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Prandtl-Reuss plastic material with scalar and tensor internal
variables

T. TOKUOKA (KYOTO)

PRANDTL-REUSS plastic material with general work-hardening is investigated theoretically.
A scalar internal variable and a symmetric tensor internal variable are introduced. Von Mises’s
plastic potential is assumed to be a function of the translated stress and the scalar internal variable.
Thus the general constitutive equations of the rate type plastic material are derived. Four consti-
tutive assumptions, i.e. isotropy, pressure insensitivity, no generalized Bauschinger effect and
grade two, are supposed. Then, a generalized Prandtl-Reuss plastic material is defined. From its
stress rate constitutive equation, the yield condition and the flow rule are derived. They corre-
spond, respectively, to a generalization of the Huber-Von Mises yield condition and a genera-
lization of the Lévy-St. Venant flow rule. A fracture condition is also defined. It is assumed that
the fracture occurs when a scalar function, called the fracture function, of two internal variables
reaches a critical value. General solution for the steady simple extension is obtained. The beha-
viour of the incompressible material for the uniaxial stress extension is also investigated. The
stress-strain-internal variables relations are depicted in the figure for three material functions
and several values of the material-constants in the loading-unloading-reloading processes and
in the loading-unloading cycles. The calculated results show both isotropic work-hardening and
translation workhardening, as well as the rounding phenomenon and the Bauschinger effect.

Przeprowadzono badania teoretyczne materialu plastycznego Prandtla-Reussa ze wzmocnie-
niem ogolnej postaci. Wprowadzono skalarowa i tensorowg zmienng wewne¢trzna. Zalozono,
ze potencjal plastyczny Misesa jest funkcja napr¢zenia translacyjnego i skalarowej zmiennej
wewngtrznej. Nastgpnie wyprowadzono ogoélne rownania konstytutywne dla materialow
plastycznych typu predkosciowego. Przyjeto cztery zaloZenia konstytutywne, mianowicie:
izotropi¢, niezalezno$¢ od ci$nienia hydrostatycznego, niewystepowanie uogélnionego efektu
Bauschingera, material stopnia drugiego. Z kolei zdefiniowano nogélniony material plastyczny
Prandtla-Reussa. Z otrzymanych czulych na predko$¢ naprezenmia réwnan konstytutywnych
wyprowadzono warunek plastycznofci i prawo plyniecia. Odpowiadaja one odpowiednio uogdl-
nionemu warunkowi plastycznoéci Hubera-Misesa i uogdlnionemu prawu plyniecia Levy’ego-
St. Venama. Okre$lono rowniez warunek zniszczenia. Zalozono, ze zniszczenie zachodzi, gdy
funkcja skalarowa zaleina od dwéch zmiennych wewnetrznych, zwana funkcjg zniszczenia,
osigga wartos¢ krytyczng. Otrzymano rozwigzanie ogdlne dla ustalonego prostego rozciaga-
nia. Zbadano rowniez zachowanie si¢ materialu niescisliwego dla jednoosiowego naprezenia
rozciggajacego. Zwiazki naprezeniowo-odksztalceniowe dla zmiennych wewnetrznych sa poka-
zane graficznie na wykresach dla trzech funkcji materialowych w procesie obcigzenie-odcig-
Zenie i dla cyklu obcigZenie-odcigZenie. Wyniki obliczenn wskazuja zaréwno na wzmocnienie
izotropowe jak i wzmocnienie translacyjne kinematyczne. Wykazuja réwniez zjawisko “zaokrag-
lania” i efekt Bauschingera.

IIpoBefieHbI TeopeTHYeCKHE MCCIEA0OBAHMA IUIACTMYecKoro marepuana Ilpamgrns-Peiicca
€ ympouHeHHeM ofllero BHAa. BBefeHbl CKanApHaA ¥ TEH30PHBIE BHYTDEHHHE IepeMeHHLIE,
IIpenmonoxeHo, uro mnacTHdeckuii noteHuman Museca aBnfercAa QyHKUMeH TPAHCIALMOH-
HOT'0 HANPSYKEHWS M CKANAPHON BHYTPEHHeH nepemeHHoOH. 3aTem BbIBe[ieHbI 00IIne ompe-
JenAole YPaBHeHHs IS MJIACTHUSCKHX MaTepuUasioB CKOPOCTHOro THna. IIpHHATEI ueThipe
onpeesAONMe NPEeNONOMHEHHA, 8 MMEHHO: H30TPONHSA, HE3aBHCHMOCTh OT THMApPOCTATH-
YeCcKOTo AaBlieHHs, HeBbicTynawonue obobuiensoro acdexra Baymuurepa, maTepHan BTOpoit
crenesu. B cBolo ouepenp ompegenen oGoblueHHBINE nmacTHyeckmit marepman Ilpannrna-
Peiicca. M3 nonyueHHBIX onpefeNAlOIMX YPaBHEHHIl YYBCTBHTENbHBIX HA CKOPOCTh Hamps-
IKEHHA, BEIBEJIEHD] YC/IOBHE IIACTHUHOCTH M 3aKOH TedeHHsA. OHM OTBEUAIOT COOTBETCTBEHHO
obobmenHomy ycnoBHio IUiacTHuHocTH I'yOepa-Mmuseca m oGoOIeHHOMY 3aKOHY TeUeHMA
Jlepu-Can-Benana. Onpepenero To)ke ycnoBme paSpyuenms. IIpeamonoykeso, YTo paspy-
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IIeHHEe HACTYIAeT, KOT/A CKanApHas QyHKUHMA 3aBHCAINAA OT JABYX BHYTPEHHHX NEPEMEHHBIX,
HasbIBaeMaA (yHKUmMeH paspyllIeHHA, JOCTHraeT KPHTHUecKoro sHadeHmsa. IIwiydeno obuiee
peliense JUIA YCTAHOBHBINErocs MPOCTOro pacTskenwa. FccnemoBaHo Taike MOBeeHHe
HEOKHMAEMOr0 MaTepHANAa JUIA OJHOOCHOr0 pacTATHBAIoNlero Hanpsxernd. CooTHoIIeHRA
HanpsoxeHne-fedopMaAlMA [UIA BHYTPCHHHX IEPEMEHHBIX MOKA3aHB! rpadHUecKd HA [uar-
paMMmax [UI7 TPeX MaTepHAIBHLIX QDYHKUH B Npolecce HArPYSKa—Pasrpy3Ka-IOBTOPHAA
HATpY3Ka H [UIA WHK/A HATPYSKa-pasrpyska. Pesy/nsraThl pacueroB yKashIBaiOT KAK HA H30-
TPONHOE YINPOUHEHHEe, TAK M HAa TPAHCIALMOHHOE (KHHEMATHYECKOE) YIPOYHEHHE, 8 TAKKE
HA ABJEHHE ,,0KpyriIeHna’’ ® addexr Bayumnrepa.

1. Introduction

IN GENERAL the typical behaviour of plasticity are yield, flow and work-hardening. There-
fore the constitutive equations, which define a plastic material, must contain and repre-
sent the above three properties. The yield condition, which is expressed as a stress relation,
can be expressed geometrically by a surface, i.e. the yield surface in the stress space. The
plastic flow can be represented by the vector of the strain increment in the space. When the
plastic flow proceeds, the yield condition changes in general and the change shows work-
hardening which can be expressed by the deformation and the motion of the yield surface.
When the centre of the surface remains at the origin and the surface expands similarly with
respect to the origin, we say that the material has isotropic work-hardening. When the surface
translates rigidly in the space, we say that it has translation (or kinematic) work-hardening.
In general, the plastic material may have both types of work-hardening. When the strain
increment at'a point on the yield surface has external, tangential, and internal direction,
we say that the process is Joading, neutral and unloading, respectively. If the yield stress
for a loading direction and that for the opposite direction have different magnitudes,
we say that the Bauschinger effect exists. Then, isotropic work-hardening has no such
effect but translation work-hardening has it.

In general, plastic deformation is accompanied by an irreversible change of the internal
state of the material. For a method which includes this change into the constitutive equa-
tion of continuum mechanics, there is the theory of internal variable [1-8]. The exiernal
variables such as the deformation and the stress, which are explicitly observable, are distri-
buted continuously in a continuum and so are the internal variables which are implicitly
observable as a result of the observed external variables. These internal variables may be
of ‘scalar, vector or tensor character. Thus the theory of internal variable has two types
of constitutive equation; one is the relations between the external variables and these rela-
tions depend upon the internal variable and are called the constitutive equation in a narrow
sense, and the other is the evolutional equations, which prescribe the time evolution ofthe
internal variables and depend upon the external variables.

The plasticity and the viscosity can be distinguished by the dependence on the time scale.
The plastic stress-deformation relation does not depend upon the time scale but the viscous
relation does. The rate type constitutive equation, which is a linear relation between the
stress rate and the deformation rate, does not depend upon the time scale. The Prandtl-Reuss
plastic material has a special case of the rate type constitutive equation. The disintegration
of the strain into the elastic and the plastic part can be taken with some ambiguous consider-
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ation [9]. On the other hand, the disintegration of the deformation rate, i.e. the stretching,
has a definite meaning. Further, the rate type equations can express collectively many vari-
aties of responses to the initial values.

Two types of construction of the rate type plastic equations can be considered. One is
the hypo-elasticity by TRUESDELL [10] and another is the method derived from the Von
Mises’ plastic. potential and the rate type elastic equation. By the former method the author
introduced the scalar, vector and tensor internal variables into the hypo-elastic equation
and obtained as special cases the Prandtl-Reuss plastic material and 9~ material [11, 12].
Also by the latter method the author introduced the scalar and the tensor internal variables
into the plastic potential and obtained the Prandtl-Reuss plastic material with isotropic
and kinematic work-hardening [13-15].

In this paper we introduce the scalar and the tensor internal variables into the second
method and propose the general constitutive equations of the Prandtl- Reuss plastic material
with general work-hardening. The contents of this paper is a development of the results
given in [15]. Further, the general behaviour of the material is analysed for the steady simple
extension. Specially, the behaviour of the incompressible material for the steady uniaxial
stress extension is analysed and depicted in the figure for the loading-unloading-reloading
processes and for the cyclic loading-unloading processes.

2. Rate type constitutive equations

The positions of a material particle at the reference configuration and the current
configuration are denoted by X and x, respectively. The deformation gradientis F = dx/dX,
and the left Cauchy-Green tensor is B = FFT. The Cauchy stress T of the isotropic elastic
material is a function of B, i.e.

@.1) T = K(B).

For the basic concepts of continuum mechanics refer, for example, to TRUESDELL and NOLL
[16]. From the principle of material frame-indifference the material function K cannot be
arbitrarily taken, but it must satisfy the identity

22 K(QBQ") = QK(B)Q",

where Q is any orthogonal tensor.
Differentiating the relation (2.1) with respect to time and we have

_ K
= Bn
where the stretching D and the spin tensor W-are the symmetric part and the skew symmetric
part of the velocity gradient 9x/dx, respectively. Let us consider that Q is a function of
a parameter a and that Q = 1 and dQ/da = W at a = 0. Then, differentiating the relation
(2.2) with respect to a and setting a = 0, we have

K
B,

2.3) (DB +BD + WB—BW),,,

(24) (WB—BW)uI = WK—-KW.
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Substituting Eq. (2.4) into Eq. (2.3) we can obtain

2.5 T=46D], T,=¢&;uDu,
where
(2.6) T=T-WI+TW

is the co-rotational stress rate and the bracket denotes the linear dependence.

The elasticity & obtained above is a function of B and given by the material function
K(B); however, we consider that Eq. (2.5) with any fourth-order tensor &(B) define a rate
type constitutive equation of the isotropic elastic material [17].

In an elastic-plastic deformation the stretching is assumed to be the sum of the elastic
stretching gD and the plastic stretching D, i.e.

@7 D = D+,D.

Further, we assume that the elastic equation (2.5) holds for an elastic stretching in an elas-
tic-plastic deformation and

(2.8) T = #[zD] = £[D]-&[:D].

It will be shown that the above equation is reduced to the plastic equation.

3. General rate type plastic equations

In order to include the change of the internal state in the theory, we introduce the scalar
internal variable o and the symmetric tensor internal variable 8, which is assumed to have
stress dimension without no generality. Their physical meanings depend upon a particular
material. They may be the dislocation density for metal of the crystallization density for
plastics. Here we do not discuss their physical interpretation,

Let us introduce Von Mises’ plastic potential g and assume that it is a function of the
stress and the internal variables- According to PRAGER [18], who introduced the translated
stress

(3.1 T=T-8,
we assume that
(3.2) g = g, a).

The internal parameter @ is called the translation tensor.
In the elastic state

(33) g, 0) <0
holds. In the yield state the yield condition
(3.4) g(i‘ » a) =0
holds and the flow rule

)
(3.5 D= SEE

is assumed, where ¢ is a proportionality fagtor.
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The combination of Egs. (2.8) and (3.5) gives the constitutive equation of a plastic
equation in a narrow sense. We assume that the behaviour of the internal variables are
independent of the time scale. The evolutional equations are assumed to be

(3.6) & =®T, D], &= BypDy,
3.7) B =¥, o)D), Py =¥yurDu,
where

(3.8) B =B-WB+BW

is the co-rotational translation rate. Then we have

(39) T = £[D]- (6+¥)[D),
where

2 -~ -~ ~ o o
T=T-WI+TW=T- p
is the co-rotational translated stress rate.
From the principle of material frame-indifference, the identity

(3.10) g(QTQ", o) = g(T, o)

holds for every orthogonal tensor Q. By the same process for Eq. (2.4) we have
ag' o~ =

(311) ‘.I’(Tﬁ'(wr—TW))= 0.

For the yield state Eq. (3.4) holds. Differentiating it with respect to time and referring to
Eq. (3.11), we have
G.12) tr —a§-i*)+fi&=o.
T do
Let us obtain the proportional factor &. Substituting Egs. (3.9), (3.6) and (3.5) into
Eq. (3.12), we can obtain

(3.13) e = tr(GD),
where

i:?_] &
(3.14) G= o

og g dg | og
—= | (E+¥)|—=|-® | =|-=
el e
and ([0g/8T16)u = (980T pu)Emmnr. Therefore, in the yield state the plastic stretching
is proportional to the total stretching and

g
3.15 D= —tr(GD).
(3.15) P 7 (GD)
Also we can obtain the general rate type plastic equations:
(3.16) T = P[],
(3.17) a = II[D],

(.13) g = D),
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where
(3.19) P = 5-(&+\!‘)*a—§ ®G,
oT
(3.20) o= ‘b[ % ]G,
oT
oy
3.21 n=v|*%|sc
(3.21) [ Zle

and ® denotes the tensor product.

4. Constitutive assumptions

The general plastic cm_;__stitutive'equations given in the last section are too general, so
we assume here the following four constitutive assumptions:
(i) & and ¥ are isotropic constant tensors;
(ii) g-and P are pressure-insensitive;
(iii) there is no generalized Bauschinger effect with resepct to the translated stress;
(iv) the plastic potential and the evolutional equations are second-order polynomials for
the translated stress.
The assumption (i) denotes that
(CAY) Eij = Ay O+ p(0i O+ 60 0y,
(42) !p[jkl - Iau ald +m(6lk 6}!+ dil 5;;),
where 4, u, I and m are material constants and &,; is the Kronecker delta.
The assumption (ii) gives
“3) g=g( ), ®=o0%q),
where T* = T—(1/3)tr(7) 1 is the deviatoric translated stress. The principle of material
frame-indifference demands that the identities

@.4) g(QT*Q", o) =g(T*, a),

@.5) ®(QT*Q7, o) = Q¥(T*, ©) Q7

hold for every orthogonal tensor Q. Then, i:y the representation theorem we have the
expressions

4.6) g = g(i1*, IiT*, ),

@7 ® = gol +¢,T*+4,T*,

where

4.8) I* = tr(T*?), HI* = e (T*)
are invariants of the deviatoric translated stress and

4.9) ¢r=¢p (II*, III*,0) (I'=0,1,2)

are material functions.
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The assumption (iii) means the following two conditions:
(a) if (T*, ) satisfies the yield condition, (—T*, a) does the same;
(b) (T*, a, pD) and (—T*, «, —pD) give the same rates of the il}temal variables.

These conditions show that g and ¢, are even functions of T*, and ¢, and ¢, are its
odd functions.

We assume that g and ¢, (I"= 0, 1, 2) are analytit functions of the invariants *
and /77*. The assumption (iv) and the parity of the functions depicted above give the expres-
sions

(4.10) g = go(@)+&, ()IT*,
(4.11) ® = ¢(a)T*,

where go(a), g,(«) and ¢(ax) are material functions of a.
From Egq. (4.10) the yield condition (3.4) and the flow rule (3.5) reduce, respectively, to

TE S‘o(ff) i
4.12) Ir* = ) g2(a),
4.13) oD = 2¢g,(a)T*.

Equation (4.13) gives ZIEGLER’S rule [19] when g, («) takes a constant value.

Let us obtain special forms of the constitutive equations (3.16)—(3.18) by the consti-
tutive assumptions. Substituting the expressions (4.1), (4.2), (4.10) and (4.11) into the con-
stitutive funcitons (3.19)-(3.21) and referring to the condition (4.12), we can obtain

(4.14) P=é- k?:), T*QT*,
(4.15) I = 7_‘:-:? g’iﬁd)}@ T+,
4.16) o= O‘—f-;‘—;"k—(;? @i+,
where & is given by Eq. (4.1) and

“.17) k(a) = [gz(a) ll + *(%l”m.

Here we introduce a new parameter

@

—  [p+m  Kk(a)?
e “‘[ W L@@

which is defined by the material constants 4 and m and the material functions g,(«) and ¢(«).
Therefore the relation between « and @ is specified by a given material. Then the parame-
ter « may be interpreted as a new internal variable, and henceforth @ is rewritten as a.
By this transformation the expressions (4.14) and (4.16) are formally unchangeable and
Eq. (4.15) reduces to

4.19) =L s,
2u
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The constitutive equations (3.16)-(3.18) are, then, expressed as

5 2# i
(4.20) T= J_W wiT*,
@.21) & = 2—1‘ w,
§_ . 2pm oz
(4.22) B= G wT*,
where
4.23) w= tr(T*D)

denotes the work done on the material per unit volume and per unit time by the deviatoric
translated stress; it is called the substantial stress power.

We must remark here that the above equations have been derived under the yield con-
dition (3.4) and k(x) is not an arbitrary function of « but is given by Eq. (4.17).

5. Prandtl-Reuss plastic material

A typical property of the plasticity is the loading-unloading phenomenon. The stress-
strain diagram has two different paths for the loading and for the unloading, and two
paths crossing at a point which is the starting point of the unloading. A theory of ordinary
differential equation assures that they have unique solution for a given initial condition.
The rate type constitutive equations may be regarded as the ordinary differential equations
when the time is regarded as the independent variable. Then a single set of rate-type con-
stitutive equations cannot express the loading-unloading phenomenon. Therefore we must
adopt two sets of equations, one is for the loading state and the other is for the unloading
state.

In the unloading state, which is not defined now, we assume that the elastic equation (2.5)
holds and the internal variables remain their initial values, i.e.,

.1 a=0,

o

(5.2) B=o0.

In the loading state we assume that Eqs. (4.20)-(4.22) hold, where the material function
k(a) is not given by Eq. (4.17) but it must be regarded as any given function of a. This
is a drastic change of our standpoint; here, Eqs. (4.20)-(4.22) must not be regarded as the
equations under the yield condition.

When the substantial stress power w is positive, zero and negative, the material receives
the mechanical work, is adiabatic with it, and gives it to the exterior, respectively. So we
may define that the three states

(5.3) w>0, w=0, w<0
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are the loading, the neutral and the unloading state, respectively. By this definition the
two sets of equations have the expressions

(5.4) b= —(i+5 D,
(.5) T* = 2uD*— Ef;:‘T(w}'i'*,
(5:6) = O,

5.7) b= o WT
where the symbol { ) means

69 =ty ieo

These consist of the constitutive equations of the compressible Prandtl-Reuss plastic ma-
terial.

If the material is incompressible, the pressure cannot be determined by the constitutive
relations but it must be specified by the initial and the boundary condition. The constitu-
tive equations of the incompressible Prandtl-Reuss plastic material are given by Egs.
(5.5)-(5.7) without Eq. (5.4). The incompressible material must be isochoric, then there are

(5.9) trD =0, D*=D.

Until now we have derived the constitutive equations (4.20)-(4.22) from the heuristic
method with the aid of Von Mises’s plastic potential. However, the author obtained them
through the method of hypo-elasticity. Equations (7.2), (6.5) and (7.3) depicted in the ref-
erence [12] reduce to Egs. (4.20)-(4.22) depicted in the last section if we put Ku(a) = k(a),
b(a) = m/(u+m).

For the sake of the numerical calculations, let us take the dimensionless expressions
of the constitutive equations.

l

_T p _ B -
(510) S= 2# ’ q e | ?—2—! M(a)— ’

are respective dimensionless quantities, function and constant. Equations (5.4)-(5.7)
reduce to

. 11
.11) o —(E+T)tm,
1 .
(5.12) S§* = D* — e 8%
(5.13) & = (o,

(5.14) ¥ = 317 O
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where
(5.15) v = tr(S*D).

We can say that the compressible Prandtl-Reuss plastic material is characterized by two
constants A/u and ¢ and a function M(«), and the incompressible Prandtl-Reuss plastic
material by a constant ¢ and a function M(a).

6. Yield condition and flow rule

The Prandtl-Reuss constitutive equations (5.4)-(5.7) are characterized by the material
constants u and m and the material function k(«), which does not have the form (4.17)
but is a given functien. Then the yield condition and the flow rule must be newly defined
by Eq. (5.5).

The author derived the yield condition and the flow rule of the material with the hypo-
elastic equation [20]. Equation (4.20) or Eq. (5.5) is a linear relation between the stress rate
and the stretching. By a given stretching the stress rate can be determined uniquely. The
" inverse correspondence may be singular. This singularity relation is called the yield condi-
tion and the null space of the stretching gives the flow rule. For a more simple method
with matrix representation, see TOKUOKA [21]. From the equation we can obtain the yield

condition

(6.1) IT* = tr(T*2) = k(x)?
and the flow rule
(6.2) D = ¢+,

where ¢ is a new proportionality factor. Compare them with Eqgs. (4.12) and (4.13).

The condition (6.1) represents a circular cylinder in the stress space with the axis cross-
ing at the translation B and the radius J/2k(a). The axis is parallel to the pressure-axis
which spans an equal angle with three coordinate axes. Therefore, the change of k(a)
with o denotes the isotropic work-hardening and -the change of 8 denotes the translation
work-hardening. The condition (6.1) is a generalization of the Huber-Von-Mises yield
condition. The rule (6.2) denotes that the stretching is proportional to the deviatoric trans-
lated stress. This stretching is called the flow stretching. For this we have trD = 0, then
we can say that the flow stretching is isochoric. The rule (6.2) is a generalization of the
Lévy-St. Venant flow rule.

The flow cannot continue with indefinite magnitude. Because if the stretching changes
by the manner of Eq. (6.2), the evolutional equations (5.6) and (5.7) for the loading 'state
yield the changes of the internal variables which, in general, disordér the yield condition (6.1).

The evolutional equation (5.7) shows

6.3) uﬁ =trp =0,

which gives Iz = tr = constant. Then the translation point @ in the stress space is on
a plane that is perpendicular to the pressure-axis.
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7. Fracture rule

Every material fractures when it is deformed largely or when the repeated loading-
unloading cycles are applied on it. In general, we can say that the fracture occurs when
the internal change is cuamulated and the internal state reaches a critical state. The internal
variables were introduced to express some changes of the internal state, so it is natural
to assume that a material function of the internal variables exists and the fracture occurs
when it has a critical value.

We introduce a scalar material function called the fracture function:

(7.1) h = h(a, B),
and we assume that the fracture occurs when
(7.2) h(a, ) = 0,

which is called the fracture condition.
The fracture function must be frame-indifferent, so

(7.3) h(a, QRQ") = h(x, B)

holds identically for every orthogonal tensor Q. Then the representation theorem gives
(7.4) h = h(a, g, I11y),

where

(7.5) IIg = tr(B?), Il = tr(B3)

are the invariants of the translation tensor @ and where the dependence on I is deleted
because, from Eq. (6.3), it has a constant value.

8. Cauchy’s laws of motion

Every material is subjected to the fundamental laws of motion, i.e. Cauchy’s first and
second law of motion:

8.1) divT +gb = ¢X,
8.2 =

where o is the mass density, b is the body force per unit mass and T” denotes the transpose
of T.

The second law holds when the stress is assumed to be a symmetric tensor. Usually,
the body force is neglected and then, the spatially homogeneous stress exists only when
the motion is accelerationless. Even if the motion is not accelerationless, the acceleration
reduces to a diminishingly small quantity if the rate of deformation tends to zero. Our rate
type constitutive equations are independent of the time scale, therefore we can consider
the law (8.1) to hold for the homogeneous stress, zero body force and sufficiently slow de-
formation. In this way we can now focus our attention on the constitutive equations.
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9. Steady simple extension

A steady simple extension has a constant stretch tensor
©.1 Dy = D;éy,

where D; are constant principal stretches with respect to a rectangular Cartesian
coordinates and the summation convention is not applied in this section. From the
definition of the stretching we have

(9.2) k{ = D;x;
and by integration we have
9.3) xi = Xiexp(D;1),
dx; .
9.9 E(t) = log —— X Dit,

where the material configuration at ¢ = 0 is referred to the reference configuration and E
is called the logarithmic strain.

Now let us analyse the behaviour of the Prandtl-Reuss plastic material for the steady
simple extension, where the zero initial conditions

9.5 S=0, a=0, yvy=0 atr=0

are assumed.
From Egq. (5.11) we have

©6) 7=00-( 4 —)Z (E— o),

where the subscript zero indicates the value when a steady simple extension starts. From
Eq. (9.2) the spin tensor vanishes and the co-rotational time rate reduces to the usual time
rate. From Eqgs. (5.12) and (9.1) we have

01 S5 = 3 @S (%)),

and we can conclude with the initial condition (9.5), that the shear components of S*
vanish identically. We then have

9.8) Sk = Sréy.
Therefore, from Eqgs. (5.14) and (9.5);, we have
9.9) - Vij = ¥i0y.
Then Egs. (5.12)-(5.14) can be written as

sy ., 1 =
(9.10) " O~ M)? (v)S¢,
©.11) B @,

d

©.12) L B ¢ B

dt M(oc)



PRANDTL-REUSS PLASTIC MATERIAL WITH SCALAR AND TENSOR INTERNAL VARIABLES 813

where
3 3
©.13) @y =D §¥Di= ) StD
im] i=1
For an unloading process we can easily obtain
(9.14) Sk = S&+Er—ES,
(9.15) o= oo,
(9.16) Vi = Yoi.

Then from S; = S# +f;—g, we have

©.17) Si= Sort (Bi- Em)+—2 (Ei—Eo,
i=1
where we put Sy; = §g,+ Boi—4o-
For the loading process, multiplying Eq. (9.10) by D, summing in / and replacing
the independent variable from ¢ to o by Eq 9.11) gives us

2
(9.18) % W w72 Z’ D2,
Now we define the function
Fod
9.19) S, mp) = exp(fT‘i)z),

and by similar manipulations we can obtain the following:

% g 1 o * ; f(&p “o)
i St %) = 7o [S"‘“’ T df]’
©.21) 7@, #0) = yor+c(E* (@, %)~ ‘:)+€(§?(a.do)—§o‘:),
(9.22) t=to+ f 0@ %)
(923) E; = Ey+ D, f'v(:f—ao)-
Then we have *

A-9DF [ fi&, a0)
(s ao) o v(§, o)

©.24)  Sia, @) = Syt (1—0) (TZaITo)_ i-) §a+

3
A =
+e(Ea, )—Eo.)+(~2;+L3-‘i) D) (B2, 00~ Ea).-
i=1

These equations (9.20)-(9.24) are the relations of the stress, the strain, the translation and
the time which are correlated with each other by the scalar internal*variable « as a para-
meter.

9 Arch. Mech. Stos. nr 6/78



‘814 T. ToxuOKA

10. Uniaxial stress extension

10.1. Constitutive relations

Here let us analyse the uniaxial stress extension of the incompressible Prandtl-Reuss
plastic material with the initial conditions (9.5). The loading direction is taken as the x,-axis
and we can put

(10-1) Sl = S, Sz = S3 = 0,
(10.2) D, =D(f), D,=D,= —-%D(t),

where D(t) is a given function of time. From the initial condition (9.5); and Eq. (6.3) we
have try = 0. Then we can put

1
(10.3) = '_3‘% Yz=Ya= '—_3‘?-

The stress power in Eq. (5.15) is given by

(10.4) o= 38D,

where

(10.5) S=S—y.
We can say that for the loading state

0) §>0, S>y and D>0,
(i) §<0, S<y and D <0,
and for the unloading state

(iii) §>0, §S>y and D <0,
(iv) §<0, S<y and D>0.

The pressure is indefinite and the constitutive equations (5.5)-(5.7) in the uniaxial
stress extension are given by the following:. For the unloading state,

L]

as 3 da dy

(106) E=7T E-® ;=
and for the loading state,

a 3 s de 5 dy 52
l. — S e——am — = —
s E -7 M@ E-S TE - M
where

dE

10. .
(10.8) —=D

and E is the logarithmic strain along the x,-axis.
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Equations (10.6) can easily be integrated and we thus have the relations for the unload-
ing state

(10.9) S = So"‘ (E-Ey), a=ag, Y=7%0.

After some manipulations we can integrate Eqs. (10.7) and we have the relations for the
loading state

(1010)  S(a, o) = iﬁ[b‘%w J 7 aorae]”,

(10.11)  E(a, ao) = Eo+ f S(§ iy’

S (E aﬂ) df

(10.12) y(a,ao)=?o+f-‘f M@

= Yot (B, 20)— Eo) —c(§(a, o)~ 50).
Then, from Eq. (10.5) we have
10.13)  S(e, a) = Sot (—-e)E(e, ao)~ o)+ (B, o)~ Eo),

where f(a, oo) was defined by Eq. (9.19) and the subscript zero denotes as before a value
at a starting instance.

10.2. Work-hardening

Let us estimate the magnitude of the work-hardening. At the zero-th order approxi-
mation we can put dS/dE = 0 in Eq. (10.7), and we have the yield condition

(10.14) - §a- i]/ 3 M@,

which is equivalent to (6.1).
From Egs. (10.7), and (10.7); we have the increment relations:

(10.15) Ao = + —g— M(«)AE,
3
(10.16) Ay = = cAE.

2
By the yield condition (10.14) and the relation (10.15) we have

(10.17) A8 =

g%
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The increment relations (10.16) and (10.17) give, respectively, the translation and the
isotropic work-hardening. Then the material constant ¢ expresses the magnitude of the
translation work-hardening and the material function M(«) characterizes the isotropic
work-hardening. From Eq. (10.5) we have

(10.18) AS = __( M) 2c) AE,

which indicates that the total work—hardenmg is a sum of two hardenings.

10.3. Perfect plastic material

In the case where
(10.19) ¢c=0, M(x)= M, = constant,
there is no work-hardening and the material is reduced to a perfect plastic material. The

translation always vanishes, i.e., ¥ =0 and then S = S. The scalar internal variable dis-
appears in Eq. (10.7); and its sinificance vanishes naturally.
Equation (10.7), may be integrated and we have

(10.20) so+]/_ Momh(]/s E-E, )
l/_ ]/— Mo+sot3_nh(]/—E—Eo)

When |E—-E,| > M,, we have the yield conditions S = +)/3/2 M,, and when |E—E,|
<M,, we have the unloading relation (10.9),

10.4. Plastic material with translation work-hardening

In the case where
(10.21) ¢>»0, M(a)= M, = constant,
there is the translation work-hardening. The relation of the translated stress magnitude Ky

and the strain is given by Eq. (10.20) by the replacements of S by S and S, by S,. The
magnitudes of the translation and the stress are obtained from Egs. (10.12) and (10.13).

10.5. Plastic material with isofropic work-hardening

In the case where

dM(x)
do

there is isotropic work-hardening. Here y = 0 and § = S. The stress-strain relation is

given by Egs. (10.10) and (10.11) by replacement of S by S and So by So.

(10.22) c=0, £ 0,
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10.6. Fracture function

In Sect. 7 we introduced the fracture function. In the uniaxial stress extension the trans-
lation tensor is represented by the magnitude y. Then we can put

(10.23) h = h(x, %),
and then the fracture condition is given by

(10.24) h(a, y) = 0.

11. Numerical calculations

In arder to execute the numerical calculations we must adopt a concrete form
of the material function. Now we assume

(11.1) M(a) = Mo(1+aq)',

where M,, a and n are material constants. When a = 0, there is no isotropic work-hard-
ening.
Let us consider a parameter transformation:

(11.2) My—M,, a-{?%, n-n, c-uc,
and
(11.2) S-S, E-(E, o>, y-Ly.

By this transformation the constitutive relations (10.6) and (10.7), the stress-strain-trans-
lation relations (10.9)-(10.12) and (10.20), the yield condition (10.14) and the work-
hardening relations (10.15)-(10.17) are invariant. Therefore, one of the two material con-
stants M, and a may assume any value without any loss of generality.

The function defined by the relation (9.19) has the forms

(11.3) f(a, o) = exp {1 +a¢)(1'_'2;)(;:ézao) =2n ], - %,
1/M3a
ar3)  fl,e) = (11—:5%) -

which are invariant with respect to the transformation (11.2).

Figure 1 show the stress-strain relations for the simple loading process from the ini-
tial state (9.5). The diagrams depicted in Fig. 1 (a) refer to the material with translation
work-hardening and the diagrams with ¢ = 0 correspond to the perfect plastic material.
The diagrams depicted in Fig. 1 (b)—(e) refer to the material with isotropic work-hard-
ening. When aa < 1, the material function (11.1) is approximated by

(11.4) M(a) = My(1 +naq).



©)

a)

2
©
o
)
1 n=1 ggtol
05 2x10*
025 4x10* Mo=1o"
c=0
o} ] | : I |
0 5 0 N J
£x10°
2
n=1 o0=2x10*
05 4x10*
Qa2  8x10*
‘Mp=10"
=0
| | l i l
° 3 10 15 =
Ex10®

818)



d
) n=1 a=3x10*
; 05 6x10*
" 025 12x10*
po
w
1
o4 :
0 5 10 15 20
Ex10®
e) 2
= - n=1 o0=4x10*
2 05 8 x10*
e 0%  16x10*
2.-.......
1
Mo=10""
c=0
0 ! l |
0 5 10 15 20
Ex10®

Fic. 1. Stress-strain relations for loading processes.

[819]



a)

b)

sxi10

- 1 T
o
»
m -
0
- MO=IO-3
0=0
) - c=0
L l
-5 (0] 5 10 15
E x10°
2
©
»
o
' ]
0
-1 Mo=10"°
a=0
o c = 2x107
-2 o) L |
-5 0 5 10 15
E x 10°

Fig. 2. Stress-strain-internal variables relations for loading-unloading-reloading processes, where the

unloading starts at E = 10~2,

[820]



)

d)

sx10®
rx1o®

s x10°

o)
1 — —185 =
>
= L)
B -“_-‘_-""“—-______ :____;5-__;
-___________'____H _'___________----"'""'-
0 . = = : 0
Mo"O.l
-1 — Q= 2110‘
n=05
c=0
|
-2 I | 5 | |
-5 0 S 10 15
£ x 10°

E x 10°

ax10°



822 T. ToxUOKA

They correspond, respectively, to na = 1, 2, 3 and 4. We can say that the materials with
n> 1,n = 1and n < 1 have increasing, constant and decreasing work-hardening, respec-
tively.

Figure 2 show the stress-strain-internal variables relations for the loading-unloading-
reloading processes from the zero initial state. The diagrams in Figs. 2 (a), (b) (c) and (d)
refer, respectively, to the perfect plastic material as well as to the materials with translation,
isotropic and total work-hardening. The solid bold lines, the solid fine lines and the broken
fine lines refer, respectively, to the stress-strain, the translation-strain and the scalar internal
variable-strain diagrams. The unloadings are started at E = 10~? and the reloadings are

3
Mo= 1078
-bno i z 0 .
sl ¢ = 2x10
ne

] | ‘ ]
30 40

Ex10°

FIG. 3. Stress-strain-internal variables relations for the unloading-reloading processes, where the unloadings
start at E = 2x10-%, 3x10~2 and 4x10-2.

started at S = 0 for positive and negative directions. The reloading diagrams show the
rounding phenomenon and Figs. 1 (b) and (d) show the remarkable Bauschinger effect.

Figure 3 show three unloading-reloading diagrams started at E = 2x10-2, 3x10—2
and 4 X 10~2 for the material with translation work-hardening. It is worth noting that the
unloading and reloading paths make loops. Refer to TOKUOKA [22].

Figure 4 show the stress-strain-internal variables relations for the loading-unloading
cycles in the limit of strain +5x 10~3, We can say that the behaviour of the plastic material
for this cycle depends largely upon the isotropic work-hardening and, a little, on the trans-
lation work-hardening,
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