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The phonon wind as a nonlinear mechanism of dislocation
dragging(*)

V.1. ALSHITS, M.D. MITLIANSKIJ (MOSCOW) and R. K. KOTOWSKI
(WARSZAWA)

THE THEORY of dynamic friction due to the scattering of phonons by the dislocation moving
in an anisotropic medium with an arbitrary anharmonicity is presented. The drag of straight
dislocations (both edge and scrue) and circular loops is considered. General expressions for
the magnitude and the temperature dependence of the dislocation drag coefficient B are derived
in integral form. The following calculations explicitly taking into account the anharmonicity
are performed for Murnaghan’s model. The influence of finite dimensions of the dislocation
core on the temperature dependence of drag coefficient B is analysed in a simple scheme.

W pracy przedstawiono teori¢ hamowania ruchu dyslokacji w ofrodku ciaglym o dowolnej
anizotropii’ pod wplywem wiatru fonondw. Zagadnienie przedyskutowano szczegblowo dla
dyslokaciji prostoliniowej i dla okraglej petli dyslokacji. Znaleziono wielko$¢ i zaleimoéé od tempe-
ratury wspoiczynnika hamowania ruchu dyslokacji (w postaci catkowej) korzystajac z metody
funkcji Greena. Obliczenia w postaci jawnej zostaly przeprowadzone w przyblizeniu Murnag-
hana. Przeanalizowano poprawki, jakie wnosi do otrzymanych wynikoéw uwzglednienie skoriczo-
nych rozmiardw jadra dyslokacji.

PaspHTa TeOpHA MMHAMHYECKOr0 TPEHHA B PE3YJILTATE PACCEAHHA (DOHOHOB HA MMCIOKALHH,
HBINKYLLEHCA B aHH30TPOIHON cpelie ¢ MPOH3BOJILHBLIM aHrapMoHE3mMoM. Paccmorpero Topmo-
YKEHME NPAMOJHHEHHEIX (KpaeBbIX ¥ BHHTOBLIX) MHCJIOKAIEA M KpyroBoi mermd. IlomydeHs!
obie BoIpaykeHHs (B KBapaTypax), ONIHCHIBAIOLIME BEHUAHY H TEMIIEPATYPHYIO 3aBHCHMOCTh
xoapduumenta Topmorkenna gucnokaiuit B(T). Ilocnemyiolye BEIMUCIEHHS C ABHBIM YUETOM
4HTapPMOHH3MA BBITOJHEHLI B Mojenu MypraraHa. B ympouteHHoil cxeme mpoaHanH3IHPOBAHO
BJIMAHHE KOHEUHBLIX PA3MEPOB AApa AMCIOKAIMH HA TEMIICPATYPHBIH Xox KoabhduipenTa
TOpMOJKeHMA B.

1. Introduction

ONE of the fundamental problems of the contemporary theory of solids is establishing the
nature of dissipative processes which determine the kinetics of the plastic deformation of
crystals. To solve the problem on the microscopic level it is necessary to study the mech-
anisms of energy losses caused by moving dislocations.

Stimulated by the requirements of time, the intensive work on dislocation dynamics
over the last decade has provided better understanding of many factors which influence
dislocation movement. In particular, the role of dynamic dislocation dragging caused by
the interaction of moving dislocations with elementary excitations of the crystal (phonons,
electrons etc.) has been determined in the general picture of physical processes accompa-
nying plastic deformation.

(*) Paper presented at the EUROMECH 93 Colloquium on Nonlocal Theory of Materials, Poland,
August 28th—September 2nd, 1977.



92 V. 1. Arsuits, M. D. MiTtuiansks anp R. K. Kotowskl

Dynamic friction appears, for example, in a clear form in the case of high dynamic
loads (of the types of shock loads or deformations by explosions) when fast dislocations,
with kinetic energy greater than the potential barriers, interact with the phonon or electron
gas with results in viscous dragging.

Of the same nature is viscous damping of vibrating dislocation segments determining
the level of amplitude independent internal friction when the ultrasound is traversing
a crystal. This phenomenon is the basis of one of the well-known methods of measuring
dynamic dislocation dragging.

Finally, the kinetics of the thermofluctuational overcoming of energetic barriers by
dislocations depends on the level of viscous dragging experienced by dislocations also
in the process of random walk in the potential relief of a crystal. As a consequence,
the velocity of thermoactivated movement of a dislocation and the velocity of overbarrier
movement of the dislocation appear to be inversely proportional to the mentioned dynamic
viscosity.

In most cases the important part in the dynamic dragging of dislocations falls to the
dissipative processes in the phonon subsystem. The hierarchy of these processes depending
on the temperature and other factors was discussed in detail [1]. One of the most important
mechanisms of dragging is the so-called phonon wind(!), caused by the scattering
of phonons on moving dislocations as a result of nonlinear properties (anharmonicity)
of the medium. The moving dislocation is “blowed” by the wind of phonons which
scatter and impart to the dislocation an entire momentum proportional to its velocity.
This was shown for the first time in the paper by LEIBFRIED [2]. The quantum mecha-
nical estimations of the contribution of the phonon wind to the dragging of straight
dislocations [3, 4] and dislocation loops [5] were described. The results in papers [3, 4]
were obtained in the isotropic appreximation and in paper [5] anharmonicity was esti-
mated with the accuracy of the order of magnitude of one phenomenological constant.

The aim of the present paper is to develop a theory of the phonon wind taking
into account the full influence of anisotropic harmonicity. In Sect. 2 the quantum
mechanical formulation of the problem is given. General expression has been found for
the energy dissipation which relates the characteristics of the phonon subsystem with an
elastic dislocation field. In Sect. 3 the formulae of Fourier transforms of a distortion field
of straight dislocation and dislocation loops for an arbitrary anisotropic medium are deriv-
ed. In Sect. 4 the magnitude (in the integral form) and the temperature dependence have
been determined for the coefficient of the dragging of the straight dislocation. The analo-
gous result for a dislocation loop is found in Sect. 5. In Sect. 6 the above general results
have been utilized to determine explicitly the concrete form of the coefficient of dragging
taking into account the tensor of elastic constants of the third order in the Murnaghan
model. Sect. 7 presents what corrections should be introduced into the previous results
to take into consideration the existence of the dislocation core.

(*) According to [1] at very low temperatures more important can be flutter effect, connected with
re-radiation of phonons by the dislocation vibrating in the field of thermal vibrations. At high temperatures
the relaxational processes (e.g. relaxation of “slow” phonons) have to be taken into account together
with the phonon wind.
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2. Formulation of the problem

As it was shown in [1] there exists such a range of not very low temperatures in which
the phonon wind plays a more important part than the flutter effect and the relaxation
processes and the phonon-phonon interactions may not be taken into account. In this
temperature region it is possible to disregard phonon-phonon processes and the heat
vibrations of the dislocation line and consider only the long-range component of the elastic
field of the moving dislocation that can be expressed by the quasi-static transport of the
static field of the rigid dislocation (?). Besides, we can also use, for the investigated range
of temperatures, the Debye approximation of the phonon spectrum and the continuum
theory of dislocations not taking into consideration the existence of the dislocation core.

According to [6] the studied anharmonic effect of the scattering of phonons at
a moving dislocation can be described by the time-dependent Hamiltonian

@1 Hy(t) = )] Tplutfe o,
ap
The subscripts «, § denote the different phonon states given by a pair of the wave

vector k and polarization 4:a = (k, 4), f = (k’, ) where k' =k+q, 2, =qv, &=
= ay+ats; afa, a— operators-of creation and annihilation of phonons respectively, and

Tl s M{;’!I’ﬂ‘ikj :am(q)
ap = —— ’
40 unwﬂ

# — Planck’s constant, I, — vector of the phonon polarization in the state a, o — density
of an undeformed crystal, #,,(q) — Fourier transform of a static distortion dislocation
field and Af% the renormalized anharmonic elastic constants [6], w,— phonon
frequency in the state a.

It can be shown that in the considered range of low temperatures the Hamiltonian
of interaction (2.1) is sufficiently small to use the quantum-mechanical perturbation theory.
In the first-order perturbation theory the probability of the scattering of the phonon from
the state « to the state 8 per unit time is given by the formula

2.2

8
(2.3) W = ﬁ—’:w.,i*a(w,-w,,-o.),

where d(w) — Dirac delta-function.
The number of transitions per unit time from the state « to the state g is given
by the product of the probability W, times the density number of phonons in the state a:

-1

(%) We shall consider a dislocation uniformly moving with the veloaity v which is small as compared
to the velocity of sound c; this makes applicable the quasi-static description of the elastic field of the moving
dislocation.

24 ny = [exp(
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where ks — Boltzmann constant. If we take into account the fact that in every event
of scattering the energy fi(w,—w;) = #£2, is transferred then the dissipation of energy
per unit time and per unit length of the dislocation line is given by

@5 D= -%Za.lr,ppnua(w,—m,-g.)
«,f

4n
=TiL ;; Q4| Tep 12 (e —1g) (e, — 05— o).

Here L — the length of the dislocation line (in the case of a straight dislocation, L is the
diameter of a crystal along the dislocation line).

If we expand the expression (2.5) into a series of v/c, retain the first non-vanishing
term and make use of

(2:6) Ny —ng = n(wg) —n(w,— D) = "("’m)—ﬂ(ﬂ’a)"'?a:i-gu = O, i?;: ’

we can neglect £, in the argument of the d-function. The corresponding expression
for the dissipation D in this approximation has the form

4 5
@7 D= — 2% 3 Gl 8(w,—ay).
af %

Before starting the discussion of Eq. (2.7) we find the explicit form of the function fim,(q)
(see Eq. (2.2)) for the straight dislocation and for the dislocation loop.

3. Functions i,,(q) for straight dislocation and for dislocation loop

According to [7] the elastic distortion field of an arbitrary dislocation with the Burgers
vector b can be expressed with the help of the Green tensor G (r) of the theory of elasticity
in the following form:

(3.1} ﬂu(l') = _cklmbp fa‘S'n,V;V_,Gu(r—r')—ﬁu(r),
R

dislocation line

F1G. 1. Coordinate systems: (a) straight dislocation; (b) circular dislocation loop.
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where the integration extends over an arbitrary surface S bounded by the line of dislo-
cation and n is a vector normal to the surface S, cypo — tensor of elastic constants and
#,;(r) — tensor of intrinsic distortions.

Figure 1 shows a straight dislocation and a circular dislocation loop of the radius R
in the Cartesian coordinate system.

If S is chosen as a part of the plane xz, then for the straight dislocation we obtain [8]

(3.2) iy (r) = bin; (y)n(x),

where #7(«) — Heaviside step-function, and for the dislocation loop we get in a similar
way

(3.3) i2(x) = by d)n(R2—2%) [n(x+V R*=22) —n(x— Y R*=2?)].
The Green tensor Gy(r) is given as the solution of the equation
(34) Cijkt V;VgGmg(l') + 6,,, 6([) = 0,

where d;; is the Kronecker delta.
It is convenient to seek the solution of Eq. (3.4) in the form of the tensor G,;(r) expanded
into the Fourier series

(35 Gu(®) = Y Gul@e™.
a

Inserting Eq. (3.5) into Eq. (3.4) we obtain a simple algebraic equation for G(q)
(3.6) 4> i) Gua(@) = B,
where
(37) x= q)!q: Aim(“) = XyClimn¥n-
Putting the result of Eq. (3.6) into Eq. (3.5) gives

ARt
(3.8) Gn(r) = 2 —‘;2(1} elw

The Fourier transforms of Egs. (3.1)-(3.3), taking into account Eq. (3.8), are
for the straight dislocation

. iLS* bym
3.9 i = - LSwbObm ,
for the dislocation loop
(3.10) ﬁfj(q) = 2RRS&gg(x)bgm;Jl——(‘;‘£),
(]
where
(3.11) S (%) = Ok 81— Ctmn®m A" (%) %5,

Jy(x) — Bessel function g, = /gZ+¢2, m = txx, t— vector tangent to the dislocation
line.
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The formula (3.10) can easily be generalized to the case of the ellipse-shaped dislocation
loop

xz  z
FrE=b
and the corresponding expression for #},(q) has the form
& (@) = . S1(V (ag:) + (dg.)?
(3.12) (@) = 2nadS (%) byny V@ TGy

In what follows we investigate the straight dislocation and the circular dislocation loop
only.

4. Dragging of the straight dislocation

In this section we present preliminary calculations which allow to discuss the magnitude
and temperature dependence of the effect. We restrict ourselves to the contribution of
transversal phonons only. The work [I] has shown that these phonons give the main
contribution to the dragging of dislocations.

If we put into Eq. (2.7) the formula

2
@) \Tigl? = ("if;f”':- buuoF et

where #,, is dimensionless directional function which, taking into account Egs. (2.2)
and (3.9), is
Al LRk, Spu(a/g) bemi|?
4.2 Fop= | platlgsij iy Opgl s
( ) " Qbmmwﬂ I
and if summation over k and k' is replaced by integration over k and q = k' —k, we obtain

_ mib’ d*k , On, d*q (qv)?
“4.3) D=- Z f P w? 0, ) @ ¢ F op0(wa—wp).

Here the integration over q extcnds over the plane normal to the dislocation line. This inte-
gration will be performed in the polar coordinates, taking the angle ¢, (Fig. 1a) from the
direction of the dislocation velocity v (from the axis Ox). It is convenient to integrate over k
in the spherical coordinate system taking the polar angle 0 from the direction of the vec-
tor q, and correspondingly the longitude ¢y in the plane perpendicular to the vector q.
The function #; should be written in these variables:

(44) fqﬂ = fu;(g)m Px» Cosek).
Taking into account the above considerations we have

2cikp

“9 p=-% (gf;’:;, Z f doois f divyio, f o f dix

X fdﬂ.smﬂufu.(fp., P, c0s0i) 8(w— Y + wy—200,c0s By ).
0
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Here kp — the Debye end point in the phonon spectrum, w, = g c,, ¢,—average veloc-
ity of the transversal phonons.
The last integral in Eq. (4.5) can easily be determined:

(4.6) f dBysinOu F 33 (Pa> Pic, 0s0i) (w0 — V 0 + 0% —20w,c0s0)
0

_ n2w—w,) ( &)
= T F w5\ Pas Pxs %]

Inserting Eq. (4.6) into Eq. (4.5) we obtain

ctkp

hb%p? s On
where g denotes the constant quantity
2n 2x 1
14
@3 g=7 | dpicosg, [ dp [ dt D) Fua(ge, 9o ).
0 0 0 A4

Finally, transforming the variable in Eq. (4.7) into dimensionless ones fiw/ksT, we
obtain the following expression for the dragging coefficient B = D/o?:

ﬁ 5
“9) 5=g 1 (%22) zm,

where 0, = ¢,kp/ks — modified Debye temperature, and the function f{(x) describing the
temperature dependence of the effect is as follows:
1/x
B t3dt
(410) f(JC) =X 3 -Gt-l")—z-

The formula (4.9) involves the parameter g ~ |4/u| (4 — characteristic value of the
anharmonic constant, u — shear modulus), which is known only with the accuracy of
the order of maqnitude. To find the exact value of g, concrete and highly cumbersome
calculations are needed. Such calculations for screw and edge dislocations are given below
(Sect. 6). But even in the above form, formula (4.9) contains useful information which
allows in particular to discuss the temperature dependence (4.10) of the effect.

For low temperatures the phonon wind is quickly “frozen-away”: B ~ T*. When the
temperature increases the steep behaviour of the function f(77/6,) changes into linear depen-
dence. This occurs already at temperatures considerably below the Debye temperature.

Yet, we notice here that at high temperatures formulae (4.9) and (4.10) overestimate
the effect because the existence of the dislocation core is neglected. In Sect. 6 we show that
taking into account the core of the dislocation in a simple model leads to a certain renor-
malization of the integrand (4.10).

5. Dragging of the dislocation loop

The previous calculations were connected with the straight dislocation. The obtained
results can be applied to the curved dislocations, for example to loops only in these cases

7 Arch. Mech. Stos. nr 1/79
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when the mean phonon wavelength is small in comparison with the radius of curvature
of the dislocation line, i.e. at not very low temperatures. It is interesting to explain on the
example of the phonon wind what corrections have to be made in the temperature de-
pendence of B(T) if the curvature of the dislocation line is taken into account, and to de-
termine the initial temperatures at which this dependence is not considerably different
from Eq. (4.10).

The problem has already been investigated by two of the authors in [S] but only in
the isotropic case and with representation of: the tensor #%,(q) in a very inadequate form.
For this reason, the discussion was restricted to the estimate of the order of quantity.
We return to the problem of the phonon dragging of the circular dislocation loop on the
basis of the approach developed here. In particular, the expression (3.10) already obtained
for the tensor u};(q) will be useful.

Calculations of the type in Sect. 3 allow to investigate how, with the decreasing of
temperature and corresponding increasing of the mean phonon wevelength 4,5, the charac-
ter of the coefficient of dragging changes from the dependence (4.10), valid as long as
A € R, to the more sharp temperature dependence for A, > R, when phonons
“perceive” the loop as a point defect.

On the other hand, in the limit case when the radius R of the loop descreases to the
dimension of the lattice parameter, the expression for B gives the estimate of the phonon
dragging for crowdions.

The dissipation of energy per unit time, accompanying the movement of the disloca-
tion loop, is described by the expression (2.7) in which L = 2zR, and the quantity I, is
given by the expressions (2.2) and (3.10). It is convenient to represent I, in a form ana-
logous to Eq. (4.1)

&) Tt = (2 e,

where &3 as before is given by the expression (4.2) with the only difference that the vec-

tor m = t xx (Fig. 1b) is defined here by a varying vector t tangent to the dislocation line.

The vector t rotates according to the changes of the azimuth g, of the vector x but is

always perpendicular to the projection of the vector ¢ onto the plane of the loop.
Putting Eq. (5.1) into Eq. (2.7) we obtain

3 2 3 3
52) D=5 RZ f éﬂ;‘, 3 P f éﬂ';, @) 12 4 RIF 0y B(0a— ).

The next calculations will be made for the prismatic dislocation loop. This loop moves
in the direction of the Burgers vector b, perpendicular to the loop plane. It is convenient
to perform integration over k, as before, in the spherical coordinate system taking the polar
angle 0 from the direction of the vector q. Integration over g is performed in the spherical
coordinate system, too (Fig. 1b), but with the azimuth g, in the loop plane and polar angle 6,
measured from the direction of the velocity v. Accordingly the function % is ex-
pressed in the corresponding coordinates

(3 Fop = F3(Pq cosby, i, cosby).
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Calculations quite analogous to those in Sect. 3 lead to the following expression for the
dragging coefficient of the dislocation loop

i [k
54 B=13 ( > ) AT16),
with the temperature dependence given by the function
1/x 2
69 =2 | 55 f;’z W)

where y = 2kp R and the function (y) deﬁnmg the difference between Eqgs. (5.5) and (4.10)
has the form

1 2a

56  v0)=3 f dur? fl dovJi (oY T=s?) fh dp f dpq Z?M,(wq,u,%,v).
0 0 A

=1 0

The formulae (5.4)-(5.6) allow to analyze the temperature dependence of dragging of the
loop at low and high temperatures.

For T < 0,/y the main contribution to the integral (5.5) is given by the values 7 ~ 1,
Therefore, to calculate the function f(7/6,) in this temperature region it is sufficient to

know the behaviour of the function y(y) for small values of the argument. Taking into
account that for y <€ 1

(5.7 B y1-u?) ~ % y02(1-1?),
the function y(y) in this region has the form
(5.8) »(») = gy°,
where
1 1 2n 2n
b 2 2 3
69 #=2 [awea-w) [ dov [ dpu [ dp D Fulpe v, pu) ~ 5%,
-1 0 0 0 Ax

Taking into account Eq. (5.8), the function f{T/8,) for T < 0,/ can be ‘represented
in the form

8 8
(5.10) T8, ~ (%:(;) gr? (%;) .

Thus, at very low temperatures the dragging of the dislocation loop is “frozen-away”
more rapidly than that of straight dislocation.

In an analogous way for T’ > 6,y the asymptotic behaviour of the function y(y) plays
the main part for large values of the argument. Putting for y > 1

(5.11) J“(yv]"_uz)nui cos?(yw Y 1-12 u2+:r.f4)

wy1-4?

7+
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into Eq. (5.6) and changing, as usual, the quickly oscillating function cos?(yo)/ 1 —u?+ 7/4)
into 1/2, we obtain

1 2x 2n
l
(512 y0) = fw_ do [ dp [ dpe D Fiuger s g ®) = § = const.
0 0 Al

In other words, at high temperatures T > 0,/y, as it is to be expected, the dragging of
the loop has the same temperature dependence as the dragging of the straight dislocation
and is described by the formula (4.9) in which the quantity g has to be changed into g.
Such not full coincidence has a simple physical cause associated with the fact that dragging
of independent pieces of the loop having different orientations, due to the anisotropy,
are different. It is not difficult to state that the parameter g is simply a mean value of g
taken over all possible orientations, in the plane of the loop, of the straight dislocation
line with the Burgers vector b and the velocity v perpendicular to that plane

5.13) g=1- | dnsd.
0

In the case of the axial symmetry, when the quantity # . does not depend on ¢,
we have g = g. Disregarding this completely anisotropic effect, connected not with the
curvature but with the orientation of the separate elements of the dislocation, we can state
that the curvature of the dislocation line influences substantially the dynamic dragging
in the region of temperatures T < 6,/y only. This region is considerably large only for crow-
dions and sufficiently small loops, and for this reason we shall restrict the next calculations
to dragging of straight dislocations only.

6. Explicit form of the anharmonicity in the Murnaghan model
The quantity g can be determined in the isotropic approximation when the tensor 42
has, according to [9], the form

(6.1) A{;g = 2(%#+%K+m—~f)6u&,¢5"-— (% +K+m) 6;,5115,,

4
- (p'+m) 6“ éj, 6,,'—2 ("’5" p+K+m)(5u 5,,, a|q+ 6“6“, &jq)

1
— 218505, 61— 2 (p + Tﬂ) (pts€qget Epiryjs) -

Here K— bulk modulus, n, m and /— Murnaghan moduli, &;, — fully antisymmetric
third order unit tensor. For further determination the isotropic form of the tensor S ;m(“)
is also needed

1
(6.2) SJ;‘;(K) = m [m;m;mkml'{'t(fjh r;+v(m,m_,f,, L+ !‘;l}mlmg)]

1 v
+ 5 [m;i}!kmﬁm,rjm,r;-i-r,mjtgmﬁ t,mjmt!;]— Tey 6.J[mkt,+r*m;].
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Here v — Poisson ratio, m and t — unit vectors being together with x = q/q right-handed
triplet of vectors. The vector t is directed along the dislocation line (Fig. 1a).

Taking into account the explicit form of the tensor S(x) in Eq. (6.2) it is easy to
obtain for the screw dislocation with the Burgers vector b = bt

b
(6.3) Sparr () bemy = > [mpte+1,my].

For the edge dislocation with the Burgers vector b = bt

b(un)
1-»

(64 Spaxi(0) by = [¥(pq—tpt)) —mpm,).

Putting the expressions (6.1), (6.3) and (6.4) into the formula (4.2) we obtain the explicit
form of the quantity & , directly defining the parameter g in Eq. (4.8). To give an example,
for the screw dislocation, neglecting the components corresponding to the contribution
of the longitudinal phonons, we have

(6.5) Fop= {(]alp) [(¢am) (3¢51)+ (%at) (3¢5 )]+ (1 + %) [(adst) (a5 m)

+ (l1m) (o %58) + (kg t) (%alm) + (I35 m) + (ﬂalpt)]} s

where x, = k/k, x3 = k'/k’. The mixed product of vectors is expressed as
(6.6) (ABC) = A(B xC).

The next step consists in expressing the quantity & ,; in the corresponding angular
coordinates (4.4) and determining the triple integral (4.8). This procedure proves to be
rather laborious and we give here the final result only.

The similar determinations were given first in [3] for the screw dislocation. According
to [3] in this case

67) o a2 +6)2.

For the edge dislocation the quantity g.; is given by means of a more complicated
expression presented here for the first time:
2
(6.8) gea ™ -;13—(%) (16.49m2 +0.76n> —4.94mn + 13.34K 2 + 55.5u2
+23.54Km—3.85Kn+4.86un+ 30.33um+ 5.78 Ku)
l 2
—— (0. 41u2+5.93un).
+ prT (0.63n%+17.41 4%+ 5.93 un)
Usually, the main contribution to g4 as well as to g, is introduced by the Murnaghan
modulus n. For example, in copper crystals according to [10],

= —159: 10" dyne/cm?®, ~m = —62.10'! dyne/cm?,
(6.9) 4 = 5.46- 10" dyne/cm?, » = 0.324,

2u(1+2%)

K=30=2

= 17.042 - 10'* dyne/cm?,



102 V. 1. Arisarrs, M. D. MitLiansks AND R. K. KoTowski

Thus we have
(6.10) g =~ 538, g ~931,
and the quantity » gives almost a 80% contribution into g.s.

In such a manner the contribution of the phonon wind into the dynamic dragging of
the screw and edge dislocation at low temperatures can be estimated with the the help
of Egs. (4.9), (6.7) and (6.8). In the region of high temperatures the present estimate is not,
valid because the existence of the dislocation core was disregarded in the determinations.
Below we make an attempt to take into consideration the influence of the dislocation core
on the basis of a simple model.

7. The phonon wind at high temperatures

As it was mentioned above, there is a need for a more detailed discussion of the be-
haviour of the elastic field near the dislocation core at not very low temperatures when the
phonon wevelength is comparable with the diameter of the dislocation core. In the conti-
nuum theory the dislocation is regarded as a linear singularity in terms of an approximation
in which the elastic field increases infinitely and proportionally to 1/r. It is obvious that
the continuum theory approach is not applicable to the discrete nature of real crystals,
at least near the dislocation core where the relaxation of the elastic field occurs. Virtually,
the existence of the dislocation core can be taken into account by using a model in which
for small distances from the dislotation line the elastic field is truncated in a smooth manner.
For example we can apply the model [11]

(7.1) uy(r) = ufy(x) (1—e="").

Here uf)(r) — tensor of elastic deformations introduced by dislocation in continuum theory
approximation (uf; ~ b/(2ar)). The model radius of a dislocation core r, should be of
a few lattice parameters.

It can be shown that to the elastic field in Eq. (7.1) (at least in an isotropic case) there
corresponds the Fourier transform
(7.2} I}U( = —f,-':"i—'g'.__.‘q)"m 3

¥ 1+(qro)®
where #§;(q) — Fourier transform of uf;(r).

Let us consider, as an example, a straight screw dislocation parallel to the Ox axis,
for which

Uy b [—sing ib |—sing,
73 uiyr) = Lr,., = 2ar { cosgu}’ () = _{ cosqo.,}’

where the angles ¢ and @4 are measured from the Ox axis. Determining now the Fourier
transform of Eq. (7.1), taking into account Eq. (7.3) we have

4] b )
(7.4) ﬁu(q) = —%f dr(1—de'"™) f dq;esqmsw_m{_z::i}
0
— ib ]—Sm%} ey _ uu @
=2\ cosgs f T
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In a very similar way the expression (7.2) can be proved also for an edge dislocation,
the elastic field of which, has the structure very close to Eq. (7.3) if the tensor uf(r) is
written in polar coordinates

sing
1-2v ) sing
(7.5) uf(r) = l“w] 4,;; 1—» cosg |

T 1=

The simple character of the renormalization in Eq. (7.2) of the tensor #;(q) and the
results of the previous section allow to obtain a modified estimate of the phonon wind
without cumbersome determination of the parameter g. It can be easily seen that putting
Eq. (7.2) into Eq. (2.7) provides the expression (4.5), the integrand of which is multiplied
by [1+4 (rowe/c)?*1~!. The final estimate of the dragging coefficient is given by the formu-
la having a form similar to Eq. (4.9)

(1.6) B=g g5 "”b) £ATIBY,

where the coefficient g is given by Eq. (4.8). The estimates (6.7) and (6.8) of g, for screw
and edge dislocations respectively, are valid. The only difference between Egs. (7.6) and
(4.9) is the form of the function f,(7/0,) describing the temperature dependence on the
effect.

1/x
et3dt  arctgyxt
—
(?'7) fx(x) =X ; (et_ I)z ’

xxt

where ¥ = 2kpr,. The similar modification of the temperature dependence of the phonon
wind was shown for the first time in the papers [1, 12].

The additional term (in comparison with Eq. (4.10)) in Eq. (7.7) arctg zxt/(xxt)
describes the smooth cut of the elastic field in the core of the dislocation. At r, =0 this
factor is equal to unity and the function f,(x) is the same as that obtained before. As it should
be expected at low temperatures T < 0,/y, the renormalization considered is not substantial
because in this_situation the contribution into the integral is connected with values ¢ ~ 1,
for which yxt < 1 and arctgyxt ~ yxt. This reflects the physical fact that the long wave
phonons prevailing at low temperatures are weakly detectable for sensitive measuring
gauges of the perturbating field along distances which are small as compared to the wave-
length.

When the temperature increases, the function f,(x) quite quickly goes over from the
dependence f,(x) ~ x* to the linear one with the slope depending on the parameter x:

ln(x +1)] {I/“: ¥ €1,
x/2x), x> 1.

For usual estimates of kp and r, ~ (1 -5-3)6, the quantity y is about (10+30). As it
follows from the expression (7.8), taking into consideration the finiteness of dimensions
of the dislocation core at high temperatures 7" > 0, leads to the decrease of estimate of the
influence of the phonon wind on the dissipation by /2 = kpr,, i.e. by near by one order.

(7.8) F(X) = — [arctgx
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In Fig. 2 the plot of the function f,(x) is shown for different y. It is important that the
proportion f,(x)/f,(1) (Fig. 3) very weakly depends on the parameter y up to very
low temperatures. This fact considerably facilitates the procedure of theoretical analysis
of the experimental data (see e.g. [l, 12+14]). We notice in connection with the above
considerations that the estimates on the basis of Eq. (7.6) at room temperature give the

fe/B

B 6103

FiG. 2. The plot of the function f,(x) for different .

f®)

1 T T I ] ] L] T

01 -

FiG. 3. The plot of the function f(x)/f;(1),.
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values of the dragging coefficient B comparable with the measured values. Nevertheless
we do not use such a comparison, because at high temperatures one has to take into
account the so-called relaxation of “slow” phonons [1,12,13] in the line with the
phonon wind and this is beyond the scope of the present study.
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