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A method for computing compressible flows past a profile set
between permeable walls

J. F. CIAVALDINI, M. POGU and G. TOURNEMINE (RENNES)

WE ARE concerned with the determination of subcritical, irrotational, steady plane flows of a com-
pressible, inviscid fluid past a lifting profile set between two linear permeable walls, when the
speed distribution at infinity is uniform and parallel to the walls. The walls are assumed to be
far enough from the profile so that their working condition may be semi-linearized with respect to
the conditions at infinity. Therefore, the research of the stream function reduces to the deter-
mination of the solution of a nonlinear variational inequality in a weighted Sobolev space. We
prove existence and uniqueness as long as the flow is subcritical and the profile is smooth. We
show that the circulatian of the speed vector along the profile can be fitted by regulating the
pressures outside the permeable walls. As it is usually done, we bound the domain by setting

the uniform flow as the boundary condition at a finite distance. We give a convergence theorem
with an error estimate as the diameter of the bounded domain increases to infinity. At last,
we describe an algorithm, the convergence of which is proved, to compute directly the speed
distribution in the physical plane. We give the first numerical results which have been computed

with a finite element method of order one as the walls are completely permeable.

Praca dotyczy okrelenia podkrytycznych, bezwirowych, ustalonych plaskich przeplywéw $ci-
§liwej nielepkiej cieczy za ukladem nosnych profili znajdujacych si¢ pomiedzy dwiema prze-
puszczalnymi $ciankami, gdy rozklad predkodci w nieskoriczonoéci jest rémomxemy i rbwno
legly do $cianek. Zalozono, ze &ianki sq wystarczajaco daleko od profili, tak ze ich oddzialywanie

na profile moze by¢ semi-zlinearyzowane w stosunku do warunkéw w nieskoriczonosci. Dlatego
zbadame funkcji pradu sprowadza si¢ do okredlenia rozwigzania nieliniowej nieréwnoéci waria-
cyjnej w przestrzeni Sobolewa z waga. Wykazano istnienie i jednoznaczno$é rozwiazania do chwili,
gdy przeplyw jest podkrytyczny a profil gladki. Pokazano, Zze cyrkulacje wektora prgdkoéci
wzdluz profilu moizna dopasowa¢ przez regulacj¢ ciSniefi na zewnatrz przepuszczalnych $cia-
nek. Wyprowadzono zbiezny algorytm celem obliczenia rozkladu predkosci bezposrednio na plasz-
czyinie fizycznej. Przedstawiono pierwsze wyniki numeryczne obliczone metodg element6w skofi-
czonych o aproksymacji pierwszego rzedu dla przypadku pelnej nieprzepuszczalnodci $cianek.

PaGora KacaeTcsi Ompefe/ieHHsA NOKPHTHUECKHX, GEe3BAXpEBBIX, YCTAHOBHBIINXCH, IUIOCKHX
TeueHUH CHHUMaeMoll, HEBA3IKON HIKOCTH 33 CHCTeMO Hecymmx mpodunelf, Haxomsumxcsa
MeXOY ABYMSA NMPOHMLAEMBIMM CTCHKAMH, KOTHA paclpefelieHne CKopocTeil B GecKOHeYHOCTH
PaBHOMEPHO M NApaJUIeNIbHO creHKam. IIpeimonoykeno, UTO CTEHKHM HaXOAATCA AOCTATOUHO
JaneKo oT npodueif, TaK, YTO HX BO3AeHCTBHE Ha NPOGHIM MOXKET GBITh IOy IHHEAPH3OBAHO
TI0 OTHOIIEHHIO K YCIOBHAM B OeckoHeuHocTH. ITosTomy Hecenopanve QYHKIHE TOKAa CBOOHATCHA
K ONpe/IeNIeHHIO PellieHHsA HeJIMHeHHOro BapHAIMOHHOTO HepaBeHCTBAa B mpocrpascrea CoBo~
JieBa- ¢ Becom. JTloKasaHo CyleCTBOBaHME H €QMHCTBEHHOCTh PellleHMA K MOMEHTY, KOrjJa Te-
yeHHe TOKPHTHUECKOE, a3 NMpodmis — raamkeii. ITokasano, YTO LMPKYJIALMIO BEKTepa CKO-
POCTH BIOMb npodHnA MOMKHO COrJIACOBATH MyTEM DEry/AlMH NaBJieHHH BHE IDOHBIEAEMBIX
CTeHOK. BeiBeleH cxopAmmiicA aJroOpHTM C IEJBI0 BHIYACICHHA PacnipefiefieHds CKopocTel
HETIOCPEACTBEHHO Ha dhusmyecKoil riockocTH. IIpencraniieHs! MepBhle YUHC/ICHHbIE PE3YILTATHL
PACYMTAHHBIE METOJOM KOHEUHBLIX 3JIEMEHTOB C AIMPOKCHMAIMel NepBoro MOpsAKa A CiTy=-

yadA TOJHOH HENIPOHMIAEMOCTH CTEHOK.

1. Introduction

THis PAPER is devoted to the determination of subcritical irrotational steady plane flows
of a compressible, inviscid fluid past a lifting profile set between two permeable linear
walls. The speed distribution at infinity is uniform and parallel to the walls. The working
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condition of the walls proceeds from the Darcy law. The main interest of the problem is
to be related to wind tunnel corrections.

From the numerical point of view the problem has already been studied by several
authors, for instance LAVAL [1]. Our aim is to analyse the statement of such a functional
frame that leads to a variational formulation in a way which makes it possible to prove
numerical approximations based on the classical finite element method in bounded domains.

According to the above device, we have already dealt with a simpler model of the prob-
lem in a previous paper [2]. The flow was assumed to be incompressible past a symme-
tric profile without incidence. The permeable walls were assumed to be far enough from
the profile so that their working condition was linearized with respect to the conditions at
infinity. Thus we got a linear elliptic equation with oblique derivative boundary conditions
along the walls.

In this work we take into account the compressible effects. The linear problem is turned
into a nonlinear one. The equation remains elliptic as long as the fluid is subsonic, there-
fore we have to deal with an additional constraint on the speed distribution. We still assume
that the working condition of the walls may be linearized. Noting that the order of approxi-
mation remains the same we actually use a so-called [3] semi-linearization to get natural
boundary conditions for the elliptic operator. Taking into account the arguments already
used for the study of compressible flows past lifting profiles in an infinite atmosphere [4],
we mainly show that the problem reduces to determine the solution of a nonlinear va-
riational inequality.

An outline of the paper is as follows. Sections 2 and 3 are devoted to the statement of
the problem and its transformation. In Sects. 4 and 5 we give some technical lemmas and
mathematical results, proofs of which follow analogous devices asin [4]. Theorem 1 proves
the existence and uniqueness of the stream function. Theorem 2 shows that the circulation
can be fitted by regulating pressures in the plenum chambers. We construct in Sect. 6 a se-
quence of approximate problems in bounded open domains by setting the uniform flow
as the boundary condition along two vertical lines at a finite distance. Theorem 3 proves
the existence and uniqueness of the approximate stream functions. Theorem 4 shows that
this sequence converges towards the solution and gives an error estimate as the diameter
of the bounded domains increases to infinity. In Section 7 we exhibit an algorithm which
allows a direct computing of the speed distribution in the physical plane by solving a se-
quence .of harmonic problems with linear mixed-type boundary conditions. At last, we
discuss in Section 8 the first numerical results which have been computed with a finite
element method as the walls are completely permeable.

2. Statement of the problem

Let O be the axis origin. The x-axis is directed parallel to the speed at infinity g, =
= (40, 0) and two permeable walls I',, are determined by the equations y = + H (see
Fig. 1). We assume that the profile 2 is bounded by a smooth curve I"(*) and 2 will de-
note the unbounded region exterior to 2 and set between 'y and I'_g.

(*) We assume that I' is at least a third continuously differentiable simple closed curve.
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Denote the density by g, the critical speed by g,; the speed field q = (u, v) satisfies the
relations

rotq =0
2.1) .

div(eq) = 0f throughout 2,
2.2) 7<)
2.3) u—bpv = L,y alongl',y,
(2.49) q-n=0 along I,
(2.5) q-—q, as|x|— oco.

The irrotational character and principle of conservation of mass are expressed by the
relation (2.1). The flow is subsonic as long as the inequality (2.2) holds.

The working conditions are represented by Eq. (2.3), where the right-hand sides are
connected with the permeability constant P and the plenum-chamber pressures pigy by

1 1

emuw(poo_ptﬂ)’ b= - eooP s

LiH = U+

here

Pin = P a8 |x] = oco.
Without loss of generality we choose henceforth P # 0; the case P = 0 leads to a Dirich-
let problem which involves no proper difficulty.

The classical slip condition is given along I" by the relation (2.4) where n is a vector
normal to I'. At last, the speed is prescribed uniform at infinity by the relation (2.5).

(*) q will denote the speed magnitude.
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The limit speed is chosen for speed unit. Since the fluid is isentropic, we obtain through
Bernoulli’s law the speed-density relation
(2.6) 0(@®) = eo(1—g»)"/er".
Here y is the ratio of specific heats (¥ > 1) and g, the density when the speed vanishes.
RemMARk 1. The circulation of the speed is defined as

2.7 o= fudx+t-dy.
? i

We point out that o is not a datum of the problem. However, we shall state that ¢ depends
only on the data: u,, and p$y (see Paragraph 5.2.).

ReEmMARK 2. In fact, the wall working-conditions proceed from the Darcy law and are
defined as
(28) P(p—pin) =¢v along I'.4.
Here p is the pressure. Actually, the walls are assumed to lie far enough from the profile
so that the left-hand side in Eq. (2.8) may be linearized with respect to the conditions at
infinity. The approximation order does not alter when the right-hand side is not linearized;
thus we get Eq. (2.3) which will be turned into a natural boundary condition for the later
transformed problem.

3. Transformation of the problem
3.1

At present our aim is to reduce the above problem into a boundary value one, involv-
ing only one partial-differential inequality throughout £2. In view of the continuity equa-
tion, the stream function y and the speed q are related by the classical differential system

1
(3.1 U= Etp,, 0= ——y,.

From Egs. (3.1) we derive (?)
(3.2) IVyl* = g%*(g).
The right-hand side is a strictly increasing function of g? under the assumption (2.2),
therefore we can define in the interval
0<z<#, t =q.00)
the function A(z) such that

1
3.3 h(|Vy]?) = ——.
(33 (A4 o@
h is a strictly increasing convex function over [0, #2] and is infinitely derivable inside

10, £2[(see [4].

(®) Let = (u;,u3) €R?, v = (vy,v;) €R?, Ju| = ]/H}+n§ will denote the Euclidian norm and
(u, ¥) = uv, +uzv, the associated scalar product.
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Using Egs. (3.2) and (3.3), we bring the problem (2.1) ... (2.5) into the boundary-val-
ue one:

(3.4) div[2(|Vy|*)Vy] = 0} hroaghout 8,
(3.5) Vyl < 2,

(3.6) h(VYIP)py+by, = Ly along I'yq,
3.7 ¥ =0 alongl,

(3.8) V= 0,10), (to = 0ol as |x| = oo.
32

In order to derive an appropriate functional frame of the above problem, we look for
the stream function in the form
y= E"“ W,
where w is a smooth raising of the condition at infinity (3.8) and does not alter the Dirich-
let condition (3.7). Hence we have to determine £ such that V£ is square-summable.
More precisely, we choose an indefinitely derivable function w of support disjoined
from 2 and we state that there exists a number ¢, such that Vw obeys

3.9 IVw(x, )| <t; <t forany (x,y)ef (seelemma 1in [4]).
33

We now have to deal with the argument h(|Vy|?) Vy which is not square-summable
over the unbounded domain Q. For this purpose, we consider
Q) = h(IVE+wW)?) V(E+w)—h(t2) T+bHVE,
where
T = (0! !m)) rvs = (—'Eyl 5:)
are solenoidal. The vector-valued function *V£ has been introduced to take into account
the left-hand side of the oblique derivative condition (3.6).
LemMmA 1. If £, < t., then there exists a constant M > 0 and a square-summable
function g, depending only on the data of the problem, such that for any £ satisfying
IVE+w) <1, ae (x,y)ef,
the estimate

IQ®)I < M|Vé|+g ae. (x,)ef
holds.
This is proved in the same way as for Lemma 2 in [4].

4. A functional frame

In this section we present notations and results from functional analysis which will
be needed later.
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Let

H(Q) = {£ € 9'(Q); Dt € IX(@), lo] < 1}
be the classical Sobolev space provided with the usual norm (*). Weset I, = Iz ul_y
and we denote by H'/2 (I',) the space of the traces over I'; of the functions belonging to
HY(Q) [5).

Define the function x - m(x) = , and introduce the weighed space

1
Y1+x?
V={te 2'(Q); mteL*(Q), D6 e L*(Q), |a] = 1, £,p = 0}

provided with the norm:
£ > [[mé|Eaay +IVEl|L2c)] "

Let V denote the subspace of ¥ spammed by the infinitely differentiable functions which
are of bounded support dispoined from £.

LemmA 2. The Hilbert space ¥ is the closure of ¥ and the nprm defined above is equiva-
lent to the following one

& v &Il = 1| V&llLacay-

First we refer to classical density properties in Sobolev spaces [5]. Hence we deduce it
suffices to show that ¥ is the completion of bounded-support functions. Then, using
a truncation process, we establish that any function in ¥ can be approximated by a se-
quence of functions which are of bounded support [6]. Using integration by parts, the
second statement is proved in the same way as for an analogous norm equivalence in [7].

We denote by ¥’ and H-"/?(I';) the dual spaces (°) of ¥ and H'?(I";). Given Le V'
and & € V(resp. I € H-'/(I",) and y € H'/3(I')), the value L(£) (resp. /(y)) is written as
(L, &,y (tesp. , x>u-1rarp, mriry), Where the brackets indicate the pairing between V*
and V (resp. H-'/2(I'y) and H'I*(I'y)).

5. A variational formulation
5.1

To take into account the condition (3.5), we consider
K={eV;|VE+w) <1, ae (x,y)el}.
From the inequality (3.9) we observe that 0 € K and it is classical to state that X is a closed
convex subset of ¥. We introduce the semi-linear functional

at, y) = f(Q(E), Vy)dxdy for (&, ) eKxV.
o

(*) L*(Q) is the space of square-summable functions over 2 provided with the norm |u]r2q) =
= ( J’ }u(x)[’dx)m. 2'(£2) is the space of generalized functions.
g

(°) The dual space of a Hilbert space is the space consisting of all continuous linear forms defined
over the Hilbert space.
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LemMMA 3. For any (&, y) € Kx V, the estimates
la(¢, DI < [MII&]]+ 8] * 121l

a(é, E—p—a(y, E—7) > EI'J 1€~ 2%,

1
a, &) > . 1E11% = 1glLacay - 1E]]
hold.
Moreover, for fixed (¢, ¥, {) e Kx Kx V, the function

tv— aE+t(x—£),0)
is continuous over R.

Proof. Asan application of Lemma 1, we derive the first estimate; the second and
third are consequences of the following [4]:

Q®-Qw, VE-p)> E‘;we—x)az,

Q(), V&) > é |VE]2—g. |VE].

At last, applying the Lebesgue theorem in the integrand of @, we complete the proof of
the lemma.

The right-hand side of the oblique derivative condition (3.6) is taken into account by
introducing the distribution L defined along I'; as

L =L, yg—[bw.+h(t2)t,].
It is easily seen that if £ € V, then mé& € H*(Q), so that its trace lies in H'/2(I";). Further-

more, if we assume that % € H-Y2(I")), we get the continuity estimate (¢)

P
m

L
(5'1) <";;': m'5>ﬂ-lﬂ(p')_ﬁlr3(p1) H"'-"(f'.)"é-"’ E € Vv

It follows that L induces a continuous linear form over ¥ defined by

(5‘2) <Ls 6)‘”,? = <'_'i'_) mE>H"U’(f'1).H”’(P|)’ '5 € V¢

THeoreM 1. If t, < t, and if % € H-Y2(T",), then there exists one function & € K

and one at the most such that

(53) a(€, x—& 2 <L, x—Hvry, Vyek.

Moreower, if the data are such that the function v = &+w satisfies

IVy| < t.—e ae. (x,)efl, £>0,
Dy e L*(2), |« =2,

then yp = &+w is the unique solution of Egs. (3.4)-(3.7) in w+V.

(5) C means any constant which depends only on the data of the problem and not on the other para-
meters.

(5.4)
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Proof. Since Lemma 3 holds, we deduce that a is continuous over Kx ¥V so that
it defines the operator A acting from X to ¥’ by

<A$s x}V’.V =— a(és x)s (E! z) EKX V.

Then we observe that A4 is strictly monotone, hemi-continuous and coercitive. Therefore,
we state the relations (5.3) to be a consequence of Egs. (5.1) and (5.2) and the monoto-
nicity method [8]. The proof of the second statement follows the same lines as in the
proof of Theorem 1 in [4].

52

We now show that if we assume the relations (5.4), then the circulation given by Eq. (2.7)
depends only on the data of the problem.

THEOREM 2. Assuming the relations (5.4), suppose the difference (pg—p°g) is summable
over R. Then the formula

1

|t s -pe1ax

g =
Coolico +
holds.
vl
E&L-— —- - — 'r;*. H ————
' ig Y

9o 1 )

G .

-R N\ ﬂ-)‘% +R X
]
AR F - T
Fia. 2.

Proof. Given R > 0, 2* denotes the region exterior to & and is enclosed in the
rectangle [- R, R] x [—-H, H].

Let I'f (resp. I'7) be the horizontal (resp. vertical) sides of the rectangle (see Fig. 2).
WesetI™ =IT u I7.
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Using Egs. (2.7), (3.1), (3.2) and (3.3), we have by Green’s formula
(.5) —o = [h(VP) (p,dx—pedy) = I,— I,
r.
where we set
L= [hQVyP)y,dx, I = [h(VpP)pedy.
ri r:
When written out, the integral I, takes the form

-H

H
L = [h(VeP)p(—R, »dy+ [ h(Ve)p.(R, y)dy,
—-H H

and we have, by Schwarz’s inequality,
H

(1) < C [ W3(—R,»)+¥2(R, »)ldy.
—H

From the relations (5.4) we observe that y, belongs to H*(Q2); then, using the Babitch

extension [5], we show the estimate

)< C [ [y2+|Vy.lldxdy.

|xI=R
Since C does not depend on R, we derive by the Lebesgue theorem

(5.6) I,-0 as R-oco.

If we take into account the oblique-derivative condition (3.6) then we obtain

L = [ [LaG)—L_g())dx—bI,
-R

where we set
R H

I= f J-'erdxdy:

-R -H

Following the same way as above for I,, we show that

I-0 as R—- oo,

hence we have
(CN)) I, -0 as R - oco.
Gathering together the relations (5.5), (5.6) and (5.7), we conclude that
o
o= [ [La(®)-L_a(x)dx.

Theorem 2 is proved.
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6. Approximation involving bounded open sets

In order to justify the numerical approach involving bounded domains, we actually
solve the problem (3.4)-(3.8) in the bounded sets

Q% = Qn{(x,»); Ixl <R},
where parameter R > 0 is expected to increase to infinity.

6.1

We now look for a function y* which satisfies the boundary value problem
div[a(|VF*2)VF*] =0

IVF* < 1.
6.1) h(VP*P)Py+bP = L,y alongIT,

Y* =0 alongl,
Y* =,y alongls.
As in the previous section we introduce the space
V* = (&€ H'(Q*); &rors = 0},

} thoughout 0%,

provided with the norm

&= [IEI1* = 11V&llLacgm-
We point out that the weight does not appear any more in F* since £2* is bounded. Let
us consider the non-empty closed convex subset of V*

K* ={EeV* |V(E+W)| < 1., ae.(x,y) € 2*}
and the functional defined over K* x V'* as

a*(& ) = [ (Q(®), Vy)dxdy.

We denote by L* a suitable approximation of L that we will state precisely in the sequel.
Proceeding as in the proof of Theorem 1, we obtain the following:

THEOREM 3. If t, < t. and if L* € V*, then there exists a unique function £* € K* such
that

6.2) a*(&*, x—5%) = L% x—EDverve, Yy ek*
Moreover, if the function ¥* = £*+w satisfies

|IVP*| < t.—e ae. (x,))efl* >0
{D"EP* € L3(2%), |a| =2,
then ¥* = £* 4w is the unique solution of Egs. (6.1) in w+V*.

(6.3)

6.2

At present we investigate the connection between ¥ and ¥'* as R increases to infinity.
For all x € V*, we denote by j its zero-extension over £, thus y € V.
L is approximated by L* in such a way that

<L, f)?'.l’ = (L*, 1Dver,ves Vx (=
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We introduce an infinitely derivable function « which obeys
a(x) =0 for [x| < sh(R[2),
a(x)=1 for |x|=R,
0<a(x) <1, [¢®|<(Ci/R)-m(x) forany x.

Here C, does not depend on R = Arg sh R and the function Arg sh acts as a primitive
of the weight function m.
Using interpolation results [5], we show that the relation

aL L
(?’ C) = <}T’ a¢>ﬂ*‘f’(m.nmtm’ Vie H'I*(I)

; . . oL
defines a continuous linear functional % H-1(T).

Following the same lines as in the proof of Theorem 3 in [4], we state such a result:
TuEOREM 4. If we assume that there exists ¢ > 0 such that
IVF| < t.—e, |VP* <t.—e, ae. (x,))ef

then the functions ¥'* = E*+w converge in w+V towards ¥ = E+w as R increases to in-
finity. Moreover, we have the asymptotic estimate

; Rllm T— ElLa -
RemARrk 3. Note that %I y vanishes as R goes to infinity. Furthermore, for suit-
H-Y3I)

able choices of L we get an estimate in 0(1/R). For instance, it is easily seen that if we take
DPn = Poo, then L vanishes for any R large enough.

7. An algorithm to compute speed distribution

Henceforth we shall work in the bounded open set £2* and for the sake of simplicity
we agree to omit the stars from now on.

On the other hand we assume the flow to be totally subsonic so that the function ¥
actually represents the stream function. We extend the function 4 — p(4) by a function
g continuously differentiable and strictly decreasing on R such that

g =e(®, Vis<gr,
g)=>a>0, VieR, aceR,
A - z(d) = Ag*(A) is inversible all over R,
and we denote A as the analogous function to Eq. (3.3) which satisfies
h(z) = 1/g(%), VieR.
By setting
e=V¥
m = h(le|)e,
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the equation which defines the stream function as long as ¢ < ¢,
(7.1) ((VPIIVE +b'VE, Vy) = {Lon, Dr-owp,mney, Y2 eV ()
is turned into
rote = 0,
(m+b'e, Vy) = {Lyn, Du-v2wpmray, VYEV.

According to an analogous device as in [4], we construct a sequenge m", €" e [L*({2)]?
with the following algorithm: compute m®, €° in [L?(£2)]? such that

(7.2 (m®+5€¢%, Vy) = {Lym, Xou-13rp, 10y, VZEV.

Get step n+1 from step n through

(7.3) et = g(jm"*)m",

compute ¥+l = 14y £+l e P solution of the variational problem

(7.4 (V™1 Vy) = ("7, Vy), VyeV,

(7.5 m* 4 ple"t ! = m"+ble" +y(VP"H —e"), peR, »>0.
THEOREM 5. Assume that

(7.6) 16l < 1/go, 0 <» < 2(1/go—1b]);

thus the algorithm (71.2)-(7.5) is convergent and, more precisely,
P& in V,e"->V¥ in [L)(QP, m"->m="q in [L*(Q)J,
where
Y =Et+w, q=GRIVYP)Y,, —h(IVFPY))

are the functions connected to the solution of Egq. (1.1).
THEOREM 5 is proved just in the same way as for the proof of Theorem 4 in [4].
From Egs. (7.2) and (7.5) we deduce that the equality

7.7 (m"+b'e", V) = {Lyn, u-rrmray, VYeEV

holds at each step. Since the algorithm is convergent, we get at limit
V¥ =e,

hence

rote=0 inQ<div(g(g®)q) =0 in £

and, integrating Eq (7.7) by parts,
divm=0 in Qerotgq=0 in 2,
1
m,+be, =L,y on Iy <u—bov=u+ (Poo—P%n)>
Qoolico

that is to say we have computed the speed distribution in £ whenever the flow is subsonic.

(°) The scalar product defined over [L2(2)]? is also denoted as the scalar product over R2.
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8. First numerical experiments and comments

We first note that at each step we have to compute Egs. (7.4). This is very easy because
we deal with the harmonic operator associated to the Dirichlet-Neumann boundary condi-
tions, hence the matrix is symmetric, definite and positive.

To find the starting point m°, €°, we compute once and, for all the stream function ¥'*
corresponding to the associated incompressible problem (see [2]). Then we set

e =V¥P° m®= —1—e°,
o0

hence the condition (7.2) is automatically realized.

Naturally, we are anxious to find appropriate wind-tunnel corrections to simulate the
flight through an infinite atmosphere. Therefore we have first studied the speed distribu-
tion as the profile is set in an unbounded domain.

Note that the algorithm (7.2)-(7.5) still works. Just set

b=0, pig="Px,
the conditions corresponding to completely open walls and choose in addition
V= H3(Q)
to take into account the fact that
¥ 1oy, as *|x*+|y|*> - oo.

With the finite element method of order 1, we have computed the flow past an ellipse:
the thickness ratio of which was 0.1. We have tried experiments with a large range of Mach
numbers at infinity and angles of attack from 0 to 7 degrees. In practice, the condition (7.3)
is written with the expression of p whatever the velocity modulus may be. It occurs that the
algorithm still works for supercritical flows with no shock. Figure 3, 4 and 5 give an exam~

vl M. =085
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Meao=050
 o@oF

-
040 — ﬁ

020 —

1 ! | | | PO
0 040 02 o0 020 040 060 x

Fia. 3. Subcritical speed distributions, expressed in Mach number, along the ten per cent ellipse with an
angle of attack of 1 degree.
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FiG. 4. Transonic speed distributions along the ten per cent ellipse in the same conditions.

i
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Mcp nﬂ.&'.‘
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050~
F1G. 5. Supercritical pockets past the ten per cent ellipse with an angle of attack of 1 degree.

ple of the speed-distribution computed along the profile. More complete results have been
presented in [9].
At last, we would like to discuss the constraint appearing in the inequalities (7.6)

16l < 1/go-
In terms of permeability it is equivalent to
y—1 1/y—1
8.1 P > (I + —'—'Z“"Mgo) s

so that the largest restriction corresponds to M, = M,. In practice, the inequality (8.1)
appears to be quite reasonable. For instance, for the 10% ellipse without incidence (that
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is to say the angle of attack which corresponds to the largest critical Mach number) we have
found M, = 0.8; that implies P > 1.35.

To conclude, we shall say that the weighted Sobolev space allows the statement of the
first theorem, according to our knowledge, to prove the existence and uniqueness of the
stream function of the flow between permeable walls. The convergence theorem justi-
fies the usual way to set boundary conditions at a finite distance. On the other hand,
the algorithm provides an easy calculus of the speed distribution; furthermore, the first
numerical experiments in an infinite atmosphere show that the method is fast and efficient.

Finally, since we can fit the circulation, we actually expect to deal with the profiles
which present a sharp trailing edge. Indeed, we have already obtained some results on the
way to take into account the Kutta-Joukowski condition as the profile lies in an infinite
atmosphere (see [10]).
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