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Elasticity of cracked medium
CZ. EIMER (WARSZAWA)

AN eLAsTIC medium is considered with stable random frictionless cracks that can open or close
depending on the load. The material is shown to obey equations of nonlinear elasticity
which are homogeneous but not additive, defining a new class of materials, called pseudo-linear,
more general than the linear ones. Constitutive relations are similar to linear ones where elastic
constants are replaced by suitable functions. The basic properties of these functions are examined.
The cases of isotropy and orthotropy are analysed in more detail.

Rozwaza si¢ ofrodek sprezysty z ustalonym losowym ukiadem rys bez tarcia, ktére moga zamy-
ka¢ si¢ i otwieraé zaleznie od obciazenia. Pokazano, Ze material taki opisuje si¢ rownaniami
nieliniowej sprezystosci, ktére s3 jednorodne lecz nie addytywne; definiuja one nowg klase
materiatow, og6lniejszych od liniowych, zwanych pseudoliniowymi. Zwigzki konstytutywne
maja posta¢ podobna do liniowych, lecz stale sprezystoéci zastapione sa odpowiednimi funkcja-
mi. Zbadano podstawowe wilasnoéci tych funkcji. Zanalizowano blizej przypadki izotropii
i ortotropii.

PaccmaTpuBaerca ynpyraa cpefia ¢ YCTAHOBJICHHOH ciryuaiiHol cucTemoil Tpemun Gea Tpewus,
KOTOPBIE MOTYT 3aKPBLIBAThCA H OTHPHIBATECA B SABHCHMOCTH OT Harpyskd. Ilokasamo, 9ro
TaKOH MAaTepHasl ONMHCHLIBACTCH YPABHEHHSIMH HENHHENHON YNPYroCTH, KOTOPhIE OJHOPOMHEI,
HO HE aJ/THTHBHLI ; OOPEee/IAIOT OHH HOBBIH KJIACC MATEPHANIOB, Gonee obLmit Yem mumciibIE,
HA3bIBAEMBIN mNeefomHelHLIME. Onpenenmonmme YPABHEHHS HMEIOT BHJ AHAIOIHUHBIN
JMHeWHBIM, HO YOPYTHe NOCTOAHHEIC 3AMEHEHBL! COOTBETCTBYIoumME ymramamu. Hccnemo-
BaHBI OCHOBHBIe cBoiicTBa oTHX (ymramaii. AmanmsMpyioTca nofApobHee cirydait HSOTPOIHE
H OPTOTPOITHH.

1. Preliminaries

AT THE PRESENT stage of research on the mechanics of cracks two types of approach
prevail in the literature:

mathematical analysis of a lingle crack, crack expansion and fields of stress generated
in the neighbourhood;

investigation of the bulk behaviour and constitutive equations of materials with numer-
ous random micro-cracks (concrete, rock, brittle materials).

The latter problem, analysed in the present paper, has been dealt so far in-a double way,
the point of issue being that of, say, concrete structures designers (empirical approach
with much simplified theoretical interpretation) or of theoretical mechanics of continua
(mainly theories using the concept of internal state parameters). The first of the mentioned
approaches is supported by extensive empirical work restricted, however, in general to beam
and rod structures. Moreover, it lacks a cogent generalization for three-dimensional
problems. The second one seemsto be still far from a comprehensive solution for such
a complicated material as concrete. Here, apart from different types of defects, there inter-
act many other physical phenomena; on the other hand, the size of inhomogeneities calls
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for a nonlocal theoretical description and occasions many experimental difficulties (scat-
tering of results, need for statistical treatment).

In the present paper, applying the method of abstraction, we confine ourselves to surface
defects called cracks and derive constitutive equations for stable crack systems. We use
the concept of the representative volume element (RVE), defined as a volume element
sufficiently large as related to the mean crack size, including many random cracks uniformly
scattered (homogeneous stochastic distribution) and, at the same time, small enough for
a homogeneity of macro-fields to be assumed. More precisely, in a deterministic homoge-
neous reference medium loaded by the same body and boundary forces, the fields in the
domain of RVE would be homogeneous. _

The element exhibits macro- stress o, strain € and displacement u,

(L o= [d], u=[d], e€=symgradu.

The notation is invariant, the supercripts refer to random (micro) quantities and [ ] de-
notes volume averaging. Note that the grad operator cannot be immediately applied to the
random field of @ (showing discontinuities). The formulae (1.1) are quoted for illustration
only since we do not make use of them in the sequel. The following relation holds for homo-
geneous macro-fields:

(1.2) u = €(x—Xo),

where u is the displacement at the point x and x,.is the reference (rest) point; the product
is understood as a vector space transformation.

Observe that we can make use of the concept of RVE in the double context: volume
averaging or deterministic (phenomenological) description. Volume averaging is fundamen-
tally different from the stochastic one, although in many cases both lead to the same results
(property of ergodicity). We lose the nonlocal effect and must restrict ourselves to macro-
‘homogeneous fields. Observe that the RVE is not a precise concept since the limit transition
to unbounded medium, i.e. from micro- to macro-quantities, is not unigely defined, In the
second context (phenomenological description) averaging does not appear at all (we employ
only macro-quantities); still, RVE remains useful making it possible to take account
of “structural” phenomena. The relevant quantities are mostly interpreted as internal con-
stitutive parameters. In particular, in the latter context we need not define a crack (as
a discontinuity surface of the displacement vector) since the respective quantities do not
appear in the formulae.

The parameters of this type have been assumed in various forms, as “porosity” para-
meters [3, 4], damage parameters [1, 2], tensor parameter of crack density [7], stress con-
centration or strain energy concentration factors [5, 6] &nd the like. All those concepts
seem not to account sufficiently for the geometry of cracks, not describable in such a simple
manner (by a single quantity). '

The basic feature of cracks depends on the fact the these can open or close according
to the direction and sense of loads. The principal stress trajectories pass round the cracks
and separate volume “flaws” with approximately vanishing stresses; consequently, the me-
dium could be replaced by an equivalent inhomogeneous (multiphase) one (Fig. 1). However,
when the tension turns into compression, the forced inhomogeneity disappears, that is,
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the latter depends on the state of stress and this yields an essential generalization towards
the classical theory of composite bodies. Further generalization is needed for materially
inhomogeneous and cracked media (and this is the general case). Now we must have at our
disposal the descriptions (1) of the geometry of cracks, (2) of the elastic tensor field; if we
want to analyse the development and propagation of cracks, we need, moreover, (3) the
distribution of strength properties. In the present paper we are not concerned with the
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FiG. 1. a — stable cracks (unloading), b — plain material elastic-plastic, ¢ — increasing cracks.

latter problem and this will prove to be equivalent to restriction to the elastic range. How-
ever, a special kind of nonlinear elasticity (called pseudo-linear) will be involved. Thus the
problem will be seen to reduce to the investigation of pseudo-linear solids,

2. Pseudo-linear elasticity

Consider, within the infinitesimal theory, the one-to-one mapping
2.1) ¢ =o0(), €=e¢0),

characteristic of elastic behaviour, and examine whether this may hold for a linear-elastic
cracked material. Obviously, this is not the case for cracks that may expand or move since
irreversible processes would set in (change of elastic energy into crack surface energy).
For the same reason no friction (i.e. energy dissipation) at cracks can be admitted. We reject
also a possible infinite friction at rest which would prevent any mutual displacement of
opposite surfaces at a closed crack and accompanying dissipation of energy. However,
it would make the deformation process path-dependent and the unloaded state not free
of eigenstrain- and stress fields. Thus we come at a model of glib cracks, called in the sequel

the ideal crack system. The branch A0 at unloading (Fig. 1b) depicts the possible behaviour
of ideal stable cracks that have formed during the loading process (curve OA). The change

of sense of the load which makes the crack close results in the deviation of the line _(ZO_B).
Note, by the way, that the so-called phase II calculation of reinforced concrete girders
is based on the assumption of stable cracks. On the other hand, it is clear that the analysis
of a stable system should precede the second stage of calculation for expanding cracks.

10 Arch. Mech. Stos. nr 6/78
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The essential point is that the stress vector always be normal to the crack surface (crack
closed) or zero (crack open). Indeed, consider the (deterministic) boundary problem of
elasticity for a-cracked (multi-connected) body and assume the cracks form regular sur-
faces. Let the opposite crack surfaces be loaded by normal (vanishing or not) stress vec-
tors &, where n is the unit normal to the crack surface element (stress vectors are denoted
by a superscript in order to make them distinctive from tensors and, similarly, for strains).
Decompose the displacement vector in a normal to surface component u, and a tangential
Uy . The elementary work yielded by two opposite crack surface elements dS an dS’ is

&(I!) o udS+ &;n) C ll'dS'

(“primed” quantities refer to opposite elements). In an open crack 6., = 6, = 0 and the
work contribution disappears. In a closed crack an elementary work increase in the time
dt for dS = dS’, 6(,) = — Gy, (equilibrated forces in contact) amounts to

(6(::) * dﬂ(a) + a' . d“(l)) ds + (&En) b En) + &En) 2 duir)) ds’'.

The first terms in the parantheses cancel since du,) = dui, and the second ones yield
S - (dugy—dug,)dS, i.e. they also disappear because of orthogonality. It follows that the
forces at ideal cracks provide no work contribution in any case. Now, carrying out the
standard proof of uniqueness of solution to the boundary problem (crack surfaces belonging

to the boundary) we only need integral [ (-du)dS to disappear over the whole boundary
for a difference of two eventual solutions to the same boundary problem (the stress vector
o and du refer to such a difference). But the integral disappears by the usual argument for
the external boundary and by the one above for ideal cracks. This implies the uniqueness
for a positive definite elasticity field and usual assumptions about smoothness. Upon
formulating the boundary problem for the RVE and homogeneous macro-fields we come
at reversible functions (2.1).

The second important property of the relations (2.1) is that these are homogeneous
of degreee one

(2:2) ko = a(ke), ke = e(ko)

for any real non-negative k. For k = 0 it simply states that strains disappear at unloading
and vice versa. For k > 0 the boundary problem of classical elasticity for k-fold & and/or
u at boundary and zero body forces has the solution ku(x), k€(x), ke(x) provided the above
fields are a solution for k = 1 and the S, and S boundary (for prescribed u and o at the
boundary, consecutively) remains fixed. The latter condition is seen to hold in cracks for
k > 0 since k6, 6(» # O cannot make the crack open and if the crack has been open
6w = 0, k&, = 0. In other words, for the relations (2.2), the closed cracks remain closed
and the open ones open. Thus the k-fold field, kK > O (leaving the internal constitution
unchanged, i.e. open and closed cracks) provides a solution and by the precedent argument
the solution is unique; consequently, the relations (2.2) hold.

On the other hand, the relations (2.1) are not additive, that is, in general o(e, +€,) #
#0(€;)+0(e;) (unless €, = (k—1)e,, k > 0), and similarly for €, since the superposition
of €, would change the open-~ and closed- crack system which is equipollent to changing
the internal structure of the material. Thus the operators (2.1) are no more linear since
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homogeneity and additivity are both needed for linearity; nevertheless, they preserve
a certain item of linearity (homogeneity). The homogeneous, yet not additive, relations
(2.1) will be called in the sequel pseudo-linear. Note that homogeneity is a weaker item than
additivity since the latter implies the former for rational k in finite-dimensional spaces
and nothing similar occurs in the “reverse” direction. Pseudo-linear elastic media define
a class of materials much wider than the linear elastic ones (the latter form a subclass of
those only). Elastic bodies with ideal stable crack systems are seen to be one of the possible
representatives of this class. In the sequel we shall examine some important features of these
materials.
According to the'Euler theorem on homogeneous functions,

(2.3) o = (grado)e,

all quantities and operations referring to the strain space (i.e. we consider the function
o(€), not 6(x)!). By the same theorem the function grad [o(€)] is homogeneous of degree 0,
that is, its value does not change for a given direction and sense of the argument € looked
upon as a vector in the 9-dimensional strain space. Observe that the Euler identity is re-
stricted here to all ¥ > 0 and € # 0, where the function o(€) is supposed to be differentiable;
at the point 0 there appears a nonregularity of a(€) and discontinuity of grad [o(e)] (cf.
the vertex point O of AOB in Fig. 1b). In other words, the function grad ¢ preserves its
value on the radius determined by the “directional” vector e, defined by

(2.4) e=lele, le|=ee,

where |€| may be interpreted as the length of the vector €. For opposite senses of the unit
vector +e, —e, the function assumes, in general, different values (this recalls the be-
haviour of a solenoidal surface). That is to say, the function in question depends only on the
ratio of the components of e provided the signs of the components do not change. For
fixed spatial orientation of €, i.e. of the principal directions of the tensor €, it depends on the
ratio g,: €, : &; of principal strains, under the above restriction. The sign-dependence,
ensured by the constraint k > 0, reflects unilateral internal constraints imposed by closing
cracks.

Thus, for proportional paths of loading, say ¢ = x6,, constitutive relations are linear
only as long as » does not change the sign. When we pass in this manner from ¢ to —¢
we obtain the “broken-line” dependence (cf. Fig. 1b); if we pass round the O point, the
line will be “smoothed” in the vicinity and becomes regular. For non-proportional loading
paths, that is when we cross the radii e, the relation 6(€) is curvilinear; for instance, A0
(in Fig. 1) becomes a curve at one-directional traction under simultaneous constant (non-
zero) lateral compression.

The vectors e define a unit sphere in the 9-space and we can consider functions on this
sphere instead of on the e’s (Fig. 2). Let us define, in analogy to the elastic tensor, the func-
tion
(2:5) grad[o(e)] = C(e)

C denoting, according to interpretation, a 9 X9 matrix-valued function of unit vectors
e (in the 9-space) or a fourth order tensor-valued function of normed second order ten-

10*
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sors e (i.e. tensors of unit magnitude) in the 3-space. A similar argument holds for the
relation (2.2),, where s = o/)/c-0, consequently, we come at the following constitutive
relations for pseudo-linear elastic media:

(2.6) o = C(e)e, €= S(s)o,

where a change of sense of e, s leads in general to a change of C(e), S(s). The latter functions
preserve fixed vglues on the radii in the 9-space, therefore they can be visualized simply

in the graph (cf. Fig. 2). If the plotted line depicts -sphere, classical elasticity
follows. Thus, pseudo-linearity leads to an outer similarity of formulae to the linear-elastic
ones; however, C and S are now functions of the 9-direction.

The functions under consideration may be shown to possess similar properties as in
linear elasticity. For the symmetric tensors €, o, evidently,

2.7 Ciyu(e) = Cyn(e) = Cym(e)

and similarly for S. Consequently, the matrices reduce to the 6 X 6 ones, and the number
of different functions reduces from 81 to 36. For nonlinear relations- of the type (2.1)
not to be in contradiction with the first law of thermodynamics, these should be derivable
from the elastic potential W(e) (similarly for ¢),

(2.8) o = grad W(e).

Combining this with Eq. (2.5) we come, analogously to classical elasticity, at the relation-
ship

2.9) Ciju(e) = Cuyyle).

It follows that the 6 X 6-matrices are symmetric and the number of functions reduces to 21.
Note that we could also derive the above property from the assumption about the local
existence of the potential which is preserved under taking volume integrals. Equating
the total potential to the work of ¢ on € we would obtain the relation (2.9). Finally, in
order to make the strain energy

1 1
E= FOE - ffe-C(e)c

positive, the matrix C(e) (and similarly for S(s)) should be positive definite for any e.
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3. Isotropy, orthotropy

In order to specialize further the form of the functions C(e), S(s) we must make some
assumptions about the geometry of the crack system. Suppose the latter is isotropic in the
meaning that the relations (2.6) are invariant under orthogonal transformation. Note that
such a definition does not necessitate any direct description of the crack geometry. Thus we
postulate
@.1) QoQ™ = C(QeQ")QeQ”,
where Q denotes the orthogonal transformation, i.e. an element of the full group of ortho-
gonal transformations (in the sequel we confine ouerselves to the relation (2.6), ; clearly,
a similar argument holds for (2.6),).

By the known representation theorem for isotropic tensor-valued tensor functions of the
type (2.1).where €, ¢ are second-order symmetric tensors in the 3-space, every proper
vector of € is also a proper vector of @. It follows that the relations (2.1) reduce to the ones
between principal values (i.e. proper numbers) of tensors and, using the relations (2.6),
we obtain

3.2 o, = Cule)e, a,f,y=1,2,3.

Here a,, &,, e, are principal stresses and strains (denoted by simple indices) and f(e,) is
interpreted as f(e, , e,, ;). Hence, employing coordinates in the basis of the principal direc-
tions of @, €, we can look upon [a,], [s,] as 9- or 6-vectors with only three first components
different from 0 and [C,] as the respective 3 x 3-submatrix of a 9 X9- or 6 x 6-elastic stiff-
ness matrix. Irr the said basis the number of non-zero functions Cj;,(e,) amounts to 9 and
these are functions of the type Cjxx (no sum). In view of the relation (2.9), 6 of them are
independent and later in the sequel we shall see to what extent they are actually different.

Thus, for isotropy, the elastic tensor function in the relations (2.6) takes the form

33) C(e) = Cley, %) = ) Cople,) Ve ® Ve ® V5 ® V5
a,p

where v, are unit vectors in the principal directions of e (consequently, functions of e).
If € and o are expressed in their common principal frame v,,, the component representation
(3.2) follows. In a general frame of orthogonal unit vectors n; where

c=0,;;@m, €=:cn@n,
inserting this and Eq. (3.3) in the relation (2.6),, we obtain the constitutive equation in
components:

34 05y = D, Caple) ¥asvayVps e
a,p

(usual summing over k, /) where »,; = v;-m; are coordinates of the principal unit vectors
of € and @, and

3.5) Cina(®) = D, Cuple,) vus¥ey vpavpr.
LN ]

We obtain again 21 component functions (in view of Egs. (2.7) and (2.9)); however, these
are all seen to be derived form the 6 basic ones by simple superposition, i.c. multiplication
by transformation coefficients and summing up.
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In the isotropic case, for constant e,’s (proportional loading) C;; remain constant
in a convected coordinate system, co-rotating with e- and g-ellipsoids. Thus the system of
open and closed cracks follows the rotation of ¢ and is fixed in the respective spatial orien-
tation, that is, the internal constitution -adapts itself to loads. If we could “freeze up” the
momentary structure, the functions (3.5) would become constant, i.e. they would become
connected with a definite spatial orientation and the material would exhibit linear elastic
orthotropy. The number of non-zero components (3.5) would amount to 9 in the coordi-
nate system connected with material symmetry planes: (symmetry of the open and closed
crack system). Shear components of ¢, € would not disappear, in general, in the system of
“original” principal unit vectors, contrary to the “unfrozen” structure.

The functions C,4(e,) are not all different. From the relations (3.2) it follows that these
are invariant under orthogonal transformation since they do not depend on the directors
v,. Let us perform the particular transformation carrying the unit frame of v, in itself,
yet cenverting principal axes. Refer the quantities in the relations (3.2) not to the moving
frame but to the fixed (“original”) one. Then the transformation results in interchanging
the respective indices. Denoting, for the sake of simplicity, for a while: e,, e, e; bya, b, c,
we obtain two following groups of equalitiés:

(36) Cy(a,b,c)= Cy(a,c,b)= Cy(b,a,c)= C,,(c,a,b)
= C33(b’ c, a) = C33(6$ b’ G),

(3-6’) Clz(as b’ L‘) = CZI(b! a, C) e C23(c! a, b) = C.!Z(c’ b’ ﬂ)
= Cis(a, ¢, b) = C54(b,c,a)

(apart from C,3 = Cj, for not interchanged arguments). One must keep in mind that the
indices in C and the locus of the argument in the parentheses are connected with the con-
secutive fixed vectors v,. Thus there are altogether only two different functions, say
C;i(ey, e;, e3) and C,;(e,, e, e;) and this recalls two elastic constants in linear isotropy.

The above argument suggests graphical representation according to Fig. 2b, in the
3-space, where the functions C,,(e), C,,(e) depend on the directions e, ie,:es = &,:&,:¢6;.
The number of independent arguments reduces in fact to 2, say the spherical coordinates.
on the unit sphere of e. Of course, the arguments may be selected arbitrarily; for example,
we could take also the ratios e,/e;,(=e,/e;), e3/e; for & > &, > e;. The symmetry
properties of the surface C,, follow from Eq. (3.6a), viz. C,,(e;, €;, e3) = C;i(e;, €3, €2),
that is, the surface is symmetric with regard to the plane e, = e;, whereas the surface C,,
is symmetric respective to the plane e, = e, in virtue of C;, = C,;. '

A small increase of &, in the relations (3.2) will be produced by the slightest increase
of o, under possibly severe concentration of stress, i.e. a large volume of flaws in Fig. 1.
This occurs for a possibly great amount of open cracks, that is, for uniform tension. The
reasoning points out that the extremal points (if any) of the C,, surface are expected to lie
on the axis e,:e,:e; = 1:1:1, and, similarly, for C,,.

Let us now pass to the anisotropic case. Remark that the distribution of cracks is given
in general by a function of spatial orientation (i.e. of the normal to crack vector) and needs
not exhibit any symmetry. However, the cracks often will be produced by a defirite stress
tensor, brought about by a pronounced load-(exceeding considerably the following ones).
Then the crack system will show the same sort of symmetry as a second order symmetric
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tensor, i.e. in general orthotropy. Speaking of a crack system symmetry, we mean of course
averaged quantities, that is, the property which manifests itself in the invariance of macro-
-stress and strain at certain orthogonal transformations. At any rate, orthotropy may be
looked upon as a first approximation property of the actual crack distribution function
(which, possibly, is not exactly known). This motivates a special concern in the orhtotrop-
ic symmetry.

Consider a symmetry plane of the crack system and fix the orthonormal basis in such
a manner that this be the x, x,-plane. Take the following orthogonal transformation:

1 0 0
0=|0 1 0
0 0-1
i.e. reflection in the x, x,-plane. Consequently,
€11 &2 £33 €11 €12 —&3
QeQ" = Q &2 €3|Q7 = £33 —&33
€33 €33 |

and, similarly, for ¢, e. Expressing the relation (3.1) in the 6-vector-matrix form we have

[ 011 Ciinr Ciiza Cuiss Ciizs Chisn Ciina || &n
022 Ci222 C22as Ciz2s Ciaan Cianz €22
O3z | _ Cisss Ciszs Cisar Cisg €33

— 033 B C232s Caazr Cisya —&3 |’
— 031 Citsr Cinna — &3
O12 C;ZIz‘_, . &12

where for Cy;,(QeQT) we have put
Ciju = Ciju(ey1, €22, €33, —€23, —€31, €13).

The above vector-matrix equation must hold along with the “original” one (2.6), with not
scored Cy;y, and all terms positive, for each ¢;;. Similar equations may be established for
reflexions in the x; x,-and x, x,-planes. Thus we obtain by turns 6 orginal and 6 transform-
ed equations for consecutive o;; and for each symmetry. After having brought the equa-
tions to the same sign of the left hand side, equating in each pair of the corresponding
equations the coefficients at respective &;;, we come at a set of equalities between the Cj;u
and Cjju. For example, for the x, x,-plane symmetry and the pair of equations for oy,

r ’ -
we have Cyy1y = Cly11s 005 Cr123 = = Chyzsy s iies,
Ciii1(ess; €22, €33, €23, €31, €12) = Cyyq1(€11, €22, €33, —€23, —€31, €12),
Cyi23(€y1, €22, €33, €23, €31, €12) = —Ci123(€11, €33, €33, —€23, —€34, €12)

for each e;;. From the first equality we infer that C,,,, can depend only on |e,3], |e;,] etc.
After performing similar calculations for all symmetry planes we arrive at the following
results:

Cijij(e115 €22, €33, €23, €31, €53) = Cijij(er1, €22, €33, |€23], leas], |es2l),
(3.7 Ciixk(e115 €22, €33, €235 €31, €12) = Cin(ey1, €22, €33, |€23], !f’ax_!: leial),

Cisz = 0 — for remaining systems of ijkl
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(no sum over repeated indices). The latter identities follow from Cyu = —Cjy for the
same arguments (including |e,,|, ...) when we take account of all symmetries. It follows
that all diagonal terms and terms of the first 3 x 3 submatrix do not depend on the sense of
shear arguments. On the whole, the elastic matrix takes the form

[ Ci111 Cii22 Cigas O 0 0 7
C2222 Caaas O 0 0
Cyaas 0 0 0
3.8
8 Cyazs 0 0
Cs13; O
- Ci212_

resembling the linear-elastic matrix with 9 independent constants, here replaced by the
functions (3.7). However, a simple representation of the type (3.3) is no more possible
since the component functions depend on both the principal directions of € (determining
open and closed cracks) and of those for orthotropic crack distribution. It would come
to light if we expressed the functions (3.7) dlong with their arguments in an arbitrary frame.
A closer investigation, disclosing possibly more refined symmetry properties, would require
a description of crack geometry by means of, say, crack distribution functions or respective
correlation functions,

References

1. F. BASTENAIRE, Etude critique de la notion de dommage appliqueé a une classe étendue d’essais de fatigue,
Coll. Fatigue, IUTAM, Stockholm, Mai 1955. _

2. Cz. EmeR, Wytrzymalo$é reologiczna betonu w $wietle hipotezy uszkodzenia (Rheologic strength of
concrete in the light of damage hypothesis) [in Polish], Arch. InZ. Lad., 17, 15-31, 1971.

3. R.]. GreeN, A plasticity theory for porous solids, Int. J. Mech. Sci., 14, 215-224, 1972.

4. L. M. Ka&aNov, Osnovy mechaniki razruSenia, Izd. Nauka, Moskwa 1974.

5. M. K. Kassir, G. C. SiH, Three dimensional crack problems, Noordhoff Int. Publ. 1975.

6. G. C. Sm, Some basic problems in fracture mechanics and new concepts, J. Eng. Fracture Mech., 5, 365-
377, 1973.

7. A. A. VakuLENko, M. L. Ka¢anov, Kontinualnaja tieoria sried z treféinami, MTT, 4, 1959-1966, 1971.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received December 5, 1977.





