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Diffraction of acoustic wave at a thin wing 

E. ·A. KRASIL'SHCHIKOVA (MOSCOW) 

Acousnc waves fall on a foil moving at subsonic speed in an infinite volume of a perfect gas. 
The foil is made of a thin sheet with a small curvature and set at a low angle of attack. The solu­
tion is obtained in a closed form, in quadrature, when the wing moves at subsonic speed accord­
ing to an arbitrarily given law, and when the acoustic wave falls on the foil at an arbitrary 
angle. The solution is expressed in the form of a recurrent formula which accounts for the 
effect of any number of diffraction waves which succesively arise at the foil edge. 

Fale askustycme padajil na skrzydlo poruszajilce sict z prctdkoScill poddiwictkOWil w nieskon­
czonej objcttoSci gazu doskonalego. Skrzydlo wYkonane jest z cienkiej blachy o malej krzywiinie 
i ustawione pod malym kiltem natarcia. Rozwillzanie otrzymano w postaci zamknicttej, w kwa­
draturach, gdy skrzydlo porusza sict z prctdkoScill poddZwictkOWil wedlug dowolnego prawa 
i gdy fala akustycma pada na profil pod dowolnym klltem. Rozwillzanie przedstawiono w postaci 
wzoru rekurencyjnego, kt6ry uwzgl~dnia wplyw dowolnej iloSci fal zalamanych pojawiajilcych 
sict kolejno na kraw~dzi skrzydla. 

AKyC'n{qeCK8H BOJllla na,L{aeT Ha KpbiJIO, ~IDI<ymeeCH C ~03ByKOBOH CKOpOCTLIO B HeOrpaml­
'leHHOM o6'heMe H,l{ea.JibHoro rasa. Kpbmo npe~onarae-rca TOHKHM, cna6oHSOrHfTbiM H HaKJio­
HeHHhiM no~ MaJibiM yrnoM aTaKif. Peme~me sa~atnf nonyqel!o B saMKHfTOM BH~e, B KBa~a­
TYPax, Kor~a Kpbmo ~IDI<eTCH c ~osByKoBoii CKOPOCTLJO no npousBOJII>HO sa~aHHOMY saKOHY 
M Kor~a aJ<YCTM'IeCKa.H BoJIHa n~eT Ha Kphmo no~ npoMsBOJII>HbiM yrnoM. PemeHRe npe~­
CTaBJieHo B BH,l{e peKyppeHTHhiX <!>opMyJI, ylllfTbiBaJOIIUIX BJII{HHI{e Jll06oro tnfcna ~<!>paK­
~OHHbiX BOmi, nOCJie~oBaTeJII>HO B03HifKaiOIIUIX Ha KPOMK8X KpbiJia. 

Introduction 

AN ACOUSTIC wave propagates in an ulilimited volume of an ideally compressible medium. 
The wave is incident on a wing moving at subso~ic velocity u. The wing is assumed to be 
thin, slightly curved and inclined at a small angle of attack. Besides, the wing may perform 
some small arbitrary additional motions in the course of which the wing surface may slightly 
deform. The wing chord equals d (Fig. 1 ). 

We shall deal with plane-parallel irrotational flows of gas in the fixed coordinate axes 
Oxz. The velocity potential l/J for the gas motion is in the form l/J = q;0 + q;1 + q;, where the 
potential q;0 is the solution of the problem of the given wing flow-past (with regard for small 
additional motions) when this wing moves by itself, i.e. a waveless medium; q;1 (x, z, t) 
is an arbitrary velocity potential of the incident wave, q;1 defines the parameters of gas in 
the incident wave; q;(x, z; t) is the unknown velocity potential depending on the backward 
and diffracted waves [1 , 2]. 

The sum of the potentials q;1 + q; defines the velocity field excited . by the acoustic wave 
incident on a plane plate of width d, when the plate moves at velocity u at a zero angle 
of attack (Fig. 2). 
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690 E. A. .KilASIL'SHCHIKOVA 

Diffraction waves spreading at the velocity of sound c in the gas· are successively gener­
ated at the foil edges. The fronts of these waves divide the plane (xz) into regions with 
different analytical solutions of the problem for the function q; and its d~rivatives. 

A space defined by the variables x, z, t is introduced. The velocity potential q; is expres­
sed as a double integral of some elementary solutions of the wave equation distributed 
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FIG. 1. 
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FIG. 2. 

in the plane (xt). The domain of integration is a part of the plane (xt) inside the characteris­
tic cone with its vertex at a point where there is a potential. The derivative q;% is contained 
in the integrand. It is an unknown quantily outside the foil at any instant of time [3, 4]. 

The family of characteristic cones. of the wave equatiOil with their vertices at points 
in the plane (xt) with the coordinates x,1 and t1 (i = 0, 1, 2, 3, ... ) divide the space (xzt), 
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DIFFRACTION OF ACOUmC WAVE AT A TIIIN WING 691 

in particular, the plane (xi), into region-s with different analytical expressions for the solu­
tions of the problem (Fig. 3). The points Xo' XI ,xl ,x3' ..• on the axis Ox . are the centers 
for the diffraction waves generated at the ' foil edges at the instants t0 , t1 , t2 , t3 ; ••• , 

respectively. 
Using the boundary conditions of the problem we obtain a Volterra double integral 

equation for each characteristic region of the plane (xt) outside the foil. The unknown 

w 

FIG. 3. 

function f!Jz satisfies these integral equations. The solution of each of these equations is 
found by moving in the direction of the time axis Ot and consecutively passing from one 
region into the other [5]. 

1. The initial-boundary value problem 

The initial-boundary value problem which defines the function q; is as follows. In the 
half-plane z ~ 0 find a function q;(x, z, t) satisfying the wave equation 

(l.l) 

and the con4itions at the Ox-axis: before the plate 

(1.2) 

behind the wave front at the plate 

(1.3) 

and behind the plate 

(1.4) 

q; = 0, 

fPt = 0. 
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692 E. A. KRAsiL'SHCHIKOVA 

Besides, at each time the Chaplygin-Zhukovsky condition should be met at the plate 
boundary corresponding to the rear edge of the wing. 

In the half-plate z < 0 the function cp is obtained through the condition 

(1.5) cp(x, -z, t}= -cp(x, z, t). 

2. The solution of the problem 

Consider a general case of the wing motion with subsonic velocity. Assume that the 
wing (plate) motion law is given in the form 

X= F(t), 

where F is an arbitrary continuous time function, F' ( t) = u. 
Introduce a space of variables x, z and t. In the plate (xt) define the domains E, 1:1 

and E2 , for which the conditions (1.3), (1.2) and (1.4), respectively, are specified. The 
domain E is limited by the curves L1, L 2. and W. The curves L1 and L 2 describe the motion 
laws for the points A and B- the plate's boundaries. The curve W describes the motion 
law for the point C, the point of intersection of the incident wave and the Ox-axis. The 
points 0 and B1 in Fig. 3 correspond to the boundaries A and B of the plate at the times 
of the wave front propagating through them. The straight lines OE, OE1 and B1 K, B1 K1 

are the lines of intersection of the plane (xt) and the characteristic cones of Eq. (1.1). 
The curve L 1 and the straight line OE are the boundaries for the domain .E1, while L2 

and B1 K1 are those for the domain .E2 (Fig. 3). 
The straight lines OE1 and B1K are repeatedly reflected from the curves L 1 and L 2 • 

Along with the coordinates of the points 0 and B1 note the coordinates of the points of 
reflection: O(x0 = 0, t0 = 0), A2 (x2 , t2 ), A4 (x4 , t4 ), ... ,A2 ,.(x2,., t2,.), ••• ,B1(x1, t1), 

B3(X3, t3), Bs(X~, ts), ... , B2n+t(X2n+1• t2n+t), .... 
The points of the Ox-axis with the coordinates x0 , x2, x4 , ... , x 2,., ... are the centres 

of tube diffraction waves arising at the boundary A of the plate at the times t0 , t 2 , t4 , 

... , t2,., ... , respectively, and propagating in the gas at the sonic velocity c. 
The points of the Ox-axis with the coordinates x1, x3, x 5 , ... , x2,.+ 1, ... are the centres 

of similar waves arising at the boundary B ·of the plate at the times t 1 , t 3 , t s , ... , t 2,. + 1 , ... , 
respectively. 

The characteristic cones with vertices located at the points 0, A2 , A4 , ••• , A2,., ••• , 

B~t B3, B5 , •• • , B2n+ 1 , ••• divide the space (xzt) into domains with different analytical solutions 
of the problem. In particular, the plane domain 1:1 is divided into the domains a0 , u2 , 0'4, 

... 0'2,., ... , the domain .E2 into O'~t u3 , a 5 , ... u2n+tt ... and the domain .E into s, s0 , s1 ~ 

Soh S.2' S3, S23, ... , S2n• S2n+h .... 
Let us take the solution of Eq. (1.1) in the form of a formula linking the function q> 

in an arbifrary point of the plate (xz) with a derivative 'Pz at the Ox-axis for any time 

cp*(x', z', t ') = --1- J"'J~" q;t-(~', O, T') d~'dT'. 
2n y (x' -f)(t'- T')-z'2 
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DIFfRACTION OF ACOUSTIC WAVE AT A 1HlN WING 693 

The characteristic coordinates x', t' and z' are linked with the coordinates x, t and z 
by the relations c(x'- t') = 2x, x' + t' = 2t, cz' = z. The functions cp and ccpz in the new 
variables are denoted as cp* and cp:,. 

Using ,the boundary condition (1.3) present the potential cp for z ~ 0 in the form 

cp*(x', z', t') = - ~ f f d*(e', T') de':T' 
a 

__ t_ff *(1:' 0 ') ae'a,' _ _ t_ff *(1:' 0 ') de'd·r:' 
.2n f/Jz' 45 ' ' T r .2n f/Jz' 45 ' ' T r ' 

I I 

(2.1) at a2 

r = y(x'-e')(t'-:T')-z'2 • 

The domains a, a; and a~ are parts of the domains .E, .1:1 and .1:2 , respectively, cut off 
by the characteristic cone with a vertex in the point with the coordinates x', z' and t' 
directed towards decreasing time values. The function c.91 in the new variables is denoted 
as .91*. 

Find the derivative cp:, in the domains .1:1 and 1:2_ through integral equations. Denote 
the derivative cp"t, in the domains 0'2 n c .1:1 and e12n+ 1 c £2 as 82 , and {}2 n+ 1 (n = 0, 1, 2, 
3, ... ), respectively. 

Assuming the coordinate z' = 0 in Eq. (2.1) and using the condition (1.2) obtain an 
integral equation for the function 80(e', T') = cp't(e', 0, T') in the domain e10: 

T
1 ~' T

1 :JF (r') 
" de" d," · 1 de' d," f f 8o(e", ,") + J J d*(t:" ,") = o, 

.. I (f- e")( T'- T") 45 
' .. I (f- e")( T 1

- T") o :Fl(T") r o w(T"> r 
where the function e" = ~ 1 ( T") is the equation for the curve Ll and the function e" = 
= w(T"), that for the curve W. Let us present the equation in the form 

T' • E' , (T1') 

f . 1 I r 8 (e"' T") de" + fl .91 (e"' T") de" } dT" = 0. 
1; ,, - ,,., l . o .. 1 e' - e" .. 1 e' - e" 

0 J01(r') f w(T") ... 

This is an Abel integral equation with the right-hand part identically equal to zero. There­
fore 

(2.2) . 

where 

:JF1(T') dt:ll 
.f' (f T') = - f d*(e'' T') 

45 
• 

J o ' ' v e'- e" 
w(T') 

(2.3) 

In a similar way obtain integral equations with the functions 82 , 84 , ... , 82 ,., ... satis­
fying them 

(2.4) 
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694 E. A. Kl\ASIL'SHCHIXOVA 

where for n ~ 1 

(2.5) 

The function f = fF 2 ( -r') is an equation for . the curve L2 • The limits of integration x;, 
xj, . .. , x~,.- 1 are the coordinates of -the points B1 , B3 , ••• , B2,._ 1 in terms of the new 
variables. 

Assuming that in Eq. (2.1) the coordinate z' equals zero and using the condition (1.4) 
which takes the form cp:, + tpf; = 0 for the characteristic variables, obtain the equation 
of the function D1 (E', -r') = cp:.(E', 0, -r') in the domain a1 : 

(2.6) 
E' -r' " " 

_!__ f f {) (E" -r") d-r dE 
oE' . 1 

' y' (E'- E")( -r'- -r") 
xi ~(E") 

a Je- J"' {) (E" ") d-r" dE" 
+ o-r' 1 '-r y(f-E")(-r'--r") 

.~ ,-~(E") 

a t' ~<e''> d "dE'; 

f J .9/*(f' -r") T + oE' . ' -.;~=(E=' -=E=":=)(-r=,=_=-r,=--') 
X~ mO(e'') . J' 

a e· '~<e''> d-r" dE" 
+ ~ f J .9/*(E" -r") - o -

o-r' ' •1 (E'- E")( -r'- -r") - ' 
X~ mO(E") J' 

where the functions :Fg -and ro0 are inversions of the functions !F 2 and w. 
In the first and the third terms of Eq. (2.6) let us perform integration by parts over the 

variable E'-', then perform the differentiation with respect to the parameter E' and present 
equation (2.6) in the form 

E' -r' 

f 1 { a J D (E" ') d-r" , v E' - E" oE" o 1 , -r y' -r' - -r" 
Xt #2(E") 

-r' , ~~(E'') " 

~ J {) (1:" ") d-r a f .91*(1:." ") d-r + o-r' . 1 , , -r v -r'- -r" + oE'' -, , -r Y -r'- -r" 
..-t(e'') coO(t'') . 

I'~(E'') 

+ ~ .. 0, f .9/*(E", -r") d-r" } dE"= o. 
OT . ..I -r'- -r" 

QIO(E"> J' 
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DIFH~ACTION OF ACOUSTIC WAVE AT A 1HIN WING 69S 

This is an Abel integral equation with the right-hand part identically equal to zero. There­
fore, 

(2.7) a IT' .Q (1:-' ") d-r:" a I"' {} (1:' ") d-r:" 
!ll:l V 1 ~ ' T: • I + TT 1 ~ ' T: .. I 
vc;- V -,;'- -,;" vT:· f -,;'- -,;" 

~(e') Jr~(e') 

!l $~(~') d " !l Jr~(e') d 11 

+ -"-, I d*(e', -r:") -r: + -· "-, I d*(E', -r:") -r: = o. 
aE y' -r:' _ -r:" a-r: y' -r:' _ -r:" 

ct~O(e'> cuO(n 
Differentiating with respect to the parameters f and -r:' and using the constraint on the 

82,.+t[E', F~(e')] = d*[E', ,-~(E')], n = o, 1, 2, 3, ... , 

which follows from the Chaplygin-Zhukovsky condition, Eq. (2. 7) is reduced to an A bel 
integral equation for the function 8 1;,+81-r' 

(2.9) 

where 

(2.10) !t (e', -,;') 

.91*[1:' o(t:')] { d 0(1!') } '~W> d " = - . ~ '(.() ~ 1 - (.() ~ . - J [d~(e', -r:")+d:,,(e', -,;")] T: • 
J1 T' -c:oo(f)· dE' e y' -r:'- -r:" 

(00(;') 

Similarly, obtain the equations with the functions fJ;·+fJ3-r'' {}5;·+85-r' ... , t?u,.+t>'e+ 
+ D<zn+ o-r'' ... satisfying them: 

T' 

(2.11) I· (8(2•+ t)t'(~', T")+812o+l)T"(~', T")) y dT" = f>o+t (~', T'), 
-,;'- -,;" 

$~(;') 

where, for n ~ 1, 

(2.12) /2n+1 (E', -,;') 

'd*[f, ,-~(f)J {1 _ tiFY(E')} 
V-,;' _,~(E') dE' 

The function§'~ is the inversion of the function F 1 • The limits of integration t0 , t2 , t4 , ••• ~ 
tz,._ 2 are the coordinates of .the poip.ts 0, A2 , A4 , ••• ,.A.2a. 

In the expressions (2.5) and (2~12) the sum is found for n ~ 2. 
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696 E. A. KRAsiL'SHCIUKOVA 

Using the inversion formula of the Abel integral equation obtain the solutions of Eqs. 
(2.4)and (2.11)forth~functions02,. andt?<2n+l)~'+t?<2n+ 1 >T' in the form [6, 7] 

~~ 

(2.13) O ('' ') _ ~ f2n[F1(-r'), -r'] 1 f o [~' ('' )] d'" 
2n ' T - n V,,- F 1 ('r') + -;;- o'' J 2n '' T' V' f- E" 

_Fl(T') 

and 

{2.14) t?(2n+1)~'(f, T')+'l?(2n+1)T'{E', -r") 
T' 

1 /2n+1 [f, Fg(E')] I f o d-r" 
=-;;- V' T'- §'~(E') + n o-r" [f2n+1 (E', -r")] y T'- T" . 

.F~(~') 
Integrating Eq. (2.14) along the time axis Ot find the derivative q;:, = 112 ,.+ 1 (E', -r') 

in the domain a 2n+ 1 (n = 0, I , 2, 3, ... ) . In that part of this domain where the inequality 
f;;:?:: -r' -t{ +x: is true, 

T' 

(2.I5) t?2n+1 (f, T') = d*(x6
, t 0

) + J (t?(2n+ l)~(E, T) +t?(2n+ l)T(E, T)]~=T+~'-T' dT, 
tO 

where d*(x0 , t 0 ) is the specified value of the derivative q;:. on the curve L 2 • The coordinates 
x0 and t 0 are defined from the system of equations 

x0 -§'g(x0
) = 0, x0 -E'+-r'-t 0 = 0. 

In the part of the domain 0'2n+ 1, where the inequality E' < -r'- t~ + x~ is true, 
T' 

(2.16) t?2n+1(E', -r') = J [t?<2n+l)~(E, -r)+t?<2n+l)lE, -r));=r+~'-T'd-r. 
~~ 

The functions / 2,. and / 2,.+ 1 depend on the functions t?2k+l and 02k for the indices 
k ~ n-I.The functions/2,. and/2,.+ 1 with n = 0 are obtained from Eqs. (2.3) and (2.10). 
If the functions 02k and t?2t+ 1 are already obtained for all the indices k ~ n- I, the right­
hand parts of Eqs. (2.4) and (2.11) for the index n are known and one may com.pute the 
functions 02 ,. and t?2,.+ 1 through the formulae (2.I3}-(2.I6). 

The solutions of Eqs. (2.I3) and (2.I4) with n = 0 are of the form [5] 

(2.17) 0 (E' -r') = - ~ 1 .Fjl(~, d* (E" -r') V, l ( E')- E" d,", 
0 ' ~ 1./ f- §' 1 ( -r') ' E'- f I 

r w(T') 

F~W> .. 1 !Fo(E') ,, 1 1 J £dt<e', -r")+d:~~<E', -r")l -"-'' -
2
-, -----,--;~- d-r" 

n y' T' -§'~(e') T - T 
WO(;') 

_ ~d*[t:-', wo(t:')] f§~(f)~w0 (E') {I_ dw
0(e')} 

n ~ ~ -r' -w0 (e') dE' · 
Thus to obtain the solutions for 00 alid 1?1 the functions 02 and {)3 , 04 and 0 5 , ••• , 02, 

and t?2n+ 1 are found successively for any value of n. 
In our case of the wave front motions at constant velocity equal to the sonic velocity c., 

the curve W is a straight line described by the equation 

~· = ro(T') = ..,-T'tg-2(?); 
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DIFFRAcriON OF ACOUSTIC WAVE AT A TmN WING 697 

By virtue of the formulae (2.17) and (2.18) the function 80 is defined when the angle p 
satisfies the inequality 0 ~ p < n and tho function 8 1 is defined when 0 < fJ ~ n. 

In. the extreme cases with {J. = 0 and fJ = n this line coincides with OE1 and OE, 
respectively. In the first case the domains E 1 and E2 are divided into the domains a4 ,. 

I 
I 

z,i'l 

x.~ 

I 
I 

I 

FIG. 4. 

FIG. 5. 

and a4,,s+ 3 (m= 0, 1,2,3, ... ).Using the solution 80 the functions 83,84,07,811 , ••• , 

84,,., 04 ,.+ 3 , ••• are obtained succesively (Fig. 4). In the second case the domains E 1 and E2 

are divided into 0'4-llt+ 2 and a4,.+ 1 • Using the solution 8 1 the functions 82 , iJ5 , 86 , {}9, •.• , 

84,+ 2 , 84111+ 1 are successively obtained for any value of m (Fig. 5). 
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698 E. A. KRAsiL'SilCHliC.OVA 

With the derivatives f/lz known the velocity potential may be computed using the formula 
(2.1 ). The gas pressure field excited by the incident acoustic wave may be defined with the 
use of the Lagrange integral. 

3. Concluding remarks 

Depending on t4e veiocity of the plate motion and on the angle between the plate and 
the incident wave, a certain version of the initial-boundary-value problem for the function 
qJ corresponds to the diffraction problem. The plate may alternatively move at subsonic 
or supersonic velocity, occasionally ce~se motion, etc. Various versions of the initial-bound­
ary-value problem differ by the form of the domains I, 1:1 and 1:2 and by their location 
with regard for the characteristic plates of the wave equations. 

To solve any version, integral equations of the type (2.4) or (2.11) are constructed for 
each of the typical domains with a different analytical type of the derivative f/Jz using the 
boundary conditions of the probletti (1.2) or (1.4), respectively. Successively moving from 
one domain to another along the time axis Ot, the derivatives f/Jz are found from the integ­
ral equations. 
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