further problem is the determi­
nation oft = t* when the flow mechanism stops due to the appearance of a new contact 
at a slackened connection. To this end, we utilize the equations of contact at the passive 
side of the clearance hyperpolyhedron 

(4.11) 

and the requirement 

(4.12) t > 0. 

The problem (4.11) and (4.12) is extremely simple and consists in determining the 
smallest non-negative root of the linear equation system (4.11) with one unknown, t. For 
a given value of t = t*, one can obtain the position of a new original structure which is 
described by 

u~ = u0 +t*u, 

The next step is to perform a new matrix division into the active and passive parts. Then 
the above procedure should be repeated again. 

Now the last most important question arises: "when will the ultimate limit load be 
reached?". Since the clearance region represents the closed set, the disappearance of £L 
must be at last observed. This means that the final plastic flow mechanism is attained. 
After substituting EL = 0 into the relations (4.7), we arrive at the principles (4.5) and 
(4.6) which are valid for the ideal structure. Thus we can conclude that in the case of the 
convex and closed clearance region the ultimate load and corresponding plastic flow 
mechanism appear to be identical with those obtained for the respective ideal structure 
(without clearances). 

It is worth observing, however, that this conclusion was derived on the basis of the 
geometrically linear theory. A more realistic approach should be based on the nonlinear 
theory of post-yield behaviour where geometry changes as well as dynamic effects are 
taken into account. This remark relates first of all to optimal plastic structures where the 
allowance for geometry change effects leads sometimes to the statement that the true 
initial plastic flow mechanism is quite different from the one predicted by the geometrically 
linear theory [10]. 

12* 
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5. Examples 

Consider a portal frame loaded by horizontal and vertical forces Px and P7 , respectively 
(Fig. 3). For the purpose of simplicity, assume that all the bars are of the same uniform 
cross-section and a plastic flow can be induced only by a bending moment action. Clearances 

a 
Py ~ 

Px 4 -. ----- M>O 
2 H>~ G-- v <P>o 

L l )\ 

b Mz' 
M4 j 

c 

~ 
L4 

<Pz <Pz 

FIG. 3. Slackened portal frame; a) frame geometry and loads; b) mechanical characteristics of hinge 2, 
c) mechanical characteristics of hinge 4. 

appear at points 2 and 4 where the common hinges with rotation constraints are introduced. 
The corresponding mechanical characteristics of these hinges are shown in Figs. 3b and 
3c. The initial unloaded position of the frame is geometrically stable and corresponds 
to the ideal configuration whereas the original structure depends on the signs of Px and 
P,. 

Let us determine the "sublimit" yield load polygon which is valid as long as the rotation 
constraints are passive. The consecutive elementary plastic flow mechanisms which corres­
pond to the slackened and ideal frame are illustrated in Figs. 4a and 4b, respectively. 

a r:l r;7 \ \ M 4 

r,Jt-:\ /,)(;'\ 

b 
r--1 I 1 !1 

FIG. 4. Separate mechanisms in portal frames; a) slackened frame, b) ideal frame. 
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Making use of the virtual work equation, one obtains the yield load polygons for the 
slackened and ideal frames. Both polygons are shown in Fig. Sa. 

Consider now a load path that corresponds to the given reference load vector p0 = 
= {I, 6}, that is Px = p., P., = 6p.. At point A the sublimit state is reached where a com­
bined yield mechanism develops and the following virtual work equation holds: 

-PxuPl +PyL~1 = 2MP{>l, 

a 

Limit yield 
polygon 

--~-4~~-----+----~ 

l Px 
I 
I 
I 

) 
/ Sublt.mit yield 

polygon 

-0.43M~pf1{J 
Mp 

J-1z=D.57Mp/L 
Ll~ 

~M <'~::Jir-- \ --- \ 
~ L-\ \ 

FIG. 5. Sublimit and limit states of the slackened portal frame; a) yield polygons, b) stress states and flow 
mechanisms. 

hence 

!l = #1 = 0.40MpfL, 

where Mp is the fully plastic moment of the cross-section. Note that the horizontal displace­
ment is incompatible with the sense of vector P:x:. This sublimit plastic flow mechanism 
stops when the displacement A! (or L1~) reaches the value of Lli /2. Then the lower limit 
rotation constraint at hinge 4 (i.e. /4) becomes active and the mechanism converts again 
into the structure. Now the load can increase up to the fully plastic moment at point S 
(point B in Fig. Sa). Further behaviour of the frame corresponds to the combined plastic 
flow mechanism that is compatible with the sense of vector Px. The virtual work equation 
corresponding to this flow mechanism takes the form 

P:x:L~2+P)1L~2 = 4MPJ>2, 

hence 
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It is noted that the load multiplier as well as the plastic flow mechanism of the slackened 
frame are identical with those observed for the ideal frame without clearances. The bending 
moment distributions and the corresponding plastic flow mechanisms are presented in 
Fig. 5b, whereas the relationship between the load multiplier p, and the displacement 
components of point 2 are shown in Fig. 6. It is seen that the ultimate value of the limit 

112 ---+~-, 

FIG. 6. p,-LJ diagrams related to point 2. 

load is attained on a step-wise way. This observation appears to be a significant feature 
of the ideal plastic-slackened structure behaviour. 

It should be mentioned that, in general, at the ultimate yield point load all clearance 
contacts do not have to be active. For this load, according to the results of Sect. 4, only 
the clearance strain rates have to vanish, as it will be shown in the next example where 
a portal frame is loaded only by the vertical force P (see Fig. 7). The clearance hinges are 

a 
~p 

b c 

2 ] 
1 

7. ;.-: 

j. L 

"" 
L J P1L=2Mp/L PzL =4Mp/L 

FIG. 7. Portal frame with two clearance hinges, a) frame and load; b) sublimit state, c) limit state. 

introduced at points 1 and 2. The initial position of the structure is geometrically stable 
and corresponds to the original configuration of the two- hinge portal frame. The sublimit 
(Fig. 7b) and limit (Fig. 7c) plastic flow mechanisms develop according to the beam mech­
anisms of different plastic dissipations as well as load multipliers. It is clearly seen that 
for the limit plastic flow mechanism the clearance constraint is active only at hinge 2, 
whereas at hinge 1 there is an absence of contact and the zero-value of clearance strain 
rate occurs. 

6. Conclusions 

1. The problem of plastic flow of perfectly plastic-slackened structures can be resolved 
into a set of consecutive linear programming problems. 
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2. If the clearance region is convex and bounded by a closed clearance surface, then 
the ultimate collapse load as well as the corresponding plastic flow mechanism appear 
to be identical with those obtained for the reference structure without clearances. 

3. The ultimate collapse load of slackened structures is usually attained on a step-wise 
way where "sublimit" plastic flow mechanisms can occur before reaching the ultimate one. 
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