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Thermomechanical behaviour of shape memory alloys
E. PATOOR, A. EBERHARDT and M. BERVEILLER (METZ)

THis work describes the thermomechanical behaviour for both single crystal and polycrystal
of metallic alloys during a stress-induced thermoelastic martensitic transformation. A thermo-
dynamical analysis based on Gibb’s free energy has shown that the single crystal is a standard
material for pseudoelasticity. The transformation criterion and its associated flow rule deduced
from the pseudoelastic potential are in good agreement with experiments performed on a Cu Zn Al
alloy. The polycrystal behaviour is described by two different approaches: a phenomenological
one which extends the single crystal results and a self-consistent scheme used for the micro-macro
transitions. Uniaxial tensile test experimental measurements showed that this theoretical simula-
ted behaviour gives very good agreement. The results obtained with the self-consistent scheme
are more accurate than those obtained using the phenomenological approach.

W pracy przedstawiono opis termomechanicznego zachowania si¢ pojedynczych krysztatow
i polikrysztalow stopow metalicznych podczas martenzytowej przemiany fazowej wywolanej
przez napr¢zenie. Na podstawie analizy termodynamicznej wykazano, ze pojedynczy krysztat
jest standardowym materialem w sensie pseudosprg¢zysto$ci. Kryterium przemiany oraz stowa-
rzyszone z nim prawo plynigcia, wyprowadzone przy wykorzystaniu potencjatu pseudosprg¢zys-
tego, zweryfikowano doswiadczalnie na przykiadzie stopu Cu Zn Al, notujac dobra zgodnos$¢
teorii z eksperymentem. Zachowanie si¢ polikrysztalu opisano dwiema réznymi metodami.
Pierwsza, fenomenologiczna, polegata na uogolnieniu wymkbw dotyczqcych pojedynczego
krysztatu, w drugiej wykorzystano procedure ,,self-consistent” do prze_lsma od poziomu mikro
do makro. Porownanie wynikow teoretycznych uzyskanych przy uzyciu obu metod z wynikami
doswiadczen w testach jednoosiowego rozciggania dato bardzo dobra zgodnos¢. Wskazano,
ze procedura ,,self-consistent’” prowadzi do lepszych rezultatow niz podejscie fenomenologiczne,

B paGoTe mpeAcTaB/IeHO OMMUCAHHE TEPMOMEXAHHUECKOTO MOBENEHHS eIUHKUHBIX KPHCTALIOB
 TIOMHKPHCTANIOB METaUIMYECKMX CIIABOB Bo BPEMSA MapTeH3HTHoTo (ha3oBoro INpeBpa-
ILIeHHA, BbI3BAHHOTO HANPAKEHHWAMK. Ha oCHOBE TepMOJHHAMUUECKOrO AHAIH3a MOKA3aHO,
4YTO eQUHHNYHBIA KPUCTAJLT ABJIAETCH CTAHAAPTHLIM MAaTEpHaIoM B CMBICIE MCEBAOYIPYTOCTH.
Kpurepuit nmpeppallleEusa, a TakyKe aCCOUMHPOBAHHBIA C HUM 3aKOH TEUYEHHT, BhIBEJCHHLIE
IPH HCIOJIL30BAHUK IICEBAOYNPYroro IMOTEHLMaNa, IIPOBEPEHbl 3KCIEPHMEHTAIPHO Ha IIpH-
mepe cmiasa Cu, Zn, Al, oTmeuass Xopolllee COBIaNeHHE TEOPHH C 9KcnepumeHToM. IloBe-
JCHHE MOMMKPHCTAIIIIA OIKCAHO ABYMS PasHLIME MeToZaMi. IlepBblit, (heHOMEHOIOTHYECKHIA,
3aKJTIOYAEeTCA B OOOBIIEHHM Pe3y/IbTaToB, KACAIOLIMXCS eAHHHYHOIO KPHCTAJIA, BO BTOPOM
METOJle MCIIONIb30BaHa MpoleAypa ,.self-consistent’’ K mepexoqy OT MHKPO YPOBHS K MaKpO
ypoBHI0. CpaBHeHHME TEOPETHUECKHX Pe3yJIbTaTOB, IIOJIY4EHHBIX NPH KCIONb30BaHHK obonx
METONOB, C PE3yJIbTATAMH OKCIEPHMEHTOB B TECTaX OAHOOCHOrO PacTsDKEHHs IPHBEIO K OUeHb
XOpOIIeMY COBMAJEHHI0. YKa3bIBaeTCH, UTO NPOLENypa ,,self-consistens’ npuBoauT XK JIyu-
UM pe3yJIbTaTaM, YeM (heHOMEHOJIOTHUECKHH MOIX0/d.

1. Introduction

STRESS-INDUCED phase transformation in some metallic alloys shows a typical behaviour
called transformation plasticity. Numerous metallurgical studies [1, 2] have described
this phenomenon by the quantitative or semi-quantitative method. The formation or the
growth of different martensite variants due to thermomechanical loading is the micro-
structural mechanism responsible for the overall behaviour. Different approaches were
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proposed [3, 8] to describe this behaviour in the complex case of the ferrous alloys, where
phase transformation and plastic yielding of the parent phase occur simultaneously. In
the same way, different schemes are proposed by JAMES [9], TANAKA et al. [10] and MULLER
[11] for the Cu Zn Al or Ni Ti alloys where a thermoelastic martensitic transformation
occurs without plastic yielding. Their approaches are not based on the physical mechanism
of the transformation which is described by the phenomenological theories of WECHSLER,
LieBERMAN and READ [12], BowLES and WAYMAN [13] and EBERHARDT and BERVEILLER
[14]. In these theories the parent phase behaviour is taken into account more or less directly.
For the general case of transformation plasticity in ferrous alloys, numerous elementary
mechanisms interact, so this case is very complex. In the special case of thermoelastic
martensitic transformation only two elementary mechanisms could exist:

(i) reversible formation of martensite variants from the parent phase;

(ii) interfacial motion between the different martensite variants yet formed and changed
in their volumetric proportion;

These two mechanisms could act separately (T > Mgor T < Mg) or in the same
time (My < T < Mjy). In this work it is considered that only the first mechanism could
exist. First of all, a kinematic study of transformation plasticity determines the action
of the different elementary mechanisms in the overall behaviour. Therefore, two kinds
of Transformation Plasticity are distinguished. Pure Transformation Plasticity (P.T.P.),
where the mechanism is intrinsic and Coupled Transformation Plasticity (C.T.P.) in which
the microstructure of the transformation (habit plane...) depends on the parent phase
plastic yielding. In this paper, only P.T.P. is studied. The single crystal flow rule is deter-
mined from the thermomechanical point of view based on Gibb’s free energy. And finally,
the polycrystal behaviour is described by two different approaches, a phenomenological
one which extends the single crystal results, and a micro-macro transition scheme which
takes into account the microstructure of the transformation in the aggregate behaviour.
The results of these theoretical analyses have been compared with the experimental data
obtained with Cu Zn Al pseudoelastic alloys tested in uniaxial tension.

2. Kinematics of transformation plasticity

In this part kinematic studies of transformation plasticity are developed in order
to determine, in the overall behaviour, the strain induced by phase transformation or by
other mechanisms (elasticity, plasticity, thermal effects). Afterwards, the transformation
strain is analysed from the crystallographic point of view.

Let us consider 2 macrohomogeneous unit volume ¥V of the parent phase. In the initial
state, this unit volume is at the temperature T and unstressed. If an external stress or
a variation of temperature is imposed, a part ¥y, of this volume can be transformed into
martensite. This phenomenon produces the total local strain &f;(r) composed with an elastic
and inelastic part, The macroscopic strain EJ may be obtained by using a standard relation-
ship for averaging:

2.1) Ef = —;7 f ef(nav.

14
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If ¥V, and V), denote, respectively, the austenite and martensite volumes contained in the
overall volume, the relation (2.1) may be expressed as:

1 1

2.2) El = 17 fs[-T,-(r)dV—i— N7 fa?}(r)dV.
Va Vm

If &]* and &f™ denote the average total strain in austenite and martensite and if £ = Fy/V
is the volumetric fraction of martensite, the relation (2.2) takes the following form:
(2.3) Ej= (=) el +feM.
This deformation is caused by both the deformation in the two phases and the deformation
associated with phase transformation. The strain rate equation (2.3) becomes [8]
24 El = (1=l +feM + et f,
where f'denotes the transformation rate, and eAM is the transformation strain. The average
strain rates in the two phases are composed with three terms of different physical meanings:
the thermal strain rate &; elastic strain rate &f;, associated with local stress, and plastic
strain rate &7;, induced by both the applied and the internal stress caused by the transforma-
tion. &£/ is the only term directly associated with the progress of the transformation.
But this term is not independent because the mechanism of transformation needs another
inelastic strain to accommodate Bain’s strain. If the expansion coefficient and the elastic
compliances are both considered as equal in the two phases, the thermal and the elastic
strain rates are

(2.5 &y = a”9; & = Syuoia, &) = Syuod,

where «;; denotes the thermal expansion tensor and S;;, the elastic compliance tensor.
The total strain rate is now expressed by

(2.6) E} = Eth 4 Ef + EFF

with the following expressions for E‘i’," and Ef,-:

E' = a,,0,

Et’j = Syul(l =N +foi] = Sijklz’;kl:

where %, denotes the macroscopic stress rate. Using the relations (2.4) and (2.6), the total
transformation strain rate is

(2.8) EFT = (L=f)fA+fefM + et .

This relation takes into account both the plastic strain rates in the two phases (5" and
éfM) and the transformation strain rate.

The dependence of the characteristics of ef5™ on &' and & is a function of the local
stress level (internal and applied) with respect to the yield points of the two phases. Thus
two classes of transformation plasticity may be distinguished:

(i) In the first class the local stresses are too small to reach the yield point; consequently,
the transformation strain is only provided by the transformation rate and by the strain
&M that is now completely defined. Thermoelastic martensitic transformations belong
to this class because the martensite growth produces no excessive internal stresses.

@.7
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This class is called Pure Transformation Plasticity (P.T.P.). Phenomena like shape
memory effects or pseudoelasticity belong to it.

(ii) In the case of second class, the local stresses are greater than the yield point of one
of the phases, then the total transformation strain rate depends on the three terms of the
relation (2.8), and the characteristics of ¢} are modified by the level of plastic strain.
This case is called Coupled Transformation Plasticity (C.T.P.).

This study is limited to P.T.P. associated with the thermoelastic martensitic transforma-
tion. The transformation strain rate is then expressed by
(2.9) E5T = g™y
In addition, the martensitic transformation is characterized by Bain’s strain, an invariant
lattice strain and a lattice rotation that is necessary to realize the existence of an invariant
plane (the habit plane). The macroscopic strain & produced by this mechanism is com-
posed of a shear along the habit plane and of an extension normal to it. Geometric condi-
tions [12, 14] allow to calculate the normal n to the habit plane, the direction m of the
transformation and the magnitude g of the displacement in this direction. The symmetries
of the phase lattices are responsible for the existence of numerous equivalent orientations
called variants. The following section details the expression for the transformation strain
rate, initially for a single crystal with one or several variants, and finally for a polycrystal
with or without cristallographic texture.

2.1. Single-crystal kinematics in pure transformation plasticity

The transformation of a macrohomogeneous austenitic single-crystal unit volume
by the formation of only one martensite variant is considered at first. In this case the
displacement vector of a point P of this volume is a function of the variant habit plane
normal mn, the direction of transformation m and the magnitude g of the displacement
in this direction. All these values are crystallographically defined [12]. Denoting by x;
the initial components of point P, the displacement vector components are

(2.10) Uy = X, My
and the gradient of the displacement tensor is
(2.11) Bis = gmun;.
This tensor is composed of a symmetric part which is the transformation strain ¢ and
of an antisymmetrical one which is the transformation rotation w{M.
1

(2.12) EﬁM = E‘ (m,-n_,v+m_,-n;)g = R”g,

AM 1
(2.13) Wiyt =5 (myn;—m;n,)g = P,g,

R;; is called the orientation tensor of the variant. The strain rate and the rotation rate
associated with the transformation rate f are expressed by

(2.14) EIT = Ry,gf, QFF =P,gf.
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When several equivalent variants are activated, the relations (2.14) become
— 5 i 5

(2.15) Eff =g D Rufr, Qi =g X oni",
n n

where R}; and f° n denote, respectively, the orientation tensor and the transformation rate
of variant n, and where the summation is extended to all activated variants (f" # 0).

2.2. Polycrystal kinematics in pure transformation plasticity

In a polycrystal the macrohomogeneous volume V is described by the distribution
function F(y) of the crystal orientations where y denotes Euler’s angles that described the
orientation of an austenite grain in the aggregate. The macroscopic strain rate is now
expressed by

. 1 . .
2.16) g7 = [ awar = [ e Fmdp.
v

]

As &;;(y) is considered to be homogeneous in each grain, it can be replaced by the express-
ion (2.15) of the single crystal strain rate:

. B .
(2.17) B = [ X Ry f "0 Fay)dy,
V n
And with a discrete description of the function F(y) this relation becomes
@.18) BT =g D F D) R,
N n

where N is the number of grains considered and F¥ is their volumetric fraction.

In the next section, a single crystal constitutive relation is proposed by a thermodynamic
approach based on the study of Gibb’s free energy. This makes it possible to relate the
transformation rate with the macroscopic stress and changes of temperature.

3. Single-crystal thermomechanical behaviour in pure transformation plasticity

In this section a thermomechanical flow rule based on the study of the variation of Gibb’s
free energy is proposed. The martensite plates are considered to be stress-induced under
isothermal conditions. This corresponds to the case of pseudoelasticity by transformation.
Two states could be distinguished in the formation mechanism of the martensite. The
first one is a nucleation process which is considered in this study as having no effect on the
macroscopic behaviour, and the second is the plate growing. The thermodynamical analysis
of the transformation could be limited to the study of a single component system because
martensitic transformation is a displacive phase transformation which occurs without
diffusion.

A thermomechanical approach based on Gibb’s free energy enables to demonstrate
the existence of a pseudoelastic potential and to define a transformation criterion. The
importance of the volumetric fraction of martensite in the overall behaviour is underlined
by the building of an “end of transformation” criterion.
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3.1. Single crystal yield function in pure transformation plasticity

When in an austenitic matrix of volume V, » martensitic variants of volume V" are
formed, the variation of Gibb’s free energy is expressed by [15, 17]

3.1 AG = AG Y V"4 I'S+ Eeyi+ Eine,
where AG* denotes the variation of the chemical free energy. This variation is a linear
function of the temperature and is equal to the difference of the free energies of the two
phases. At the thermochemical equilibrium temperature 7,,, 4G becomes equal to zero.
The second term of the relation (3.1), I'S, is the free energy of the interface between the
two phases. For thermoelastic transformation, this energy may be neglected. The third
term, E.,, denotes the interaction energy with the externally applied stress o;;. It will
be obtained by using ESHELBY’s relation [15]

(3.2) E, = - fau-Ef}TdV-

Vv

With respect to the relations (2.15), the relation (3.2) takes the following form:

(3.3) Ew= —0ug > RYV™.
n

The last term, £;,,, is the elastic energy associated with the internal stresses caused by the
incompatibilities of transformation. This energy depends on interactions existing between
the different variants. Its accurate evaluation requires the knowledge of the microstructure
(shapes and spatial positions of the variants). Indirect evaluations may be realised by
using the solution of the problem of the plastic inclusion pair [18, 19] or by the calculation
of the elastic energy associated to the interface between two incompatible or compatible
variants [20, 21]. These two methods give the same expression for E;,,:

G4 By = V[ZglE"fw;—ZgZH"W"'],

E" denotes the interaction energy between a martensite inclusion and the parent phase.
This energy could be calculated with the solution of the plastic inclusion problem as given
by EsHELBY [15]. E" is equal to zero for an infinitely thin inclusion with a plate shape,
this is the case of the martensite variants during the growth process for a thermoelastic
transformation. Interactions between the different martensite variants are represented by the
matrix H"". This matrix is composed with two kinds of term; a very low one that describes
the interactions between the self-accommodating variants and a very significant one
(about 11/30) when variants are incompatible [22, 23]. This gives to matrix H™ a great
anisotropy. In the case of self-accommodating variants, a compatible common interface
does exist between them: there is no accommodation elastic strain. For incompatible
variants their common interface must take a position such that the associated elastic
energy is minimized; this minimum is different from zero. Other mechanisms of accom-
modation could exist to lower these interactions. Finally, with regard to the relations
(3.1), (3.3) and (3.4), the variation of Gibb’s free energy associated with the creation of
stress-induced martensite has the following form:
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: 1
(3.5) AG = AG*® 2 V'—o,g Z R, V"4 g V[Z E"fr+ -2—2 H’""f"f’"]
and, for unit volume,

_A_GM c 1n_ . ‘an 2[ \ 1 7o Lv nmnm]
(3.6) = AG Zf oug N Rif'+g ZE-’ g N T

n n,imn
Relation (3.6) defines a pseudoelastic potential AG/V. It describes the state of the austenite-
martensite system from the temperature (7)), the applied stress (o;;) and the internal vari-
ables gf™. Thermodynamical forces " are associated with the internal variables gf™; they
are obtained by the classical relation

a1 a(AG/V)
g d"

AG* .
= s s O’UR?j +gEﬂ+g {}_{ H"mf'".

m

At the thermodynamical equilibrium, " is equal to zero and the relation (3.7) becomes

(3.7

Ifl

C

AG
(3.8) oy Ry =

+gE"+g D H™f™,
m

o;; Ri; denotes the resolved stress on the variant n. This variant may be activated when the
resolved stress reaches a critical value dependent on the temperature (because of the
dependence of 4G*¢), on the volumic fraction of the other variants and on the nature of these
variants (compatible or incompatible). At the beginning of the transformation, when no
variant is yet formed, and if the energy E” is considered as negligible, the equation of the
yield surface of a variant » has the following expression:

AG(T)  B"
g g

The yield surface of the single crystal is formed by the intersection of all the hyperplanes
that are defined for each variant by Eq. (3.9). This generalizes the well-known relation
of PATEL and CoHEN [24] that has a very good agreement with experiment. This criterion
states that the first variant formed is the one that has the maximal resolved stress. Variation
of the critical resolved stress with respect to the temperature is given by the relation (3.9).
If there is no applied stress, the relation (3.9) indicates that all the variants must be formed
simultaneously when the temperature reaches the thermodynamic equilibrium temperature.

In fact, the interaction between them acts to favorize a self-accommodating group of
variants.

(3.9) o, R} =

(T~ M).

3.2. Single crystal flow rule in pure transformation plasticity

When the relation (3.6) is verified, if the loading parameters change, the transformation
may advance. In this case, for an activated variant, the variation of the thermodynamic
forces dr", associated with the internal variables gf”, must be equal to zero.

ot" ar" ar"
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Now, if it is assumed that the only quantity that is temperature-depending is the chemical
free energy, the relation (3.10) becomes

1 04G* " L [
. aT(T) dT—RUdcru+gZH df" = 0.

(3.11)

This relation enables to calculate df™ by using the loading parameters do;; and d7:

1 34G4(T)
or

(3.12) g ) H™df"™ = R}do;,— dr.

1 dAG(T
If the interaction matrix H is inversible and denoting by B"/g the quantities T — T( ) ,

the relation (3.12) may be transformed into

(3.13) gdf™ = ZH;m {R do,

This relation states that the growth of a variant m depends on the increase of the resolved
stress, on itself and on the growth of the other variants. If a variation dT occurs while
the loading remains constant, the interactions between variants modify the forces dr”
in order to favour the group of variants which has weak interaction. Now the single crystal
behaviour could be completely described:

(i) If all the following conditions, derived from Egs. (2.15) and (3.13) are satisfied,
some active variant n could exist,

r<1 (win r= 37,

dT <0, df™20
(3.14)

fm
nm 2

nm

Bfl
R do,, =
140 =2

in this case, JEf" is different from zero and the Pure Transformation Plasticity constitutive
relation is obtained from Egs. (2.15) and (3.13)

(3.15) 5’ R 1’71,.:,,1 (szdﬂ'kr" —B—dT)

(ii) If only one of the conditions (3.14) is not verified, no transformation could take
place in the single crystal and dEfT is equal to zero.

The particular form of the flow rule (3.15), which is derived from the same relation
as the criterion (2.9), indicates that the single crystal is a standard material for P.T.P. The
experimental measurements which are described in Sect. 5 show a good agreement with
this constitutive relation. In the following section, a more complex polycrystal behaviour
is analysed from two different points of view.
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4. Polycrystal behaviour in pure transformation plasticity

In a polycrystal, the individual grains deform heterogeneously and large internal stresses
are generated by the incompatibilities between the grains. This leads to a more complex
problem than in the single crystal case. The polycrystal behaviour may be analysed in
two ways.

(i) One is to develop a phenomenological constitutive relation. This approach was
presented in previous papers [25, 26] for pure transformation plasticity. In this way, the
polycrystal is considered as a standard material and its flow rule is obtained by defining
a transformation criterion analogous to the Von Mises one. This model shows good
agreement with experimental measurements for a pseudoelastic alloy of Cu Zn Al tested
in tension (Fig. 4) [26, 27]. But the predictive capabilities of this model are limited because
no reference is made to the microstructural state.

(ii) The second approach [28] is based on a micro-macro modelling. The transformation
is described from a microstructural point of view and an integral equation is established
for the thermomechanical behaviour of the aggregate. This equation is solved by using
the new self-consistent method developed by LipiNskl and BERVEILLER [29, 31].

In this paper the second approach is developed but in a simpler way by using the a priori
elasto-plastic self-consistent scheme. Each grain is successively regarded as an inclusion
within an equivalent homogeneous matrix that is formed with all the other grains. The
polycrystal behaviour is then calculated by using an averaging process that assumed an
elasto-plastic accommodation. This model gives good predictions for monotonous loading
in the classical plasticity case [32]. To apply this scheme for Pure Transformation Plasticity,
two major differences with classical plasticity must be taken into account: the volume
changes during transformation and the interaction law must be a thermomechanical one.
The uniform stress in the inclusion is recalculated without neglecting the changing volume
and assuming that the elasticity is isotropic and linear [15].

v
4.0 oy = 2pl| &+ 1=2 Ekk 61])5

u denotes the elastic shear modulus and v the Poisson’s ratio. The elastic strain is obtained
by using Eshelby’s tensor:

_ PT _ _PT
“.2) &y = Sijki € — Eij -

For a spherical inclusion Eshelby’s tensor is simply expressed in a scalar form. Relation
(4.1) becomes

4.3) oy =2p [(ﬁ— el + % B-7) e 5:1]
with
2(4—5)
p=o—1,
(4.4) 15(12 g
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f and y both depend only on Poisson’s ratio and are, respectively, roughly equal to 0.5
and 1. Now, if the matrix is deformed with uniform macroscopic transformation strain E/;"
and if uniform macroscopic stress Z;; is superposed, the stress in the inclusion is

(4.5) oy = 2+ 2,“[(1 —BNEF" -l + % (v —B(EL —&ah) 5:;]

In this relation the internal stresses are accommodated only in an elastic way. As the
volume changing for the thermoelastic martensitic transformation is low, in order to have
an elasto-plastic accommodation, the elastic shear modulus x may be replaced by the elasto-
plastic shear modulus «u. Relation (4.5) becomes with § = 0.5 and y = 1.

(4.6) 0y = Zi;+ ou(EET — &) + 2" (EFT - £ 6,,.

This is the elasto-plastic interaction law between homogeneous matrix and an inclusion
in Pure Transformation Plasticity. The thermomechanical behaviour of the inclusion must
now be specified. In the polycrystal, the grains are supposed to be homogeneous inclusions
and to have the single-crystal behaviour previously described by the relation (2.30).

(4.7) deF, _ZR S‘H,,,,, [Rk,dok, -B——dT].

In each grain, 24 variants may be activated. It is assumed that the initial critical shear
stress is the same for all the 24 variants and that no changing occurs in the thermomechanical
loading path. Thus, from a given state of loading, the increase of volumetric fraction,
of a martensite variant, df" is given by the following relations which are derived from
Sect. 3:

(i) for an active variant which remains active

JT<1,

(48) MS+g) ZHnmfm

o, R =

and

Rbdﬂ"j =

nm

Thus the transformation rate of this variant is

. 1 L B"
49) "= ZH{ Udau-—;dT}
and the strain induced by its formation is given by
(4.10) (del")" = gRydf™.
(i) for an active variant which becomes passive

<1,
(4.11) Oij ?j——(T M5)+g2 wm S
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and
B" R
R}doy; < < dT+gZ H,,.df",
fr=1.
(iii) for a passive variant
fh<1,
BJ‘

-
4.12) o, Ry < p (T—-Ms)+g Z Hou ™
orf"=1.

@iiii) if Zf™ =1 all the variants must be passive, the grain is entirely transformed.
Using these conditions and the interaction law (4.6), the following relations are deter-
mined for each active variant n of grain 1.

(4.13) Ry dof; = R}fdZ,;+ au(dEST — (def[)' )+ %‘i (dELT — (dekD)') oy,

al

= dT+ Z H,,gdf™.
m

Now, if the transformation strain for both polycrystal and grain are related to the micro-

structural description established by the kinematic study (relations (2.15) and (2.18)),

the relation (4.13) turns into a linear equation system where the volumetric fraction of each

variant in each grain are the parameters). Thus the basic equation for an active variant

may pow be expressed as

(@.14) :xyg[z R+ 20 > Retdy - (Z F* ) R dp
i m m N m

i . 3 ) nl
o v 2 D R )] + ) Hugdf™ = R dz, - = dr.
i N m m

5. Application to uniaxial tensile test for pseudoelastic alloys

The relations derived in this paper are now used to describe the uniaxial tensile test
of Cu Zn Al pseudoelastic alloys. In these alloys the volume change induced by transforma-
tion is small and will be neglected. In the single crystal uniaxial tensile test, the stress-
induced martensite is formed with only one variant [33].

5.1. Single crystal experimental results

In this case, when the loading is radial, the only variant formed is the one that has the
greatest resolved shear stress. The orientation factor of this variant was determined by
using a Laue diagram. The composition of the alloy was Cu—16 at % Zn—15 at 9, Al for

20 Arch. Mech. Stos. 5—6/88
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Mg = —60°C. The single crystal was grown by the Bridgman method and was water-
quenched. A sheet tensile specimen (2.1 x2.05x 18 mm, gauge length 10 mm) was cut
from the single crystal. Tensile tests were carried out in a Zwick machine with a strain
rate of 1.7-1073 s=*. In order to test at different temperatures, the specimen was kept
in a chamber in which the temperature was held constant during the test (between — 54°C
and 24°C). The measurement of elongation was made with a LVDT extensometer. To make
obvious the thermomechanical behaviour of the single crystal in pure transformation
plasticity, the tensile test with constant load was performed while changing temperature
(with constant stress ranging from 65 MPa to 210 MPa). To describe the uniaxial tensile
test of this alloy, the relations established in Sect. 3 of this paper must be applied to this
particular loading, taking into account the fact that there is no volume change and only
one variant formed. The transformation criterion (3.9) is now expressed by

B
(5.1) TO = RO'O = -g—(T— Ms)
and the flow rule becomes
R B
PT __ B e
(5.2) dEFT = " (Rda z dT)

with H denoting the transformation slope Ed% during an uniaxial tensile test at constant
temperature, R(= Rj,) is the Schmid factor for the active variant at constant temperature.
Figures 1 and 2 give typical uniaxial tensile test curves for a single crystal of a pseudoelastic

o
(MPa)
300 |

. _c"-"_‘f/ﬁ ’ %@

100 | ;‘,‘l @

5 E(?/u)

FIG. 1. Single-crystal uniaxial tensile test curves of a pseudoelastic Cu —16 at %, Zn —15 at 9 Al alloy f‘o_r
different test temperature (test or); 1) T = —34°C, 2) T = 18°C.



(%)

0 20
T(°C)Y
Fic. 2. Single-crystal tensile test at different constant load for a pseudoelastic Cu —16 at %, Zn —15 at
% Al alloy (test Ty); 1) 0, = 174 MPa, 2) 6, = 128 MPa.
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T (MPa)
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4T _{,04 MPa/°C
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2 1 A

-70 Mj -30 0 20

F1G. 3. Dependence of the single-crystal transformation yield point on the applied shear stress or on the
test temperature for a pseudoelastic Cu —16 at % Zn —15 at 9% Al alloy; * — tensile test at constant
temperature (test or), A — tensile test at constant shear stress (test Tp).
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alloy. The shear magnitude g may be deduced from the measurement of the total transforma-
tion strain using the relation (2.9). The calculated value g = 0.22 is in good agreement with
WECHSLER, LIEBERMAN and READ’s phenomenological theory [12]. The H parameter
may be considered as constant during a tensile test. The variation of the transformation
yield point 7° with the applied stress or the test temperature is represented in Fig. 3.
This variation is a linear one, well described by the relation (5.1). The Mg temperature
measured on this curve is equal to 209 K, that is nearly the theoretical value (Ms = 213°K),
and for this alloy B/g = 1.04 MPa- K, that is in agreement with other authors [34, 36].

| H(MPa)
50
20 * L * ° .
Al%e)
A A i A
50 100
T(MPa)

FIG. 4. Single crystal parameter H as a function of the tensile test temperature (test o) or of the applied
shear stress in the tensile test with constant loading (test T,); * — tensile test at constant temperature
(test or), A — tensile test at constant shear stress (test Ty).

The H parameter value is then compared for different test temperatures and different types
of loading. It is found that this value may be considered as a constant (Fig. 4). To conclude
it is possible to say that the single crystal behaviour is well described by this modelization.

5.2. Polycrystal experimental results

The alloy used in this experimental part was elaborated by Trefimétaux (Cu-—25
at 9% Zn—9 at % Zn), for a M temperature equal to 240 K. In this alloy tensile samples
were annealed for 10 mn inside a furnace at 850°C and then water-quenched. Their grain
size was about 0.3 mm. Tensile tests were carried out as previously described for the single
crystal. Due to the existence of induced internal stress, the transition between elasticity
and transformation plasticity was more difficult to be distinguished in the strain-stress
curves obtained. Nevertheless, a transformation steady state with a constant slope, in-
dependent of the temperature, was observed. The transformation point was determined
by using the intersection with a straight line defined by the elastic modulus. Transformation
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points corresponding to different test temperatures or different applied stresses are not
perfectly aligned as in the single crystal case, but a linear approximation gives do,/dT =
= 2.00 MPa°K~! (Fig. 5). This experimental result is consistent with the phenomenological

constitutive relation (do'_ [dT =/ 55 = 1.80 MPa K‘l). This phenomenological modell-

(MPa)

150

100

——=2,00 MPa/°C
T e

50 r

0 30 60 30
A(°C)
Fic. 5. Dependence of the polycrystal transformation yield point on the applied shear stress or on the
test temperature. Experiment performed with a pseudoelastic Cu —25 at % Zn —9 at % Al alloy; * —
tensile test at constant temperature (test or), A — tensile test at constant shear stress (test 7).

ing may be compared with experimental results by using the following relation derived
from a previous paper [26]:

do dE*T | gdf dr

(5.3) (dEPT . T)polycrystal =13 (__ = Hf_ single crystal'

This relation which related the steady state of transformation for both single crystal and
polycrystal was experimentally verified as shown by Fig. 6. In conclusion, this phenomeno-
logical modelling may be considered as a good first approximation of polycrystal behav-
iour. Now, to take into account phenomena like the transient state between elasticity and
transformation plasticity, or like the anisotropic behaviour, the micro-macro scheme
previously defined must be applied. In the case of the Cu Zn Al alloys, the volume change
induced by the transformation may be neglected, thus the interaction law (4.6) becomes

(54) = Eu+oc,u(E,j - El.f
and each active variant of each grain verified the following relation (from the relation

4.10):
69 Rige| X rejarm— S (X rrar|] + X Hngdr™ = Rjaz,~ 2 ar.
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=T-Mg
e
Fi1G. 6. Ratio R vs. A, the difference between the test temperature and the Ms value of the pseudoleastic
alloy;
( do dE*T )
———x
R _ dEFT dT polycrysl:'l_ .
(gdf dr )
— X ——
dT gdf single crystal

For the uniaxial tensile test, a major assumption could be made in order to simplify the
system of equations (5.5): only one variant is activated in each grain. With this assumption,
the system of equations (5.5) turns into a linear system

.
(5.6) (H+ %“) edf'— _2_ Rl 2 RYFNgdf — RdX— ng,
N

This system has as many equations as there are transforming grains. Transformation
takes place in a grain if the conditions (4.8), are satisfied. These conditions are now expres-
sed by

fl< 1,

- SR = g (T M),

Rl = % dT+gHdf".

By using the condition (5.7) and the linear system (5.6), it is possible to determine for
each grain the evolution df" of the transformation corresponding to a variation of thermo-
mechanical loading (42, dT'). Finally, the macroscopic behaviour is obtained by using the
averaging relation (2.18) that is now expressed by

(5.8) dEFT = Y FVRNgdf™.

i

N
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This scheme was used with the experimental data obtained for the single crystal (u =
= 42 308 MPa, H = 20 MPa, g = 0.22). The polycrystal macroscopic behaviour calculated
was consistent with experimental measurements for the uniaxial tensile test (Fig. 7 and 8).
The slope of transformation was well described and the relation between the two kinds

7 (MPa)
300

200

100

e S T L "

1 2 3 (%)

F1G. 7. Uniaxial tensile test curves of a pseudoelastic Cu —25 at %, Zn —9 at % Al polycrystal alloy for
different temperatures. Comparison between experimental results and theoretical predictions which are
obtained by using a self-consistent scheme;

—————————— experimental results, — —— simulated behaviour,

1) T=5C, 2) T=19°C, 3) T=43°C, 4) T = 68°C.

of experiments used in this study was respected. A transient behaviour between elasticity
and transformation plasticity is obtained. When taking the single crystal experiment
value of B/g = 1.04 MPa K™, the calculated linear relation between the applied stress
and the transformation temperature (dos/dT = 2.4 MPa K~') was slightly higher than the
experimental one (dos/dT = 2.00 MPa K~'). With a B/g value equal 0.87 MPa K-,
which is still in agreement with the published results [35], the calculated and experimental
value for the polycrystal was equal. This indicates that the origin of this difference may
be the difference of composition between the single-crystal alloy and the polycrystal one
used in this work. To conclude, it can be said that this micro-macro approach gives good
results in a simpler manner and in spite of a strong assumption. A better result could be

obtained using the new self-consistent scheme developed by LipiNskl and BERVEILLER
[29, 31].
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