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Plane shear waves in viscoelastic fluids as motions
with proportional stretch history

S. ZAHORSKI (WARSZAWA)

It 18 SHOWN that so-called circular and elliptic shearing flows of incompressible simple fluids
can be treated as a subclass of motions with proportional stretch history [7]. In the case of
circular shearings some of Carroll’s results for circularly polarized plane waves [6] are rediscov-
ered in a different way. In the case of elliptic shearings some new solutions for low frequency
elliptically or linearly polarized plane waves are also discussed.
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1. Introduction

IN CONTRAST to various problems concerned with finite amplitude elastic shear waves
solved and discussed in many previous papers, similar wave problems for viscoelastic
or dissipative media attracted much less attention.. Some papers were devoted to a general
theory of waves as propagating surfaces of discontinuity [1], while others presented certain
types of solutions for oscillating viscoelastic and elastic bodies or fluids of various complex-
ity [2,3,4,5,6].

In one of the recent papers CARROLL [6] derived conditions under which a class of motion
called plane circular shearings led to the case of finite amplitude plane progressive or stand-
ing waves in fluids and solids.

In this work we try to treat plane circular shearings and more general elliptic shearings
as motions with proportional stretch history discusséd in our paper [7]. To this end the
motions considered should be expressed in the form of complex variable functions. In the
case of circular shearings some of Carroll’s results for circularly polarized plane waves
are rediscovered in a different way, while in the case of ellipic shearings certain new results
are established. It is shown, among others, that for sufficiently low frequencies enabling
essential simplifications in the constitutive equations, the form of governing equations for
elliptically polarized plane shear waves is'identical to that for circularly polarized waves.
The only differences appear in the corresponding relations for normal stress components.
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We want to emphasize, moreover, that the class of flows considered may be treated as
a particular case of more general unsteady homothermal motions discussed by CARROLL
[8]. These latter motions are, in general, equivalent to a simple superposition of two motions
with proportional stretch history [7].

2. Plane circular shearings of simple fluids

Let us consider a class of motions called the plane circular shearings, the equations
of which are the following (cf. [6]);
x = X+ ¢@(Z)coswt+y(Z)sinwr,
(2.1) y = Y+@(Z)sinotr—y(Z)coswr,
z=2 -
where x; y, z denote the Cartesian coordinates of a particle at arbitrary times 7, X, Y, Z —
the Cartesian coordinates of the same particle in a reference configuration at time 7z,
. — denotes constant angular frequency, and ¢, y are certain functions of Z only. The
corresponding velocity as well as acceleration fields can easily be calculated from Egs.
2.1).
( I)nt{oducing the auxiliary notations;
2.2) ¢’ = xcosl, y' = xsind,
where primes denote derivatives with: respect to z, we obtain the relations
@3 @+ =%, 0= arctgy/y,
where » is the amount of shear. In the class of motions considered the planes z = const
are material surfaces, and the paths of particles correspond to circles of radii (qo’+w’)*.
The deformation gradient at time v with respect to the reference configuratien can be
written either as

1 0 xcos(wr—0)
2.9 [F(v)] = [0 1 usin(m—a)],
00 1
or alternatively in the complex form
001
2.9) F(z) = Re{exp[Me®-)},  [M] = [0 0 —flx,
000 _

where i = J/ -1 and only the real part of F(z).is meaningful:
On writing Eq. (2.5), in the abbreviated form
2.6) F(x) = Re{exp(MK(¥))}, k(z) = expi(wr—0),
it can be proved that plane circular shearings belong to the class of motions with proportion-
al stretch history (MPSH) discussed elsewhere [7](%).

. () In [7] MPSH were defined using the deformation gradient with respect to the reference configu-
ration at time 0, i.e. Fo(7). The function k() was such that k(0) = 0. These differences are insignificant
since using the reférence configuration at time 7z, we assume k(zg) = 0.
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Introducing the relative deformation gradient with respect to .the reference configura-
tion chosen at present time #(v < ¢):

Q2.7 F,(v) = F(OF (1) = exp[M(k(?)—k(2))], KE(@)=1,
and the corresponding history (cf. e.g. [9]):
(2.8) F(s) = F,(t—s) = explg()M],  g(s) = k(t—s)—k(?),

where s € [0, c0), we arrive at the history of the right relative Cauchy-Green deformation
tensor in the form

(29) C(s) = FT(s)F(s) = exp(g(s)MN)exp(g(s)M) = 1+g(s)(M" + M).

In the above relation

(2.10) g(s) = e¥e~1), = wr—0
and, moreover, we have used
(2.1 M2 =M"=M'M = 0.

Bearing in mind definitions of the spatial velocity gradient L, and the rotated para-
metric tensor L. (cf. [7, 9])
(2.12) L;(1) = FOF() = Q()Q7(1)+Q()MK()Q"(2),
(2.13) L(t) = QUML()Q (1),

where Q(z) is an orthogonal tensor characterizing the rotation of a particle from the refer-
ence configuration to the configuration at time ¢, we arrive at

8() g(s) + 86 g7
(2.19) C(s) = exp( ) ( i ) - %) —(L"+L),
since in our case Q = 1, and
(2.15) L,(t) = L(t) = Mk(1).
Equations (2.9) and (2.14) are equivalent definitions of a subclass of MPSH, if tensors

M and L do not depend on s (they may depend on #) and g(s) is of the form (2.10).
For MPSH, the constitutive equation of an incompressible simple fluid (cf, [9]),

@.16) S() = £, (C),  detC(s) = 1,

where S is the extra-stress tensor (or deviatoric part of the stress tensor) at time ¢, and &
denotes an isotropic constitutive functional, takes the following form:

@1 S0 = 4, (s L),

where ¥ is a functional of the scalar function g(s), and an isotropic function of the tensor
L. According to the representation theorem proved in [7], the tensor L may be determined
at most by the first three Rivlin-Ericksen kinematic tensors defined as follows (cf. [9]);

@.18) A= I s,

gm0
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In the present consideration we apply a slightly different approach but the final results

are quite equivalent.
On the basis of Egs. (2.9) and (2.18) we have, in particular,
(2.19) A = ine*(MT+M), A, = —w?M"+M),

what implies that A; = iwA, . Taking into account Eqgs. (2.9), (2.10) and (2.19), we obtain
the following relation:

(2.20) Cs) = 1- —‘:TA, sinws + w—’, Ay(1 - cosws).
Substituting the above relation into Eq. (2.16), we arrive at
(2.21) S@) = f?u (% sinws, % (1—cosws); A,(1), A:(‘)) = f(0?*; A1(2), As(7)),

where £ is a tensor function even in w, and isotropic with respect to A, and A,.(*)
Taking into account the well-known Rivlin-Ericksen representation of an isotropic
tensor function of two arguments (cf. [9]),
(222) S=f(w?*; A, A) = q;A + A+ 0:AT +ay AT+ as(A A +AzA,)
| +as(ATA;+A1AD +ar(A AT +AZA) + as (AT AZ+AZAD),
as well as the properties (2.11), and the fact that A, = iwA,, we obtain
(2.23) S = (o +ima) Ay + (23— ay + 2iwas) A,
where ay(i = 1, ... 5) are functions of w? and all invariants of the tensor A, .

Since tensor A, is complex, its;invariants should be composed of ReA, and ImA,
or, equivalently, of A, and A}, where AT denotes the Hermitian-conjugate of A, . In the case
considered these invariants are as follows(®):

trA; = trAY =0,
trA? = trAY2 = 0, trA,A? = do?x?,
(2.29) trAfAY = trAT?A, = trA} = trA?* =0,

trAIAY? = do*x* = %(trA, At)2.

The above results imply that the coefficients

(2.25 o = q(w? w®%?), i=1,2,...5
are real fupctions of the real arguments w?, 2. Thus, we can rewrite Eq. (2.23) in the form
(126) ReS = oy Reﬂl—wu;]mA;+(a3-w"|:‘)RzAf—-2&)¢,ImA§.

On using Eq. (2.19), we arrive at the following real shear stress components:
ReS*? = —q,wxsinf—a,0?xcosl,
227 ReS?3 = o, wxcosl—a,w?xsinf,
ReS'? = — (a3 —w?a,)w?»?sin2f — 205w x*cos 2L,
(*) Although A, may formally be replaced by wA,, it is more useful for the time being to treat £
as a function of two tensor arguments. '
(%) Only the products AJA, = ATA, and ‘A$?A? = A7A?* are Hermitian (or self-conjugate), i.c.
(ATA)* = ATA; and (A}2A3)* = AT2A]. Diagonal elements of Hermitian matrices are always real.
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where { = wt—0. In a similar way the normal extra-stress components are expressed as
ReS!" = —(a; —o?a)w?»*cos2l + 2aswx3sin2l,

(2.28) ReS?? = (a3 —w?a)w?x*cos2f —2asw3%*sin2{,
ReS?*? = 0.

It is seen that the real parts of S'3, §23 are odd functions of », while S!2, S!! and S$?2 are
even. On the other hand, only $?* and S'? are odd functions of @ and the remaining com-
ponents are even.

The dynamical equations of equilibrium can be written in the form

(229) div(S+pl)—egrady = ok,
where p is hydrostatic pressure, X — the acceleration vector, ¢ — density of a fluid, and 5
denotes a potential of conservative body forces. Since all the stress components depend
on the variable z only (through the function x(z)), it is reasonable to assume that also
n = n(z). Taking into account Egs. (2.29), (2.27), (2.28) and (2.2), we arrive at the follow-
ing system of linear differential equations:
(219" +az09") —owy = 0,
(2.30) (2,9’ — 2309) + o009 = 0,
(+n)' =0,

where primes denote derivatives with respect to z. The first two equations in the set (2.30)
may be solved for appropriate boundary conditions, at least in a numerical way, if a depen-
dence of a, and @, on w? and x»? is known from other considerations or experiments.
The third equation in the set (2.30) gives the function of hydrostatic pressure p.

The system of equations (2.30) is fully equivalent to that derived in a different way by
CARROLL [6]. To prove this, we may put into BEgs. (2.30) the following relations:

1
(2.31) ay = Y4, O2= ] Vs»

where y,, ys are the functions used by Carroll. On the other hand, the material functions
a, and a, are easily interpreted on the basis of Egs. (2.22); a, is an apparent viscosity depen-
ding on w? and »?, a, — a function responsible for the elastic properties of a fluid (the ratio
T = |a,/a,| gives the characteristic time of a fluid).

3. Circularly polarized plane shear waves

If solutions ¢(z) and y(z) of Egs. (2.30) are periodic or, in particular, sinusoidal, the
motion described by Egs. (2.1) corresponds to the case of circularly polarized plane progres-
ive or standing waves. It may be shown, in a way similar to [6], that if «, are independent
of z (or %(z)), Eqgs. (2.30) take the simplified form

o, ¢" + 09" —pwy = 0,

(3.1) " rn
@, 9" — ;09" +ewp = 0.
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The general solution of these equations is.

@(2) = Ae~cos(fz+ A)+ Becos(Bz+ p),

v(2) = Ae~*sin(fz+ A)— Be*sin(fz+ p),

where A, B, 1 and u are integration constants consistent with appropriate boundary con-
ditions, and

(32

2 Q0
(3.3) (a+ip) ~ a=0, g>0.

The constant « characterizes an exponential decay or growth of the wave amplitude, while
the constant f is simply related to the wave length. For Newtonian fluids («, = 0), we have
for example

2 _ p2_ 0@
3.4 = p2= 2
The simplest boundary conditions for Egs. (3.2) were discussed by CARROLL [6]. We pres-
ent only some of his results.
For a semi-infinite fluid bounded by a rigid plate at z = 0, oscillating with the velocity
components; X = Vcoswt, y = Vsinwt, z = 0, the boundary conditions satisfied by ¢
and y are as follows:

vV
(3.5 9(0) = ¢(@) = p(0) =0, () = —-.
We have the case of a circularly polarized plane progressive wave if
vV (4
3.6 A-_-?, B=0, ;,ﬁ_z__

For a fluid contained between two plates, one fixed at z = 0 and the other oscillating
with the same velocity components at the distance z = /, the boundary conditions are as
follows:

vV
3.7 9= o) = p© =0, () =—.
We have the case of a circularly polarized plane standing wave if
(3) A =B -2% [sh?alcos?Bl-+ ch?alsin?BiL,

p = —A = arctg[thalctgfl].

Let us briefly discuss the conditions under which the material functions’«, ‘and’ «,
do not depend on the amount of shear » (or equivalently on z). Bearing in mind Egs. (2.22)
and the fact that only the shear stress components §** and $?? are involved in the corre-
sponding equations of equilibrium (2.29), the following cases may be distinguished;

1. The case of Newtonian or purely viscous fluids for which only @, # 0. This quantity
may or not depend on the angular frequency w;

2. The case of fluids with linear shear response or second-order fluids for which a,
as well as a, do not depend on the amount of shear x.
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3. The case of sufficiently slow oscillations, i.e. flows with moderately low angular
frequencies w as compared with the inverse of a fluid characteristic time 7. Then &, and «,
can be treated as material constants. This point will be clarified in the next section.

4. Plane elliptic shearings and elliptically polarized shear waves

Let us consider a class of motions which may be called the plane elliptic shearings;
x = X+ap(Z)coswt+ay(Z)sinwr,

4.1) ¥y = Y+ bp(Z)sinwr—by(Z)coswr,
z=2Z,

where capital letters denote the Cartesian coordinates in a reference configuration at time
Tg, @ and p are certain functions of Z only, and 0 < a < 1, 0 € b < 1 are dimensionless
constant parameters describing ellipticity of a motion.

On using the notations determined by Eqs. (2.2) and (2.3), we define the amount of
shear x and the angle 6. In the class of motions considered the planes z = const are material

2

surfaces, and the paths of particles are the ellipses ¢?+¢? = —i-:; + %5—, where a and b
are proportional to the corresponding axes.

The deformation gradient at time 7 with respect to the reference configuration can be
written in the form

1 0 axcos(wr—0)

4.2) [F(r)] = |0 1 bxsin(wr—6) |,
00 1
or, alternatively,
00 a
(4.3) F(7) = Re{exp[Me'®~9]}, [M] = {0 0 —ib| x,
00 O

where again the real part of F(7) is meaningful.

It can be proved that plane elliptic shearings belong to the class of motions with pro-
portional stretch history (MPSH) discussed elsewhere [7]. Considerations similar to those
presented in Sect. 2 lead to the result
44) C(s)=FT(5)F(s) = exp(g(s)M’)exp(g(s)M) = 1+g(E)(MT+M)+g%(s)M™,
where the function g(s) is defined by Eq. (2.10), and the following relations are used:

000
4.5) M2=M"7=0, [M™M]=|000 %2 # 0.

00 a*-b
All the equations presented from (2.12) to (2.18) remain valid if the matrix [M] resulting
from Eq. (4.3), is used instead of Eq. (2.5),.

For plane elliptic shearings the first two Rivlin-Ericksen kinematic tensors defined
by Eq. (2.18) take the form

(4.6) A, = ive®(MT+M), A, = —w?¥(M"+M)-20%** M™,

8 Arch. Mech. Stos. nr 6/78



798 S. ZAHORSKI

what means that there is no simple relation between A, and A,. Equation (4.4), after
taking into account Eqs. (2.10) and (4.6), leads to

] -1 1
@4.n Ci)=1- % (e~ — 1A, + .o (e~ —1)? (A1 —— Az).
Substituting the above relation into the constitutive equation (2.16), we arrive at
o (1 1
(4.8)  S@) = A (; e~ D,— (e~ =1)%; A, (1), Az(f)) = Kw; A, (1), A, (1)),

where 4 is a tensor function of w, isotropic with respect to A, and A,. The function 4
is not even in w since two scalar arguments appearing in Eq. (4.8), are neither even nor odd.
Because of no simple relation between A, and A,, the full representation (2.22) for two
tensor arguments must be applied. The resulting constitutive equations are too complex
for any effective solution of the problem. For example, '
the fact that
4.9 A; = iwA, =2w?e**M™,
where MM is determined by Eq. (4.5);, does not lead to essential simplifications. To achieve
more progress in the flow considered, we shall try to aply an expansion procedure,
similar to that proposed by NIILER and PpkiN [2] for shear waves in some non-Newtonian
fluids.

Starting from Eqs. (2.22), we shall seek approximate constitutive equations which
approach Newtonian equations at very low angular frequencies. The angular frequency w
will enter into the constitutive equation through a dimensionless parameter ¢ defined as
follows:

(4.10) e2 = T,

where T is the characteristic time of a fluid. The finite amplitude of a Newtonian solution
A is expressed by the dimensionless parameter Q;

3
(4.11) Q=A( 0 )
o, T
Moreover, we introduce the following dimensionless quantities:

e S i AN
{4]2) S—'m’ A"—m, n= 1,2,...,

where k = (gw /al)%. The first material coefficients «; occurring in Eq. (2.22) can be written
as follows;
(4.13) oy = po, 03 = PapeT, az=Psu.T, etc,
where uo denotes the apparent viscosity at zero shear rate, and 8,, 8, ... are dimensionless
material coefficients,

Assuming that the product &* = wT is sufficiently small as compared with unity, and Q
is constant, the constitutive equations may be expanded into a dimensionless form:

(414) § = X,+szﬂ2§2+83ﬂ3{2§%+0(£‘).

If all terms of order greater than ¢ may be disregarded, the dimensionless material coeffi-
cients f, i are constants independent of w (cf. (4.8),).
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The above procedure shows that for moderately low angular frequencies w or; strictly
speaking, for sufficiently small 2 = wT, where T is the characteristic time of a fluid, the
approximate constitutive equations of a second-order incompressible fluid may be applied.
These are in the form (cf. [9])

(4.15) S = m1A1+a2Az+a3A%, trAl = 0,

where «,, a,, a3 denote material constants.
Thus, taking into account Egs. (4.5);, (4.6) and (4.15), we obtain the following real
parts of shear stress components;

ReS*? = —a,waxsinl—a,w?axcos,
(4.16) ReS?? = a,wbxcosl—oa,w?bxsing,
ReS'? = —ayw2abx?sin2f,

and the normal extra-stress components:
ReS'"! = —ajw?a®x%cos2L,
4.17) ReS??2 = ayw?b®x2cos2t,
ReS3? = — (20, + a3)w?(a® — b?) %*cos 2,

where { = wr—08. We may easily observe that $'2, $23 are odd in », while the remaining
stresses are even. The shear stresses S*3, §22 oscillate with the angular frequency w while
the remaining components with 2w .

Since all the stress components depend on the variable z only (through the function
%(z)), the dynamical equations of equilibrium (2.24) lead to the following system of linear
differential equations:

2 @'+ a0y’ —pwy = 0,
(4.18) o,y — 09" +owp = 0,
(P+n) +@? (20, + a3)(a* ~b*) [(¢"* — y"*) cos 2wt + 2¢'y'sin20t] = 0,

where primes denote derivatives with respect to z, and 7 = %(z) is a potential of conser-
vative body forces. The first two equations in the set (4.18) are identical to Egs. (3.1), the
solution of which can be expressed by Egs. (3.2) and (3.3). The third equation in the set
(4.18) determines the hydrostatic pressure p if ¢ and y are known.

In full analogy to our previous considerations in Sect. 3, we claim that under the assum-
ed order of approximation the motion described by Egs. (4,1) with periodic ¢ and p
determined by Egs. (3.2) corresponds to the case of elliptically polarized plane progressive
or standing waves. The examples briefly discussed in Sect. 3 can easily be solved with-slightly .
modified boundary conditions, i.e. for plates oscillating with the following velocity compo-
nents: x = aVcoswt, y = bVsinwt, z = 0,

It is worthwhile to note that the governing equations for low frequency elliptically
polarized shear waves do not differ at all from those for low frequency circularly polarized
shear waves. Certain essential differences exist in the form of the hydrostatic pressure func-
tion as well as in the normal extra-stress components. These observations may be of impor-
tance in such cases in which circular]y polarized plane progressive waves are refracted

8%
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on an interface between two non-mixing fluids. If the direction of propagation of.a primary
circularly polarized wave is not perpendicular to the interface, a resulting refracted wave
will be elliptically polarized with the parameters a and b depending on the corresponding
angles of incidence and refraction.

5. Linearly polarized plane shear waves

It is easy to see that the results obtained for low frequency elliptically polarized plane
shear waves are, in particular, valid for low frequency linearly polarized waves. If waves
are linearly polarized in the plane xz, we take in Eqs. (4.1)a = 1 and b = 0, if in the plane
yz,thena=0,b=1.

For example, if a = 1, b = 0, the only non-vanishing extra stress components are as
follows;

ReS!? = —a,wxsinl —oa,w?xcosl,

(5.1) ReS'! = — g w?x*cos2t,
ReS?? = — (20, + o3)w?x2cos 2L,

where { = wt—6. The differential equations describing linearly polarized shear waves
are again int the form of the set (4.18), and all further remarks remain valid.
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