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Mathematical modelling of delamination effects 
in layered composites 

cz. WOZNIAK (WARSZAWA) 

THE AIM of the paper is to propose and discuss a mathematical model of the interlaminae debond­
ing process in layered composites. The proposed method of modelling leads to the time­
dependent quasi-variational inequality for the displacement rates. The results obtained can be 
applied to composites made of elastic as well as elastic/viscoplastic materials subject to small 
strains. 

Celem artykulu jest propozycja i dyskusja pewnego modelu matematycznego procesu rozwar­
stwiania (delaminacji) kompozyt6w warstwowych (laminat6w). Proponowany model prowadzi 
do zale:inej od czasu nier6wnosci quasi-wariacyjnej dla p61 pr¢koSci przemieszczen. Otrzymane 
rezultaty mog~ bye zastosowane zar6wno do spr~zystych jak i spr~:iysto/lepkoplastycznych 
laminat6w poddanych malym odksztalceniom. 

Uenhro CTaThH HBJUieTC.R npewxo>Kemre 11 o6cy~eHHe HeKoTopo:R MaTeMarnqecKoil MoAeJIH 
rrp01~ecca paCCJIOCHH.JI (AeJiaMIIH3In{H) CJIOHCTbiX KOMII03HTOB (JiaMI{H3TOB). IlpOWJO>KCHHa.JI 
MO,llCJib npHBOAHT K HC33BHC.JI~eMy OT BpeMeHH KBa3HB3pH3UHOHHOMY HepaBeHCTBY WJ.R 
UOJICH CKopoCTeH nepeMe~eHHH. Ilo.JiyqCHHbie peayJibTaTbl MOryT 6biTb npHMCHCHbi T3K 
K YllPYTHM, KaK H Kynpyro/B.JI3KOWiaCTHqecKHM JlaMHH3TaM, llOABeprHYTbiM Ma.JibiM AC<l>op­
M3~H.JIM. 

1. Introduction 

IN THE PAPER we shall consider the multilayered composites (laminates) formed by a sequ­
ence of plane or curved sheets separated by the very thin layers of a bonding material. The 
sheets are assumed to have finite thickness and are modelled as anisotropic elastic or 
elasticjviscoplastic materials. The interlaminae layers of the bonding material are modelled 
as surfaces, their thickness being neglected, and are assumed to sustain only restricted 
values of the interlaminae tractions. Hence, during the deformation, discontinuities in the 
tangential and normal displacements across some parts of the interlaminae surfaces may 
arise. The main aim of the paper is to propose a certain general mathematical model 
of such interlaminae debonding process. It will be shown that the proposed method of 
modelling leads to a certain time-dependent quasi-variational inequality. 

For the sake of simplicity we confine our considerations to the pure mechanical de bond­
ing processes; more general approach will be given separately. The basic notions and 
denotations which will be used in the subsequent parts of the paper are detailed below. 

By Q we define the known regular region in the Euclidean 3-space R 3 that is occupied 
by the undeformed composite body, Q c R 3 • The body is assumed to be made of S disjoin­
ted layers. Hence lJ = ui4c, K = 1, ... , S, where AK stand for the ·undeformed layers 
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Oaminae); the thickness of the layer AK is constant and will be denoted by oK, cf. Fig. I. 
Setting 

s 
A= U AK, IlK= (oAKnaAK+tf"-oD, K= 1, ... , s-1, 

K=l 

S-1 

II= u IlK, 
K=l 

FIG. 1. Scheme of the undeformed layered body. 

we see that II= oA"-o.Q is the sum of all interlaminae surfaces separating the adjacent 
layers. We assume that every IlK is a smooth surface and we assign to every point z eiiK 
the unit normal vector N(z), which is outward to AK and hence inward to AK+ 1 , K = 
= 1, ... , S -1, cf. Fig. 1. At the same time to every point x e ().Q at which ().Q is smooth, 
the unit normal n(x) outward to .Q is assigned. 

We shall deal with functions defined on .Q which may suffer discontinuities across II. 
Let tp:A-+ R be a function such that every 'PIAx (which is a function obtained from 1p( ·) 
by the restriction of its domain to AK) has well defined traces (boundary values) on 
oAx, K = 1, ... , S. If z ell, then also z eliK c II for some K = 1, ... , S-1. Thus the 
traces of '1'1Aa:+ 1 , 'PIA.: at z eiJK, where K runs over 1, ... , S-1, can be uniquely denoted 
by "+ (z), '1'- (z), respectively. Hence we shall define 

['f'](z) = 1p+(z)-1p-{z), z ell, 

as the jumps of 'f'( ·)across II. We shall also deal with functions defined on II and for an 
arbitrary vector function w: II -+ R 3 we shall introduce the denotations 

wN(z) = w(z) · N(z),'tl 

wr(z) = w(z)-N(z) [w(z) · N(z)], 

for the normal and tangent component of w(z), respectively. Obviously, wT(z) · N(z) = 0 
for every z ell. 

The problems under consideration will be examined in the time interval [To, :rl], with 
the initial time instant To related to the undeformed body. The time derivatives (for the 
constant x e A or z e II) will always be interpreted as the right-hand side derivatives and 
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MATHEMATICAL MODELLING OF DELAMINATION EFFECTS IN LAYERED COMPOSITES 873 

denoted by dots. The differentiation with respect to x E A will be represented by the opera­
tor V. We assume that at every time instant T E [T0 , T1] the displacement field u( ·, T):A-+ 
-+ R3 and the velocity field u(·, T):A-+ R3 are well defined, where u{x, To)= 0, x EA. 
The investigations will be carried out under the assumptions of the small displacement 
gradients and the small velocity gradients. Thus the strain-displacement relation will be 
assumed in the form 

(1.1) 
1 

E(x, T) = T [Vu{x, T)+ VuT(x, T)], x E A, T E [T0 , T1], 

where the superscript T stands for a transpose operation. The remaining denotations will 
be introduced in the subsequent sections of the paper. 

We develop the subject from the known relations of the continuum mechanics, starting 
from the equations of motion (in Sect. 2) and introducing the constitutive relations in 
Sect. 3. The crucial point of the approach lies in Sect. 4 where the interlaminae conditions 
are detailed and a certain mathematical model of the possible debonding process is pro­
posed. The results obtained will be summatrized in Sect. 5 in the form of the quasi-variational 
time-dependent inequality. On this basis we discuss some special models of the delamination 
effects in the composites under consideration. We belive that the introduced models provide 
the theoretical background for the experiments as well as for the analysis; some general 
conclusions on this subject are listed in Sect. 6. 

2. Equations of motion 

We assume that at any time instant T E [To, T1] the body is subject exclusively to the 
body forces b(x' T), X E A, and to the surface tractions p(z' T), z E r c an, defined on 
the part r of the boundary aD. For the sake of simplicity we assume that on the remaining 
part F0 = oD"'-F of the boundary aD, the traces (boundary values) of the displacement 
field are equal to zero: 

(2.1) 

By T(x, T), x E A, T E [To, T1], we define the Cauchy stress tensor and by t(z, T), z E II, 
T E [T0 , T1], the interlaminae stress vector. We shall assume that the tractions t(z, T), 
z E II, are acting on the pertinent layers of the composite across the surface elements 
oriented by the outward normals N(z), z Ell. This means that if z EIIK c aAK+ 1naAK 
for some K = 1, ... , S-1, then the traction t(z, T) is acting on the layer AK (cf. Fig. 1) 
and hence the traction - t(z, T) is acting on the layer AK+ 1 (we bear in mind that no 
external forces are applied to the interlaminae surfaces). Finally, by e(x), x E A, we define 
the known mass density of the undeformed body. We shall postulate the equations of 
motion in the variational form 

(2.2) f tr[T(x, T)Vv(x)]dV + f t(z, T). [v] (z)dA = f e(x) [b(x, T) 
A II A 

-ii(x, T)] • v(x)dV+ J p(x, T) · v(x)dA, T E [T0 , T1], 
r 
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which has to hold for every sufficiently regular test function v:A -+ R 3 the trace of which 
on F0 attains values equal to zero. Under the known smoothness conditions, Eq. (2.2) 
is equivalent to the local equations 

divT(x, r)+e(x)b(x, T) = e(x)u(x, T), X E A, 

(2.3) T{x, r)n(x) = p(x, T), X E r, 
T+(z, r)N(z) = T-(z, r)N(z) = t(z, r), z Ell, 

for every T E [ r 0 , r1]. The required regularity conditions concerning the fields introduced 
above will be specified in Sect. 5. 

3. Constitutive relations 

Every layer (lamina) of the composite body under consideration is supposed to consist 
of a family of fibres embedded in a ceratin matrix material. We are to assume below that 
every such layer has been modelled as a certain homogeneous anisotropic material; for 
the particulars the reader is referred to [1]. We shall confine our study to the two following 
special cases of the layers. 

In the first case we shall assume that the layers are modelled as homogeneous aniso­
tropic linear-elastic materials. Then the constitutive relations have the form of the well 
known linear mappings 

(3.1) T(x, r) = CK[E(x, r)], x E AK, K = 1, ... , S, 

with ex as the known tensors of elastic modulae for the material of the K-th layer of the 
body, K = 1, ... , S. 

In the second case every layer is assumed to be modelled as the homogeneous elastic/ 
viscoplastic material. To this end, for every K = 1, ... , S, we have to introduce the closed 
convex set Hx in the stress space R3 x 3(1), such that for every T{x, r) E HK, x E Ax, the 
material behaves as elastic with properties defined by the tensor CK of elastic modulae. 
Moreover, for every layer the viscosity coefficient /-tK is known. Setting 

AK = (CK)-1, 

1 
JK(T) = -

4
-tr[(T-ngT) (T-ngT)], T E R3

x
3

, 

/-tK 

with .ng T as the orthogonal projection of T on HK in the space R 3 x 3 , we assume the 
following form of the constitutive relation for the layers (cf. [2], p. 234): 

(3.2) E. ( ) = AK[T' ( )] oJK(T(x, r)) 
X, T X, T + oT(x, T) ' K= 1, ... ,S. 

It has to be emphasized that the modelling of sheets the layered composites are made of, 
as certain homogeneous materials, is a separate problem which will not be discussed here 
(for details cf. [1]). In the sequel we are to assume that the constitutive relations for every 

(1) For any nonempty set E, the symbol E 3 x 3 stands for a set of all 3 x 3 symmetric matrices with 
elements belonging to E. 
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layer are given a priori either in the form (3.1) or in the form (3.2). For the same reason 
the mass density e(x), x E A, in every layer is assumed to be constant: e(x) = f>K for 

X E AK' K = I ' ... ' s. 

4. Interlaminae relations 

4.1. Preliminaries 

By the delamination effects in the layered composites under consideration, we shall 
mean the possible local discontinuities of the displacement field across the interlaminae 
surfaces II K, K = I , ... , S- I, leading to de bonding of the layers. Thus we shall analyse 
the delamination effects from the local point of view, i.e. for an arbitrary but fixed z Ell. 
Moreover, the points of the interlaminae surfaces can be treated as material points only 
before local debonding of the pertinent layers. After debonding we have to take into 
account the possible unilateral contact between the layers. This unilateral local contact 
implies the existence of the interlaminae contact tractions r(z, r) across the interfaces 
of the layers. Setting 

r(z, r) = rr(z, r)+N(z)rN(z, r) 

we assume that rN(z, r) is responsible for the impenetrability of the layers and rr(z, r) 
is. due to the friction between the layers. On the other hand, before the possible delamination 
there exist the interlaminae bonding tractions 

s(z, r) = sr(z, r)+N(z)sN(z, r) 

due to the bonding material between the layers. We have assumed before that the bonding 
material is represented (before the possible delamination) by the surfaces IlK, K = 1, ... 
... , s..:... 1. We shall also take into account the state of a partial delamination in which 
we deal both with the interlaminate contact tractions and the interlaminae bonding trac­
tions. Hence, in general, the condition 

(4.I) 

has to hold for every z Ell andrE [r0 , r1]. In the subsequent parts of this section we are to 
interrelate the right-hand sides of Eq. (4.1) with the displacement jump field 

(4.2) [u] {z, r) = [u]r(z, r)+N(z) [u]N(z, r), z Ell, 

and its time derivative. This interrelation will be based on the concept of the internal 
constraints which have been detailed in [4] and will be summarized below. We shall deal 
with the constraints given in the general form of the inclusion wELt, where L1 is the known 
nonempty closed convex set in the linear topological space W. Let W* be the dual of W, 
i.e. the space of all linear continuous functionals defined on W(l). Define R = Ru { oo }u 
u {- oo } and introduce 

( ·, ·):Wx W*-+ R 

(2) For the concepts of the convex analysis which will be needed in the sequel the reader is referred 
to the Chapters 1 and 2 of [3]; here we confine ourselves only to the general explanations of these concepts. 
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as the bilinear form which determines the dual pairing between Wand W*; hence ( w, *w) 
is the value of the functional w* E W* on the element wE W. In the sequel we shall tacitly 
assume that every (w, w*) represents a local or global value of the rate of work in the 
problem under consideration. This requirement imposes certain restrictions on the choice 
of the spaces W and W*. By the internal reaction which can maintain the constraints 
w E L1, we shall mean any element w* E W* such that 

{4.3) W* E aindLI{w), 

where ind.1: W ~ R is the indicator function of L1 defined by 

{
0 if WE L1, 

ind .. (w) = ,...,.., 
LJ vv if w E W""' L1 ' 

and where we have used the known denotation aq>(w) for the subdifferential of a convex 
lower-semicontinuous function q;: w ~ R. The relation w* E aq;(w) is equivalent to the 
variational inequality 

(w-w, w*) ~ q;(W)-q;(w) Vw E W, 

provided that q;(w) < oo. Hence the condition (4.3) is equivalent to the variational m­

equality 

(w, w*) ~ (w, w*) Vw E L1 

which has to hold together with the constraint inclusion w E L1. This means that the rate 
of work of the internal reactions attains its maximum under the constraints w E L1 (3). 
Hence any internal reaction w* which can maintain the constraints w E L1 has to satisfy 
the condition 

(4.4) 

For a more detailed discussion of the concept of constraints, the reader in referred to [4] 

and to the references therein. 

4.2. Impenetrability condition 

The impenetrability of the adjacent layers is given by the condition 

[u]N(z, T) ~ 0 

which has to hold for every z Ell, T E [T0, T1]. Under the denotation R+ = Ru {O}u {oo }, 
we shall rewrite this condition in the form 

[u]N(z, T) E R+, z Ell, T E [T0, T]. 

Setting 

(4.5) K(w) = {v E R; v = A(W~w), WE R.,). E R+ if wE R+' 
if W E R\,.ff+, 

(3) If w* is the internal reaction, then - w• is called the external reaction to the constraints. Thus 
the rate of work due to the external reactions attains its minimum under constraints w E Lt. The concept 
of external reactions will not be used throughout the paper. 
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we also obtain 

(4.6) [ti]N(z, t) E K([u]N(z, T)), z Ell, T E [T0 , T1]. 

Equations (4.5) defines the set K(w) as a cone tangent toR+ at wE R. Now it can be seen 
that the inequality (4.6) represents constraints imposed on [ti]N(z, T) for any fixed 
[u]N(z, T) E R+. Using Eq. (4.3), for the internal reactions rN(z, T) maintaining the con­
straints (4.6) we obtain the condition 

(4.7) rN(z, T) E OindK(I[uJ!N(Z,T))([u]N(z, T)), 

which has to hold for z Ell, T E [T0 , T1]. It follows that 

rN(z, T)[w-[ti]N(z, T)] ~ 0 VwEK([u]N(z, T)), 

provided that [ti]N(z, T) E K([u]N(z, T)). It can also be proved, [4], that the condition 
( 4. 7) is equivalent to the conditions 

rN(z, T) E oindR:+([u]N(z, T)), [u]N(z, T)rN(z, T) = 0, 

which have a clear physical sense. 

4.3. Friction condition 

Let p, > 0 stand for the coefficient of friction between any two adjacent layers of the 
composite; for the sake of simplicity p, is assumed to be independent of z Ell. Setting 

(4.8) 

we assume that the friction forces rr(z, T) are restricted by the known condition 

(4.9) rr(Z, T) E F(z; rN(z, T)), z Ell, T E [T0 , T1]. 

Interpreting Eq. (4.9) as the constraint inclusion (for any fixed z Ell, rN(z, T) E R+) 
and bearing in mind that [ti]r(z, T) · rr(z, T) is the rate of work of the friction forces, 
from Eq. (4.5) we get 

(4.10) [u]r(Z, T) E OindF(z;rN(Z,T))(lr(Z, T)), Z Ell, T E (To, TJ]• 

Thus the internal reactions maintaining the constraints ( 4.9) are represented by the rates 
of the displacement jumps [ti]r(z, T) across the laminae interfaces. It can be shown that 
Eq. (4.10) leads to the conditions describing Coulomb's friction law. 

4.4. Debonding relations 

We shall assume that the interlaminae bonding material (the initial configuration 
of which is represented by the surfaces II), before the possible local debonding of layers, 
has linear elastic properties. At the same time we shall postulate that the bonding material 
under consideration can sustain only restricted values of the interlaminae bonding tractions 
s(z, T). Moreover, after de bonding of layers, only unilateral contact between the adjacent 
sheets is assumed to occur. 

In order to describe these facts, we shall introduce the function 

(4.11) n(z,[u](z, T)) = ~ YNI[u]N(z, T)l 2 + ~ YriJ[u]r(z, T)W-a 
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with I Ia II = y' a · a for every a E R 3 and where 'YN, 'YT, (X are the positive constants. The 
functions n(z, [u](z, r)), z Ell, will be interpreted as the strain energy functions (related to 
the surface II) of the bonding material before the possible debonding of layers; hence 
'YN, 'YT stand for the longitudinal and shear modulus, respectively. After de bonding of 
adjacent layers, the strain energy of the bonding material is assumed to be equal to zero; 
thus the positive constant (X may be interpreted as the maximum value of the internal 
energy of the bonding material, measured from the state in which [ u] (z, r) = 0. Thus, 
after introducing the functionals 

(4.12) {
1 if n(z, [u] (z, a))< 0 for every a E [r0 , r), 

e(z, r) = o ·f ( [ ] ( )) f [ ) 1 n z, u z, a = 0 or some a E r 0 , r , 

we shall postulate the debonding condition in the form 

(4.13) n(z, [u] (z, r)) = 0 and (J(z, r) = 1, 

which takes into account the fact that the debonding process is irreversible in time. Using 
the relations (4.11) and (4.12), we see that if the debonding condition (4.13) does not hold, 
then the interlaminae boundary tractions s(z, r) are determined by 

(4.14) ( ) _ IJ( ) on(z, [u] (z, r)) II 
S z, T - u Z, T o[u] (z, T) , Z E . 

If the debonding condition (4.13) holds, then we shall assume that 

(4.15) ( ) _ , on(z, [u] (z, r)) II 
S Z, T - 1'. "[ ] ( ) , Z E , 

0 U Z, T 

for some A E [0, 1]. This means that during (local) debonding, the interlaminae bonding 
tractions s(z, r) are not uniquely determined but can change their values from those 
before the debonding (for A = 1) to those after debonding (for A = 0). 

Equations (4.14) and (4.15) can be rewritten in the simple form (cf. Appendix at the 
end of the paper and Figs. 2 and 3): 

(4.16) s(z, r) E S(z, [u] (z, r), (J(z, r)), 

---r-~----l___.~r---,___l..--~ [u] N (z, T) 

'[3(·, 1,z) =iT (z,-) 

s,/z,T) 

FIG. 2. Delamination in the normal direction. 
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JT(z,.) 

(3{-, O,z) 

------.---*-----+---""::::........,~.L__--- [ u]r{z, T) 

(3(·, 1,z )= ff(z,-) 

FIG. 3. Delamination in the tangential direction. 

where S(z, [u] (z, r), O(z, r)) are the closed convex sets in R3 defined by 

(4.17) S(z, [u] (z, r), O(z, r)) 

879 

l{o(z, T) a"~[u~~!~z;) T))} if n(z, [u](z, T)) < 0 or O{z , T) = 0, 

= {;.on(z,[u](z,r))_:A.E[0,1]} if n(z,[u](z,r))=O and 0( ) 1 
o[ u] (z' 'l') z' 'l' = ' 

and where O(z, r) is defined by Eq. (4.12). Hence it has to be emphasized that the sets 
S(z, [ u] (z, r), O(z, r)) depend on the history of the displacement jump [ u ](z, a), a E [ 'l'o, 'l'). 

Following the line of approach outlined in Sects. 4.2 and 4.3, we shall interpret the 
inclusion (4.16) as the constraints imposed on the interlaminae bonding tractions s(z, r). 
Bearing in mind that s(z, r) · [u](z, r) is the rate of work of these tractions, we obtain 
the following form of the constituent law of the local de bonding process: 

(4.18) [u] (z, 't') E oinds(z,\[uJ\(z,T),8(z,T))(s(z, r)), z Ell, 

with O(z, 't') determined by the condition (4.12). The physical sense of the obtained consti­
tuent law can be easily seen if we rewrite the condition (4.18) in the form of the variational 
inequality (cf. Sect. 4.1). Obviously, the models of delamination effects different from the 
one these introduced above can also be proposed. 

4.5. lnterlaminae traction relations 

As it is known, [3], if q;: W ~ R is a proper, convex and lover semicontinuous function, 
then 

W* E oq;(w) if and only if WE oq;*(w*), 

where q;*: W* ~ R is the polar function defined by 

q;*(w*) = sup{(w, w*)-q;(w)}. 
weW 

Applying the forementioned proposition to Eqs. (4.10), (4.18) and taking into account 
Eqs. ( 4. 7), we arrive at the relations 

rN(z, T) E oindK(I[u]IN(~,T))([u]N(z, 't')), 

(4.19) rr(Z, 't') E oind~(z;rN(Z,T))([u]r(Z, r)), 

s(z, r) E oind~(z, l[uJI(z,T),8(z,T))([u] (z, 't')), 

http://rcin.org.pl



880 Cz. WozNIAK 

for z Ell, T E [T0 , T1]. Equations (4.19) will be referred to as the interlaminae traction 
relations. The families of sets K( · ), F( ·)are determined by Eqs. (4.5) and (4.8) respectively, 
and S( ·) are defined by means of Eqs. ( 4.16). The interlaminae traction relations ( 4.19) 
have to be considered together with Eq. (4.1) for the interlaminae stress t(z, r), z Ell, 
T E [To, T1]. Let us observe that 

(4.20) 

5. Law of motion with delamination effects 

if tN(z, T) ~ 0, 

if tN(z, T) > 0, 

Summing up the results of Sects. 2-4, we conclude that the basic system of the governing 
relations of the de bonding process for the composites under consideration is given by: 

i. The equation of motion (2.2). 
ii. The constitutive relations which can be assumed either in the form (3.1) or in the 

form (3.2), with E(x, r) given by Eq. {1.1). 
iii. The interlaminae traction relations (4.19) with the formula (4.1) for the interlaminae 

stress t(z, T). 
The forementioned relations have to be analysed together with the pertinent initial 

conditions as well as with the regularity conditions for the fields involved. From the fore­
mentioned governing relations, we can obtain relations where the basic unknowns are: 
[T0 , Tr] 3 T-+ u( ·, T), [T0 , Tr] 3 T-+ T( ·, T) and [T0 , Tr] 3 T-+ rN( ·, T), where the 
displacement fields u( ·, T) and the stress tensor fields T( ·, T) are defined on A, while the 
reaction fields rN( ·, T) are defined on II for every T E [To, T1]. For the elastic materials 
we can assume as the basic unknowns [T0 , Tr] 3 r-+ u( ·, T) and [T0 , T1] 3 T-+ rN( ·, r). 
At the same time the displacement fields u( ·, T), r E [To, r1], have to satisfy the boundary 
condition (2.1). 

In this section we are to show that the equations of motion (2.2) with the interlaminae 
tractions determined by Eqs. (4.1) and (4.19) lead to a certain time-dependent quasi­
variational inequality for the displacement field, which can be referred to as the law of 
motion with delamination effects (i.e. with possible discontinuities in displacements). 
We shall use the known denotations for the Sobolev spaces; for particulars the reader is 
referred to [2], pp. 37-46. The results we are going to obtain will hold under the following 
regularity assumptions: 

TIAK( ·, T) E {L2 (AK))3 x 3, 

b( ·, T) E (L2 (!J))3, 

divTIAK( ·, T) E (L2 (AK))3 ,~ 

p( ·, r) E (L2 (1)) 3
, 

forK= 1, ... , SandT E [To, T1]. As the space of the test functions in Eq. (2.2) we introduce 
the space V given by 

V={vE(L2 (D))3
; viAKE(H1(Ax)) 3

, K= 1, ... ,S, v(x)=O for xEF0 }. 
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We shall also assume that mes(F0 nA.rc) > 0 for K = 1, ... , S. Denoting by ( ·, ·) and 
( ·, · )K the scalar products in (L2 (A))3 x 3 and (L2 (Ag))3

, respectively, we obtain 

(Vv, T( T)) = J tr[T(x, T)Vv(x)]dV, 
A 

(v, ii(-r))K = J ii(x, -r) · v(x)dV, K = 1, ... , S, 
Ax 

with the extra denotations T( T) = T( ·, -r), u( -r) = u( ·, -r). We also define the functionals 
f(-r) , t*(t') E V* by means of 

(v,/(T)) = J b(x, T) · v(x)dV+ J p(x, -r) · v(x)dA, v E V, 
n r 

(v, t*(T)) = J t(z, T) · [v] (z)dA , v E V, 
II 

for every T E [T0 , -r1Je). Under the foregoing denotations the variational condition (2:2) 
will take the form 

s 
(5.1) (Vv, T(T)}+(v, t*(-r)) = (v ,/(T))-}; f>K(v, ii(-r))K , Vv E V, T E [-r0 , -r1]. 

K = l 

The decomposition ( 4.1) yields 

(5.2) (v, t*(-r)) = (v , r~(T)+s*(T)+rHT)) , v E V, 

where we have denoted 

(v , r~(-r)) = J rN(z , T) [v]N(z)dA , (v , s*(T)) = J s(z, -r) · [v](z)dA, 
II n 

(v, r~(-r)) = J rr(z, -r) · [v]r(z)dA, VE V. 
n 

Setting 

V0 = {v E V; [v]r(z) = 0 for z Ell} 

we obtain from Eqs. (4.20) and (5.1), (2.3)1 the following relations 

s 

if tN(z, T) < 0, 

if tN(z, T) ~ 0, 

(5.3) J tN(z, -r) [v]N(z)dA = - }; (v, divT(-r))K- (Vv, T(-r)) Vv E V0, 
n K=I 

which determine rN( ·, T) in terms of T( T) for every T E [ T0 , T1]. 

In order to simplify the notation, define 

(5.4) 
cp([u] (z, -r); [u] (z, T), O(z, -r), z) = ind!(z,l[uJI(z,T),O{z,T))([u] (z, T)), 

V'([u] (z, T); rN(z, T), z) = indr<z,rN(z,T))([u]T(z, -r)). 

(
4

) It can be seen that t•('r) is an element of v• because the jump operator [ ·] represents the linear 
continuous mapping from V onto (H1' 2 (Il))l. 
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Then the interlaminae traction relations (4.19) become 

rN(z, r) E aindK{\fui!N(Z, T) ([ti]N(z, r) ), 

(5.5) rr(z, r) E atp([u]r{z, r); rN(z, r), z), 

s(z, r) E acp([u] (z, r); [u] (z, r), ()(z, r), z), 

Cz. WozNIAK 

where the subdifferentials have to be taken with respect to the first argument of the functions 
tp{ ·) and cp{ · ). Bearing in mind Eq. (2.1), define 

(5.6) $'([u]N(r)) = {v E V: [v]N(z) E K([u]N(z, r)) for z ell}. 

Hence the global form of the kinematical constraints (4.6) will be given by (here and in 
the sequel we define/( r) = f( ·, r)) 

0( i) E% ([u]N(i) ), i E ( 'l'o, ij]. 

Finally, we shall introduce the functions P(·,rN(r)), cJ>(·; [u](r),()(r)) defined on V, 
setting 

P(v; rN(r)) = J tp([v]r(z); rN(z, r), z)dA, 

(5.7) n 

ct>(v; [u] (r), ()(r)) = J cp([v] (z); [u] (z, r), ()(z, r), z)dA, v E V, 
n 

provided that the pertinent integrands are elements of L1(II), and assuming that 

P(v; rN(r)) = oo, ct>(v; [u] (r), ()(r)) = oo 

if otherwise. It can be shown that (under certain conditions) the functions tp( ·; r,...(z, r), z) 
and cp{ ·; [u](z, r), ()(z, r), z) are proper, convex and lower-semicontinuous. Hence also 
P( · ; rN( r)) and cJ>( · ; [ u] ( r), ()( r)) are proper, convex and lower-semicontinuous functions 
defined on V, [5], and their subdifferentials can be well defined. Moreover, if Eqs. (5.5) 
hold for almost every z E II, then the following inclusions are satisfied: 

r~( i) Eaind.?f"([ uJ!N(r)) (0( i) ), 

(5.8) r~(r) E aP(u(r); rN(r)), 

s*(r) E acJ>(u(r); [u](r), ()(r)). 

Now combining Eqs. (5.1), (5.2) and (5.8) and denoting 

¢(v; u(r), ()(r), rN(r)) = indr(l[uJ!N(T))(v)+P(v; rN(r))+ct>(v; [u] {r), ()('r)), 

we arrive at the inequality 

(5.9) (Vv-Vu(r), T{r))+~(v; u{r), ()(r), rN(r))-¢(u(r); u(r), ()(r), rN(r)) 
s 

~ (v-u(r),/(r))+ ~ !?R(v-u{r), ii(r))x, 
K=1 

which has to hold for every v E V and r E [r0 , r1]. This inequality, with rN(r) determined 
by the relations (5.3), will be referred to as the variational law of motion for the layered 
composites subject to the possible de bonding prQcess (law of motion describing the delami­
nation effects); it has to be considered together with the constitutive relations (3.1) or 
(3.2), the strain-displacement relation (1.1 ), the boundary conditions (2.1) and the pertinent 
initial conditions. For the elasticjviscoplastic constituent law (3.2), the basic unknowns 
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are: the motion [r0 , r1] E r ~ u( ·, t) and the evolution of stresses [r0 , r1] E r ~ T( ·, t). 
For the elastic constituent law (3.1) the stress fields T(r) can be eliminated from the rela­
tions (5.9) and (5.3) by means of Eqs. (3.1) and (1.1) and hence we arrive at the form 
of the law of motion with [ r 0 , r1] E r ~ u( ·, r) as the basic unknown. 

If the friction between the laminae can be neglected, then rr(z, r) = 0 for every z Ell, 
r E [ r 0 , r ], and under the denotation 

n(v; u(r), O(r)) = ind~(l[uJIN(\'))(v)+W(v; [u] {r), O(r)), 

the variational law of motion reduces to the form 

(5.10) (Vv-Vu(r), T{r))+?J(v; u(r), O(r))-?J(il{r); u(r), O(r))~ (v-u(r),f(r)) 
s 

- 2 !?K(v-u(r), ii('r))x 
K=l 

which has to hold for every v E Vand r E [r0 , r1]. The obtained inequality(5.10)has tobe 
considered with the constitutive relations (3.1) or (3.2), the strain-displacement relation 
(1.1 ), the boundary conditions (2.1) and with the pertinent initial conditions. Since the 
inequality (5.10) is independent of reactions rN(r), then Eqs. (5.3) do not enter into the 
description of problems. 

6. Comments 

From the physical and engineering point of view, the evolutional model of delamination 
proposed in Sect. 4 and described by the formula (4.18) with the denotations (4.17) and 
( 4.11) seems to be the simplest matter (if we put aside the "static" model introduced in 
[7]) since it involves only one delamination parameter ex. However, from the mathematical 
point of view, this model leads to the time-dependent inequalities (5.9) or (5.10) of the 
quasi-variational type, which are non-local in time. The existence and the properties of 
possible solutions to the pertinent boundary problems is an open question. Thus the ob­
tained general relations describing the delamination processes have to be treated rather as 
the basis for various formulations of approximative models of special problems, then as the 
final description of the de bonding processes in laminates. For the quasi-stationary problems 
we can apply a procedure similar to that proposed in [7] and pass to the incremental 
form of the governing relations. On the other hand, the known multilayered composites 
are made, as a rule, of a repeating sequence of a certain basic unit of layers, i.e. they have 
a periodic material structure. The modelling of such composites leads to so-called effective 
or homogenized models. The relations obtained in the paper may constitute the basis 
for the passage to the effective models of the debonding processes in laminates. To this 
aid the nonstandard homogenization approach, [6], can be applied; this method will be 
examined in the forthcoming paper [8]. 

Appendix 

It can be easily observed that the proposed model of debonding effects is based on the 
condition (4.16) where the notations (4.17), (4.11) and (4.12) have been used. Hence the 
multifunction S(z, ·, O(z, r)) c R 3 plays the crucial role in modelling. Taking into account 
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the approach given in [7], we shall now explain the mathematical meaning of this multi­
function. To this end, firstly we introduce the functions n(z, ·): R 3 --. R by means of 

_ {n(z, w) if n(z, w) ~ 0, 
n(z, w) = 0 if n(z, w) > 0, wE R3, 

where n(z, w) is given by Eq. (4.11), and secondly we define 

f3(z; (), w) = n(z, w)O, () = O(z, r), wE R3, 

where O(z, t) satisfies the functionals (4.12). Here /3( ·; 0, z) are non-smooth and non­
convex functions (for () = 1) but it can be shown that they are regular in the sense of 
CLARK, [7]. Debonding may take place only for the values of[u](z, r) where f3([u] (z, r),O, z) 
is non-smooth. In any other case /3( ·, (), z) is smooth and the values of s(z, r) can be 
obtained as the derivatives of /3( ·) with respect to [ u] (z, r). However, using the notion 
of the generalized Clarke's gradient, [5], we can obtain the general interrelation between 
s(z, t) and [u](z, r) in the form 

(A.I) s(z, r) E ap([u] (z, r); O(z, r), z) 

given in [7] where the generalized Clarke's gradient is taken with respect to the first argu­
ment of {3( • ). At the same time it can be observed that the formula (A.l) coincides with 
the assumption (4.16). This means that 

(A.2) S(z, [u] (z, r), O(z, r)) = ap([u] (z, r); O(z, r), z) 

holds. Equation (A.2) yields the explanation of the mathematical structure of the multi­
functions S(z, ·, O(z, t)), which were introduced in the paper. The scheme of interrelations 
between the interlaminae forces and the displacement jumps is shown in Fig. 2 (for 
[u]r(z, r) = 0) and in Fig. 3 (for [u]N(z, r) = 0) where the diagrams of the pertinent 
functions n(z, ·) and /3( ·, ·, z) are also presented. 
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