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Diffraction of acoustic wave at a thin wing
E.A. KRASIL’SHCHIKOVA (MOSCOW)

AcousTic waves fall on a foil moving at subsonic speed in an infinite volume of a perfect gas.
The foil is made of a thin sheet with a small curvature and set at a low angle of attack. The solu-
tion is obtained in a closed form, in quadrature, when the wing moves at subsonic speed accord-
ing to an arbitrarily given law, and when the acoustic wave falls on the foil at an arbitrary
angle. The solution is expressed in the form of a recurrent formula which accounts for the
effect of any number of diffraction waves which succesively arise at the foil edge.

Fale askustyczne padaja na skrzydlo poruszajace si¢ z predkoscia poddZwiekowa w nieskon-
czonej objgtosci gazu doskonalego. Skrzydio wykonane jest z cienkiej blachy o malej krzywiznie
i ustawione pod malym katem natarcia. Rozwigzanie otrzymano w postaci zamknietej, w kwa-
draturach, gdy skrzydlo porusza si¢ z predkoécia poddiwickowa wedlug dowolnego prawa
i gdy fala akustyczna pada na profil pod dowolnym katem. Rozwiazanie przedstawiono w postaci
wzoru rekurencyjnego, ktory uwzglednia wplyw dowolnej ilosci fal zalamanych pojawiajacych
si¢ kolejno na krawedzi skrzydla.

AxycTHyeckas BOJHA NaJiaeT HA KPhUIO, JBIOKYILIEECH ¢ JIOSBYKOBOH CKOPOCTBIO B HEOTDaHM-
yenHoM o0beme HeanbHOro rasa. Kpsuio npemmonaraercs TOHKHM, c1aG0H30THYTEIM H HAKIIO-
HEHHBIM 110j{ MaJILIM YTJIOM aTaxku. PellieHMe 3afauy NMosiydeHO B 3aMKHYTOM BHJAE, B KBajgpa-
Typax, KOI/la KpPbUIO JBHYKETCA C JO3BYKOBON CKOPOCTEIO 1O MPOM3BOJIBHO 33[aHHOMY 3aKOHY
M KOrja aKyCTHYeCKas BOJIHA NAfgeT Ha KPBUIO MOJ NPOH3BOJIBHBIM yTiiom. Pemenmne npen-
CTAaBJICHO B BH[Ie PEKYPPEHTHBIX GOpMYN, YUHTLIBAIOUMX BIMAHHe moboro uucna gudpax-
LMOHHEIX BOJIH, NOCJEN0BATe/IbHO BOSHHKAIOUIMX Ha KPOMKAX KpbLIa.

Introduction

AN ACOUSTIC wave propagates in an unlimited volume of an ideally compressible medium.
The wave is incident on a wing moving at subsonic velocity ». The wing is assumed to be
thin, slightly curved and inclined at a small angle of attack. Besides, the wing may perform
some small arbitrary additional motions in the course of which the wing surface may slightly
deform. The wing chord equals d (Fig. 1).

We shall deal with plane-parallel irrotational flows of gas in the fixed coordinate axes
Oxz. The velocity potential @ for the gas motion is in the form @ = @,+ ¢, + @, where the
potential g, is the solution of the problem of the given wing flow-past (with regard for small
additional motions) when this wing moves by itself, i.e. a waveless medium; ¢, (x, z, t)
is an arbitrary velocity potential of the incident wave, ¢, defines the parameters of gas in
the incident wave; ¢(x, z, t) is the unknown velocity potential depending on the backward
and diffracted waves [1, 2].

The sum of the potentials ¢, + ¢ defines the velocity field excited by the acoustic wave
incident on a plane plate of width d, when the plate moves at velocity u at a zero angle
of attack (Fig. 2).
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Diffraction waves spreading at the velocity of sound c in the gas are successively gener-
ated at the foil edges. The fronts of these waves divide the plane (xz) into regions with
different analytical solutions of the problem for the function ¢ and its derivatives.

A space defined by the variables x, z, ¢ is introduced. The velocity potential ¢ is expres-
sed as a double integral of some elementary solutions of the wave equation distributed

zA

in the plane (xt). The domain of integration is a part of the plane (x¢) inside the characteris-
tic cone with its vertex at a point where there is a potential. The derivative ¢, is contained
in the integrand. It is an unknown quantily outside the foil at any instant of time [3, 4].

The family of characteristic cones of the wave equation with their vertices at points
in the plane (xr) with the coordinates x; and t; (i = 0, 1, 2, 3, ...) divide the space (xzf),
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in particular, the plane (x?), into regions with different analytical expressions for the solu-
tions of the problem (Fig. 3). The points x,, X;,X3,X3, ... on the axis Ox are the centers
for the diffraction waves generated at the foil edges at the instants ¢, #,,1,, {3, .
respectively.

Using the boundary conditions of the problem we obtain a Volterra double integral
equation for each characteristic region of the plane (xt) outside the foil. The unknown
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function ¢, satisfies these integral equations. The solution of each of these equations is
found by moving in the direction of the time axis Ot and consecutively passing from one
region into the other [5].

1. The initial-boundary value problem

The initial-boundary value problem which defines the function ¢ is as follows. In the
half-plane z > 0 find a function ¢(x, z, ) satisfying the wave equation

(1.1) (Pxx+Per)— P = 0

and the conditions at the Ox-axis: before the plate

(1.2) =20,

behind the wave front at the plate

(1.3) P: = —@1:(x,0,1) = H(x, 1))

and behind the plate
(1.9 @

I
b
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Besides, at each time the Chaplygin-Zhukovsky condition should be met at the plate
boundary corresponding to the rear edge of the wing.
In the half-plate z < 0 the function ¢ is obtained through the condition

(1.5) p(x, —z,t) = —@(x,z,1).

2. The solution of the problem

Consider a general case of the wing motion with subsonic velocity. Assume that the
wing (plate) motion law is given in the form

x = F(),

where F is an arbitrary continuous time function, F'(t) = u.

Introduce a space of variables x, z and ¢. In the plate (x7) define the domains X, X,
and X,, for which the conditions (1.3), (1.2) and (1.4), respectively, are specified. The
domain X'is limited by the curves L,, L, and W. The curves L, and L, describe the motion
laws for the points 4 and B — the plate’s boundaries. The curve W describes the motion
law for the point C, the point of intersection of the incident wave and the Ox-axis. The
points O and B, in Fig. 3 correspond to the boundaries 4 and B of the plate at the times
of the wave front propagating through them. The straight lines OF, OE, and B, K, B, K,
are the lines of intersection of the plane (x¢) and the characteristic cones of Eq. (1.1).
The curve L, and the straight line OE are the boundartes for the domain X', while L,
and B, K, are those for the domain X, (Fig. 3).

The straight lines OFE, and B;K are repeatedly reflected from the curves L, and L,.
Along with the coordinates of the points O and B, note the coordinates of the points of
reflection: O(xo =0, 1, = 0), A;(x2, 12), Aa(Xs, ta), s A2n(X2ms t20), ooy By (X1, 1)),
Bj(x3, 13), Bs(Xs, ts5), ooy Bans1(X2ns15 2n41)s oo--

The points of the Ox-axis with the coordinates x,, X3, X4, ..., X2n, ... are the centres
of tube diffraction waves arising at the boundary 4 of the plate at the times #,, 7,, ts,
<=y 2n, ..., Tespectively, and propagating in the gas at the sonic velocity c.

The points of the Ox-axis with the coordinates x;, x5, Xs, ..., Xzp415 -.- ar¢ the centres
of similar waves arising at the boundary B of the plate at the times #,, 3, fs, ..., fans 15 ov»
respectively.

The characteristic cones with vertices located at the points O, s, A4, .-y Azny oons
B,, B3, B, ..., Bypy 1, ... divide the space (xzt) into domains with different analytical solutions
of the problem. In particular, the plane domain Z, is divided into the domains gy, 0, 04,
---O3p, ..., the domain X, into ¢,, 63, G5, ... O3p41, ... and the domain X' into s, 5o, 5y,
8015525535 8235 ««v5 Sany Samats one s

Let us take the solution of Eq. (1.1) in the form of a formula linking the function ¢
in an arbitrary point of the plate (xz) with a derivative ¢, at the Ox-axis for any time

?’:'(E', 0, t’)

Xy o 1) = ___L G i de'de’
p*(x', z', t") ZxJJ Vo -6y —7)=2" Edy’.
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The characteristic coordinates x’, ¢’ and z’ are linked with the coordinates x, t and z
by the relations c(x'—1t") = 2x, x'+t' = 2t, ¢z’ = z. The functions ¢ and cg, in the new
variables are denoted as ¢* and ¢7.

Using the boundary condition (1.3) present the potential ¢ for z > 0 in the form

P* (¥, 2, 1) = -—ffx*(;* ) E'd’

J‘J‘ (&, 0 dE':t"r ff (&, 0 dE’dt

r= V(x'— )t =1)-2"2.

The domains o, oy and o, are parts of the domains X', X', and X',, respectively, cut off
by the characteristic cone with a vertex in the point with the coordinates x’, z’ and ¢’
directed towards decreasing time values. The function ¢/ in the new variables is denoted
as A%,

Find the derivative ¢¥ in the domains X', and X, through integral equations. Denote
the derivative ¢Z in the domains ¢,, = 2 and 6,,,, = X, as8,, and 9,,,, (n = 0,1, 2,
3, ...), respectively.

Assuming the coordinate z’ = 0 in Eq. (2.1) and using the condition (1.2) obtain an
integral equation for the function 6,(¢', v') = ¢%(£', 0, 7') in the domain ay:

2.1

¥, & ‘r"'n(r")
dE”dT” dE’dT”
fﬂo(e” t”) _’_...T._;..._.,.;. f d*( lf, .F.P) 7
VE-E-7) VE-E) -7
where the function &' = & ,(z"') is the equation for the curve L, and the function &’ =
= w(z""), that for the curve W. Let us present the equation in the form

0 Fy=")

T ' E” Fu) Err
6 (Eu, " + of E” " dr"’ =
fvz “l [ = ..,l., M= e}

This is an Abel mtegral equation with the right-hand part identically equal to zero. There-
fore

Eﬂ
22 06(8", T) === = fi(&, ¥),
IR
where
fl{f) dEM’
(2.3) T) = — A*E, T —————.
.ﬁ](E ‘I) mi[) (E t)}/E'-‘E”

In a similar way obtain integral equations with the functions 8, Oy, ..., 05, ... satis-
fying them

P
EH

24 62,, ”, ! 2n E" ,!

(24) ifm € 7) g = fuld' )
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where forn > 1
F (')

(25 faul¥,7)= - f A&, ')'/ds =
Fir') E
n—2 %143 Far)
E’f §ff
SN R GA R j 201", V) s
=0 o4 VE-E" X2n41 VE-&

The function &' = #,(7') is an equation for the curve L,. The limits of integration x;,
X3, ...y X35y are the coordinates of the points B,, B;, ..., By, in terms of the new
variables.

Assuming that in Eq. (2.1) the coordinate z’ equals zero and using the condition (1.4)
which takes the form ¢f.+¢® = 0 for the characteristic variables, obtain the equation
of the function #,(¢', 7') = ¢%(¢, 0, 7') in the domain o, :

dfuden
26 - 15” rr
e 35 f,! ; )1/(5' Y -1")
2(8"")
& r

a8 d’l'”dE"
i 6 rr rr
t57 [ [t e e

c{ Fie
_,-0 ”
+—i & f‘)‘d*(é" t") d‘l‘”de”

oF ° & -t -7
& 7 VE-EYT-7)

9 & Fe) - dvde”
tor [ [ e VE—Ya—m)

x5 @) -

where the functions #9 and w° are inversions of the functions #, and w.

In the first and the third terms of Eq. (2.6) let us perform integration by parts over the
variable £”, then perform the differentiation with respect to the parameter £’ and present
equation (2.6) in the form

fl/e' s"{af” f Sy T)l/

#3¢)
v FAe
3 drfl a H’
: 0 H', ' . d‘ ’" n
s [ ) S g f &, 7) }/__ﬂ
=) @XE”)

P =3 dr”
e of* n’ 7" dEu =0
tar [ e

@%(E")
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This is an Abel integral equation with the right-hand part identically equal to zero. There-
fore,

x’ L 4
3 f a IJ'
’ Ll 0 U I
(2-7) agr J. 61(5 )V‘r' ” + o af’ J‘ l(e ) 1: =
Fe) FiE)
fz(e') #2¢) 5
+ _i‘_ f d‘(ea u) + /) f d‘(e;’ 'l'”) dr w0
aE l/t — }/t'-" tlf
«0(§") 0"(8’)

Differentiating with respect to the parameters & and ¢’ and using the constraint on the
curve L,
2.8) Dansal6, FAEN = SL*[E, F2E), n=0,1,2,3, ..,
which follows from the Chaplygin-Zhukovsky condition, Eq. (2.7) is reduced to an Abel

integral equation for the function #.+%,..
v

2.9) f Bie (€, T+, 7
#3)

& ),
1/

where

@10) £ 7)
- LN [, da) } v
Vi—o"@) ;/ =

Similarly, obtain the equations with the functions 035.+1$,,., Psee+Pser ooy Fans 1ye+
+ P 2n4 1yes ... satisfying them:
L4
r L U Ll d =
@I [ Barne@ )+ Panne 7] o=
Fle) v
where, for n> 1,

(2. 12)  fanei (&, 7))

n(&' )
yg:(s' )+ AE(E )] —

= f2l+l(§'5 t’)y

#e) _y ’d‘[f' ‘9,-0(5:)] #O(E-:
i ..d*- r, r d:" T » 1 :
of WRE PO )]V —v YT-53@) a }
Fag)
fiea 3¢
, H’ a , dt”
g o9& f 024(¢', 7 )'/ T—o  OF f 024-2(¢', 7 )—l/r'—'_r”
m+z ."‘1’(&')

-Z‘ b | o) S | )

i=0 hl :3...:

The function #9 is the inversion of the function %, . The limits of integration #,, 1,, 1, ...,
15, are the coordinates of the points O, A,, Ag, ..., Az,
In the expressions (2.5) and (2.12) the sum is found forn > 2
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Using the inversion formula of the Abel integral equation obtain the solutions of Eqgs.
(2.4) and (2.11) for the functions 0,, and ¥4 1)¢- + P(2n4 1)« in the form [6, 7]

&
1 ful#a@), 71 1 v oy
7 Véit—fl(f’) - f aE; [f!l 5 )]'/ E”

Fix)

(213) 04, 7) =

and
2.14)  BapineE, T)+%2ns e (&, ")
s l .f2ll+1[E’ '9" (E’)] ' .r.r
% VT —9"2(.5’ ’fn ot [f:tnlrl(f )]V

Integrating Eq. (2.14) along the time axis Ot find the derivative g% = 5, (&, 7')
in the domain ¢,,,, (n = 0, 1, 2, 3, ...). In that part of this domain where the inequality
& = v'—t{+x] is true,

(2'15) "92.'14- l(&” T’) -~ ‘d*(xes"o) + J- [79{2n+ l)f(é! t)+"9{2n+ 1)!(55 t)]é=r+§'-r' d‘f,
1o

.F?

where o*(x°, t°) is the specified value of the derivative ¢¥ on the curve L,. The coordinates
x° and t° are defined from the system of equations

X—FIx) =0, x°=&41—-1°=0.
In the part of the domain 03,4 ,, Where the inequality &' < =’—1{+x] is true,

(2.16) P21, 7)) = f [Bans 0e(6 D+ F2ns 1:(6, Dlearse—rdr.
11

The functions f,, and f,,,,; depend on the functions #,,,, and 0, for the indices
k < n—1. The functions f3, and f,,, with n = 0 are obtained from Egs. (2.3) and (2.10).
If the functions 0, and #,;, ; are already obtained for all the indices k < n—1, the right-
hand parts of Egs. (2.4) and (2.11) for the index n are known and one may compute the
functions 0,, and @,,,, through the formulae (2.13)-(2.16).

The solutions of Egs. (2.13) and (2.14) with n = 0 are of the form [5]

Fi(
1 1 : ) oy VEE)-F
. /) " )= —— e ‘d* ' ’ " d ”!
e I i/ = ML L F-¢ d
(2.18) t?w(f', )+ 3 (&, 1)
F3¢)
1 1 ; . 1/.sar @)-
T —— i d ”' dt
b 4 ]/.r!_frii(ér) f [ €(§ )+ (5 )] 1'.'” d‘(

wo(@)
1 e l/f °{§') «°(&) dw’ (&)
- oty I O - }
Thus to obtain the solutions for 8, and #, the functions 0, and 9;, 0, and ¥, ..., 03,
and #,,., , are found successively for any value of ».
In our case of the wave front motions at constant velocity equal to the sonic velocity ¢,
the curve W is a straight line described by the equation

¢ = o) = —vig(£).
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By virtue of the formulae (2.17) and (2.18) the function 8, is defined when the angle §
satisfies the inequality 0 < f < z and the function ¥, is defined when 0 < f < =.

In. the extreme cases with f# = 0 and f = = this line coincides with OE, and OE,
respectively. In the first case the domains X, and X, are divided into the domains g,
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and oypmy3 (m=0,1,2,3, ...). Using the solution 6, the functions 9;, b4, #;, 0y, ...,
Oums P4ms 3, ... are obtained succesively (Fig. 4). In the second case the domains X, and X,
are divided into o4y, ; and 64y, . Using the solution &, the functions 0,, #s, 05, s, ...,
O4ms 2, Pams 1 are successively obtained for any value of m (Fig. 5).
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With the derivatives ¢, known the velocity potential may be computed using the formula
(2.1). The gas pressure field excited by the incident acoustic wave may be defined with the
use of the Lagrange integral.

3. Concluding remarks

Depending on the velocity of the plate motion and on the angle between the plate and
the incident wave, a certain version of the initial-boundary-value problem for the function
¢ corresponds to the diffraction problem. The plate may alternatively move at subsonic
or supersonic velocity, occasionally cease motion, etc. Various versions of the initial-bound-
ary-value problem differ by the form of the domains £, £, and X, and by their location
with regard for the characteristic plates of the wave equations.

To solve any version, integral equations of the type (2.4) or (2.11) are constructed for
each of the typical domains with a different analytical type of the derivative ¢. using the
boundary conditions of the problem (1.2) or (1.4), respectively. Successively moving from
one domain to another along the time axis Ot, the derivatives g, are found from the integ-
ral equations.
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