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Differential pseudocontinua(*) 

R. KOTOWSKI AND D. ROGULA (WARSZAWA) 

IN THE PAPER. a possibility of constructing differential pseudocontinuum models appliatble to 
lattice dynamics is investigated. The relations between lattice force constants and coefficients 
of polynomial differential operator are found. Two theorems dealing with the asymptotic behav­
iour of lattice force constants are formulated and proved. Two examples are discussed in the 
harmonic approximation: a one-dimensional chain of atoms and a three-dimensional simple 
orthorhombic lattice. The obtained results are compared with those of the lattice dynamics 
theory . 

. w pracy zbadano moZiiw<>SC konstrukcji r6Zniczkowych modeli pseudocontinuum i ich zasto­
sowan do opisu dynamiki sieci. Znaleziono zwi~ pomi~ stalymi silo~ teorii sieci, 
a wsp61czynnikami wielomianowego operatora r6Zniczkowego. Sformulowano i udowodniono 
twierdzenia dotye74ce asymptotycmego zachowania si~ stalych silowych. Przedyskutowano dwa 
przykJady w przybliZeniu harmonicmym: jednowymiarowy lancuch atom6w i tr6jwymiaroWil 
prosbl siee rombowll. Otrzymane wyniki por6wnano z teorill sieci. 

B pa6oTe HCCJIC.z:tYCTC.JI B03MO>KHOCTL nocrpoemm ~<l><l»ePe~HhiX nces~oKoHTHHyam.­
HbiX MO~CJICii, DpHMCHH'l'CJIDHO K ODHC8HHIO ~ peWCTKH. Hd~CHbi COOTHOWCHWI 
MC)I(Jzy CHJIOBbiMH KOHCTaHTaMH pemeTKH H K03CP<l>HUHCHTbl DOJIHHOMH&Ju.HOrO ~cl><l>epeH­
IUWIDHOro OJieparopa. QpopMyJIUposam.I H ~OK838Hbl yrsep>~<,QeHWI o6 accHMIITO'l'IAeCKOM 
DOBC~CIIHH CHJIOBbiX KOHCTaB'l'. 06cy)I(,Qai()TC.JI ~ IipHMepa B rapMOHIACCKOM npH6JIH>Ke1nm: 
o~oMepH&.J~ ~eno111<a aTOMOB H TpeXMepBa.R: npOCTa.R: poM6neCKa.R: pemeTKa. Peaym.Ta~ 
cpasiDIB8lOTC.JI C peaym.TaTilMH DOJiyqCBHbiMH Ha OCHOBC TCOpHH pemCTKH. 

1. Introduction 

APART from undoubtful successes, the lattice dynamics theory often encounters difficulties 
which are, in general, of a technical nature. First of all, there are troubles in applying 
discrete mathematics to a descriptkn of the behaviour of crystals. On the other hand the 
classical continuum approach dces not allow to describe the phenomena which require 
consideration of small areas with diameters comparable with the interatomic distances. 

Some expectations have been recently devoted to the theory called pseudo- or quasi­
continuum which was developed by . RoouLA [1] and KUNIN [2]. The main feature of the 
pseudocontinuum theory is the restriction of the set of admissible functions. These re­
stricted PC-functions of the continuous argument uniquely interpolate the functions 
of the discrete argument. The mathematics of the pseudocontinuup1 theory is very flexible. 
In the framework of this theory, apart from discrete operators, differential or integral 
operators can also be used without losing their precise meaning. 

In this paper we study the application of differential polynomial operators to describe 
the lattice dynamics. It is found that the force constant of a crystal lattice do not vanish 

(•) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland, 
August 28th-September 2nd, 1977. 
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44 R. KoTOWSKI AND D. RooULA 

identically for great distances but they tend to zero with some negative power of distance. 
In the Fourier K-space it corresponds to approximating the dispersion curves by polyno­
mials. 

The appropriate theorems about the admissible functions are formulated and proved 
and two examples are given. The obtained results are compared with those of the lattice 
dynamics theory. 

2. Pseudocontinuum theory and differential operators 

In this section we shall state briefly fundamental conctpts of the pseudocontinuum theory 
as given by RoGULA [I] and KuNIN [2]. For the sake of consistency some slight changes 
in notation will be introduced. The wave vectors k are restricted to the reciprocal cell 

The position of an atom in a three-dimensional primitive crystal lattice can be described 
by the vector 

(2.1) X.(n) =An, 

where n is a vector composed of the integers n1 , n2 , n3 , and A is a matrix whose elements 
are built up of the lattice constants a1 , a2 and a 3 • 

In the continuum theory quantities such as displacements u(x) and forces q(x) are 
functions of a continuous variable x but in a crystal they have a physical meaning only 
in a discrete set of points 

(2.2) x = X(n). 

The set of these functions is too large and there are evident troubles in interpretating 
the results obtained. The goal of the pseudocontinuum theory was to find an appropriate 
class of functions. The admissible functions in the pseudocontinuum theory, the so-called 
PC- or QC-functions, are the entire analytic functicns satisfying the inequality 

(2.3) IJ(x)l .- C(l+ lxi)Nexp (; Imx) 

for certain constant C and N [5]. That is, they are of the order 1 and type nfa. 
If f, q e PC, then their convolution and all the derivatives are of the class PC. Also 

all polynomials are PC-functions. 
The pseudocontinuum theory established a correspondence between the functions in 

discrete N-, continuous X- and Fourier K-representations. This can be done making use 
of the sampling function, the so-called Brillouin t5-function, which has the property 

(2.4) ~.(An)={~ for 

for 

n = 0, 

n :;e 0 . 

It has the following form resulting from the Fourier transformation method: 

(2.5) 
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. DIFFERENTIAL PSEUDOCONTINUA 45 

where the integration extends over a certain volume B, e.g. the first Brillouin zone. In our 
case it will be the elementary cell of the reciprocal lattice. It is easy to see that the dimension 
of t58 (x) is [cm- 3

]. The fundamental relations between the functions of one or two argu­
ments and between the equations of motion on N-, X- and K-representations are given 
in [8]. 

In spite of the fact that the pseudocontinuum theory describes exactly the lattice dy­
namics, it admits differential equations of motion 

(2.6) 

where Pij( a) is a differential polynomial in the partial derivative operators a = ( a1 , a2 , a3 ) 

Piia) = _l; aii~o"'. 
0<1~1~.5' 

(2.7) 

Here 11 = (f.l 1 , f.l 2 , f.l3) is a multi-index described in [5]. Roughly speaking, it allows us to 
state how many indices take the values of 1, 2 and 3, respectively, instead of specifying 
the value of every index in an arbitrary tensor quantity of an arbitrary order symmetric 
in a certain group of indices. Thus we can write 

(2.8) 

The value 

(2.9) 

equals the number of tensor indices which correspond to the multi-index f.l· The coefficient 
a,J~ is equivalent to a tensor of the order 2+ if.ll symmetric in the last lf.ll indices. 

It was shown in [4] that every differential operator in the pseudocontinuum theory has 
an equivalent integral form. In fact, if we integrate by parts the following equality, 

(2.10) 

then we obtain 

(2.11) 

and we can state that 

(2.12) 

Equation (2.12) can be re-written in the K- and N-representations: 

(2.13) 

(2.14) 

where 

(2.15) 

1./Jii(k, k') = (2n)3Qai1iik')~t5(k-k'), 

f./Ju(n, n') = ( -1)1~1!Jau~t5~[A(n-n')], 

Equation {2.14) gives us the simple relation between the lattice force constants t.J>,j(n, n') 
and the coefficients of the differential polynomial operator aiJw 
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46 R . KOTOWSICI AND D. ROOULA 

3. 1be asymptotics of the force constants 

In contrast to usual approximations in the lattice theory, the force constants given by 
the formula (2.14) need not vanish identically for large distances. Instead of that they can, 
slower or faster, decrease. The asymptotical behaviour of the force constants is therefore 
crucial for the general applicability of differential pseudocontinuum models. 

Before discussing this problem, it is necessary to establish some mathematical facts 
concerning the continuous-discrete Fourier transformation. For the sake of greater pre­
cision, in this paragraph we shall make use of different symbols for the function and 
its Fourier-image, e.g.fandj, respectively. We shall start the discussion from the one-di­
mensional case. 

3.1. ODHimeasloaal row of atoms 

Let B denote the open segment 

(3.1) k E (- : , :) , 

and R- the entire real k-axis. Consider an admissible function f(x), and let 

(3.2) J,. = f(an), 

(3.3) 
11 

The Fourier transform J, considered on R, is a periodic function 

(3.4) 

or, more precisely, a periodic distribution (generalized function). If, for a certain /, the 
transform j is a function of the class C1(R), then 

!(k+; -o) =f(k-; +o). 
(3.5) i'(k+ ; -o) = i'(t- ; +o). 

for arbitrary k. 
Let /(k) be an infinitely differentiable function of k on B. Then 

n/a 

(3.6) anJ. =;,. J dke .... i'(k)-;,.(-1)"[!(; -o)-i(-; +o)]. 
-n/a 

By the Riemann-Lebesgue lemma for the integral in Eq. (3.6), one obtains the asympto­
tic expression for J,.: 

(3.7) c,. 
.r ~ - for n -+ oo, 

J" an 
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DIFFERENTIAL PSEUDOCONTINUA 47 

where 

(3.8) 

is a bounded function of n. 
If f is continuous, then the square bracket in the above equation vanishes. Instead of 

Eq. (3.6) we have 
nfa 

(3.9) (an)2J. = ~ J dke'''"]"(k)-~:(-l)'[f'(: -o)-1'(-: +o)], 
-nfa 

which implies 

(3.10) 
I' c,. 

J,. ~ (an)2 for n ~ oo, 

where 

(3.11) c.= -~(-I)"+'[i'(; -o)-i(-; +o)]+o(I). 
By iterating the above procedure the following proposition is proven: 
PROPOSITION 3.1. Let ](k) be C00 (B) and C'(R) for a certain /. Then 

(3.12) 
I' c,. 

J,. ~ (an)l+l for n ~ oo, 

where c, is a bounded function of n. 

3.1. 'Jbree.cUmeaslonal lattice 

Let B denote the open Brillouin zone (or a reciprocal cell), and R3
- the entire real k­

space. Then, for any admissible function f(x) we have 

(3.13) 

(3.14) 

la= /(An), 

}(k) = {J ,2; e-ikAaJ,. 

The periodicity condition of the Fourier transform j reads 

(3.15) j(k + K/2) = ./(k- K/2), 

for any reciprocal vector K. 

Leth(k) and /~(k) be defined fork belonging to the boundary oB of the region B as· 

outward and inward limit, respectively. If for a certain I the transform /(k) is of the 
class C'(R3

), then 

(3.16) 

for arbitrary lCfiE oB and arbitrary multi-index l,ul ~ I. Equivalently 

(3.17) 
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for 

(3.18) k+K/2 E aB, k-K/2 E aB. 

Instead of Eq. (3.6) we can now write 

i J 3 ( a)" i J ,.. (vAn)/,. = ( 2n)3 d keKAn V ok /(k)- (2n) 3 (vdS)e'KAnf+(k), 
B oB 

(3.19) . 

where v represents an arbitrary unit vector. Taking into account the central symmetry 
of Band following the argument of the previous subsection, we obtain the following: 

PROPOSITION 3.2. Let /(k) be C00 (B) and C1(R3
) for a certain!. Let v be an arbitrary 

unit vector. Then 

(3.20) 
Cn(v) 

J, ~ (vAn)2+ 1 for n--+ oo 

with cn(v) being a bounded function of n. 

4. One-dimensional chain 

Let us consider an one-dimensional chain of atoms along the Ox axis (Fig. 1). The 
distance between the atoms is constant and equal to a. The equation of motion of such 
a model of crystal in the X-representation has the form 

(4.1) eu(x, t)+}; a~a"'u(x, t) = q(x, .t). 
~ 

FIG. 1. 

We assume that the crystal is homogeneous, thus e(x) = e and 

(4.2) oa, = 0, 

which means that a,.,'s are independent of the coordinate. The model is of course also 
-centrosymmetric, and thus 

{4.3) a, = o for odd p,. 

The consequence of the above properties of the coefficients a is that the equation 
resulting from Eq. (2.12), 

(4.4) 

contains only derivatives of an even order. We restrict our considerations to the differential 
polynomial operator of the fourth order. Thus, on the basis of the one-dimensional form 
·Of the ~8-function, 

{4.5) I J 'k 'k 1 . nx ~s(x) = -
2 

de' x = -sm-, 
n nx a 

B 
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where B is an interval [- nfa, nfa], we have to calculate the following four derivatives 
only: 

otl (x) = cosnxfa - !!l(x) ' 
8 ax x 

o2tla(x) = - ~ tla(x)-2 otla(x) ' 
a2 · x 

(4.6) 
iJ3tJa(x) = - ~ otla(x)+ 2n2 tla(x) + 6 ~~a(x) ' 

a2 a2 x x2 

For lx-x'l :/:: 0 we obtain 

(4.7) f/J(x, x') = a(a2 o2tla(x-x')+a4o4 tla(x-x')) 

= a(cosn(x-x')fa (2 :!:.__
0 
-a) _24a cosn(x-x')/a) 

a(x-x')2 a2 4 2 4 a(x-x')4 • 

The one-dimensional form of Eq. (4.4) in the Fourier K-representation is as follows:· 

(4.8) f/J(k, k') = 2naap(ik')PtJ(k-k'). 

The coefficient in Eq. (4.8) will be denoted by W(k). It is easy to see that W(k) = W( -k) 
identically for all k. It means that W(k) c C0 (R). 

Generally, for large lx-x'l we have W(x) ~ lfx2
• Now, the question arises if one can 

choose the coefficients a11 so that the relation W(k) c C1(R) is obtained. The answer 
is affirmative if we require the continuity of the first derivative of W(k) 

(4.9) 

This condition yields 

(4.10) 

W'(nfa) = W'( -nfa). 

B·.!cause of the central symmetry we conclude that W(k) c C2 • According to the Propo­
sition 3.1. f/J(x, x') ~ lfx4 • 

Finally, we obtain the asymptotic behaviour of the lattice force constant in discrete 
N-representation: 

(4.11) for n :/:: n'. 

It is worth mentioning that since the factor cos(nn) equab ( -1)", this asymptotic 
behaviour is oscillatory. As a consequence, in many situations the contributions ofterms 
with large n's will approximately compensate each other. 

5. Orthorhombic three-dimensional lattice 

In this section we extend the results of the previous section to the three-dimensional 
case. We consider an infinite simple orthorhonibic crystal lattice whose elementary cell 
is shown in Fig. 2. 

4 Arch. Mech. Stos. nr 1179 
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FIG. 2. 
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a1 +az+-a3 

((t=d.2•d3•90° 
Xi 

We assume that our crystal is homogeneous 

(5.1) 

Since it is also centrosymmetric, then 

(5.2) aiJp = 0 for odd l,ul. 
If we restrict the order of the differential polyncmial operator to four, then, for r = lx -x'l 
=F 0, 

(5.3) 4>11(x, x') = Da11P~' t}8(x-x') 

= D [,2; aiJpo~, t}8 (x-x')+ ,2; aiJp~' t}s(x-x')]. 
jpj=-2 (14(=4 

For lP I = 2 we have the following p's: 

110 200 

101 020 

011 002 

and for l.ul = 4: 

400 310 130 220 211 

040 301 103 202 121 

004 031 013 022 112 

Totally it makes 21 terms. 
Due to the translational symmetry of the reciprocal lattice, we have t58(x) = t5s(x 1) x 

t}s(x2)t}s(x3), where t}8~ is given by the formula (4.5) and 

(5.4) oPt5s(x) = ~~ t}s(x1)~2 t5s(x2)~3 t}s(x3), 

for the sake of convenience we shall write bp ·for a11P and W(k) for 4>11(k, k'). 
We require W(k) to be at least of the class C0 (R). This condition can be written as fol­

lows: 

(5.5) W(k)kt..,nfa1 = W(k)k1=-nfa1, i = 1, 2, 3 

with respect to every component of the vector k. The remaining two components of the 
vector k are ·arbitrary. The condition (5.5) implies vanishing ofsome group of b,. It is 
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DIFFERENTIAL PSEUDOCONTINUA 51 

easy to see that W(x) behaves like ,.., 1/r2
• According to Proposition 3.2, the smoothness 

of this function ean be improved by increasing the order of W(k). It appears that the coef­
ficients bP can be chosen in such a manner that W(k) c C1{R). This can take place when 

(5.6) wk,(k)k,.=nfa, = wk,(k)k,•-nfa~ i = 1, 2, 3. 

The above conditions yield 

21r;2 
- 2 b4oo-b2oo = 0, b31o = b13o = b3o1 = bto3 = bot3 = bo3t = 0, 
at 

2n2 

(5.7) 
- 2 bo4o-bo2o = 0, h220 = b202 = ho22 = 0, 
a2 

2n2 

- 2 boo4-boo2 = 0, btu =but = h211 = 0, 
a3 

huo = h1o1 = hou = 0. 

The obtained expression is symmetric and, according to Proposition 3.2, .Pu(k, k') c: C1 

where I= 2 and .PIJ(x, x'),.., 1/r4 • 

Actually, the asymptotic behaviour of the lattice force constant in N-representation 
is as follows: 

(5.8) 4>11(f!, n') ~ -24.0 [ 5tlJ400 ')4 C()sn(n1 -nD()8(a2(n2 -nD) ~s(a3(n3 -n~J) at n1-n1 

+ 5t'1040 ~4 cosn(n2 -n~)~s(at(nt-nD)~s(a3(n3-n~)) a2 n2 - ,n 

+ 5t11004 
')4 cosn(n3 -n~)()s(at(nt-nD)()s(a2(n2 -nn)]. 

a3 n3 -n3 

6. Comparison with the lattice dynamics tlaeory 

In the previous section the asymptotic behaviour of the lattice force constants in the 
harmonic approximation for the considered models of crystals was found. The complete 
forms of the lattice force constant are as follGws: 

one-dimensional case: 

(6.1) !ll(n, n') = aa4 [- ~ "•( a(n-n')) 

24«5A( a(n-n')) + 8( n2 /a2)a(n-n') «58 ( a(n-n') )] 
- a3(n-n')3 ' 

three-dimensional simple orthorhombic lattice: 

(6.2) !ll,j(n, n') =!I [ a11• 00 (- ~ "•(a,(n,-n;>) 

24~A(a1 (nt-nD)+8(n2/ai)at(nt-nD()s(at(nt-_nD)) 
- af(n1-nD3 

x "•( a2 (112 -112)) c)0 ( a3( "• - n~)) + cyclic terms], 

4• 
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where «5j(a(n-n')) is understood in the sense of Eqs. (2.14) and (2.15) and, in Eq. (6.2), 
for cyclic terms one should put the corresponding expressions with indices permuted, 
like in Eq. (5.8). 

In the lattice dynamics theory, if one expands tae potential energy of the crystal f/J 
about the equilibrium positions of the atoms, then the first non-trivial term is 

(6.3) l/>2 = ;! }; lPTJli)uJ, 
mi 
Dj 

where the primitive lattice force constants lPT"' equal f/J11{n, n'). It is well known [6] that 
the lattice force constants have to fulfil certain invariance relations. The following in­
variance relations resulting from the translational invariance of the crystal 

(6.4) 

(6.5) 

(6.6) 

}; IPT1 = 0 for every n, i,j, 
81 

""mn - n-+hn+b - A\On-m _ ""m-nO ovlj- ov-, 1 -"Vi J - ov I J' 

where h is the translational vector of the lattice, and 

(6.7) 

are fulfill~d automatically. Equation (6.6) means that tPIJ{n, n') = tP11(n.J...n'). A; an 
example we shilll show that Eq. (6.5) is valid in our model. For simplicity we shall carry 
out our considerations by making use of the one-dimensional 4>{n, n'). 

It is easy to show that 

(6.8) 

Equations (6.8) yield 

(6.9) 
. 7 n 4 

hm4">(n) =- -aa4 -
15 

----"4. 
n~o a 

If we make use [7] of the relation 

00 

\1 ( -1)k+1 (22n-1_1)n2" 
.L.J k 2" = · (2n)! IB2,I, 
k=l 

(6.10) 

where in our <;ase n = 2 and B4 , the Bemoulli number, is equal to - 1 /30, then 

00 

(6.11) \1 7 n 4 

2 .L.J 4>(n) = aa4 IT7, 
n-1 

and finally 
00 

(6.12) }; tP(n) = f/>(0)+2}; f/J(n) = 0. 
n n=l 
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DIFFERENTIAL PSEUDOCONTINUA 53 

The invariance relations resulting from rotational symmetry of the three-dimensional 
crystal lattice 

(6.13) _2 Wf~Xf = _2 (/)j~XT for every n, i,j, k, 
m m 

are also fulfilled. 
On the basis of the above discussion we can state that the proposed differential pseudo­

continuum models describe crystal dynamics at the same level of accuracy and consistency 
as the classical discrete theory. Nevertheless, there is an important difference between 
these two approaches. In applications of the classical lattice dynamics it is usually assumed 
that the force constants vanish identically for sufficiently great distances between atoms. 
This is not the case in our approach. The force constants derived from a differential pseudo­
continuum do not vanish identically but tend asymptotically to zero with a certain nega-

1/') 

c 
10 
"tl 
E 
u 
QJ 
u 

Lattice 
Dynamics 

Differential 
Pseudocontinua 

~ L-----~~-+--4---~~~~~~ ·distance 

FIG. 3. 

tive power of distance, as illustrated in Fig. 3. The asymptotic decrease of the force con­
stants with the distance can be made faster by making use of the differential operators 
of higher order. 
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