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Bifurcation of stationary solutions for the quasi-geostrophic
equation with nonlinear boundary conditions

H. TRUE (LYNGBY)

THE BOUNDARY value problem with nonlinear boundary conditions is transformed into an inte-
gral equation with nonlinear boundary terms in it. It is shown that under certain conditions,
which are satisfied in the applications, the nonlinear integral operator is a completely continuous
operator in the space of continuous functions, and its Frechet derivative exists. This permits
the application of a theorem by Krasnoselski which gives criteria for the existence of bifurca-
ting solutions. The proof can be applied to other problems where an integral formulation is
possible.

Problem brzegowy z nieliniowymi warunkami brzegowymi zostal sprowadzony do réwnania
calkowego z czlonami nieliniowymi. Wykazano, ze przy pewnych warunkach, ktore zwykle
w zastosowaniach praktycznych s spelmione, nieliniowy operator calkowy jest operatorem
pelnocigglym i istnieje jego pochodna Frécheta. Fakt ten pozwala na zastosowanie twierdzenia
Krasnosielskiego, ktore dostarcza kryteriow na istnienie rozwigzan bifurkacyjnych. Niniejsze
podejécie moze by¢ wykorzystane rowniez w innych zagadnieniach, w ktorych mozliwe jest
sformutowanie catkowe.

Kpaepaa 3ajiaua ¢ HeMHHEHHLIMH T'PAHWYHBIMK YCJIOBHAMH CBefleHa K HHTEIPANEHOMY ornepa-
TOPY C HeJIMHEeHHBLIMH I'DAaHHYHBIMH wieHamu. [TokazaHo, YTO IPH ONpeNESICHHBIX YCHOBHAX,
KOTOpBIE BbIMOMHAIOTCA B NPWIOXKEHNAX, HeTHHeHHbI HHTerpaNbHBLIA ONEpaTop M ero npo-
u3BopHast Ppeilia, ABIAITCA BOJHE HENPePLIBHBIMH ONEPaTOpaMi B NPOCTPAHCTBE Helpe-
PBIBHBIX (yHKUMII. D10 Mo3BaiAeT NPHUMEHATH Teopemy KpacHocensckoro, Kotopas ycra-
HABNMBAET KPHTEePHil CYllleCTBOBaHMA Ppa3BeTBIIEHHBIX pellueHmii. J[OKA3aTENLCTBO MOXKeT
OBITE IPUMEHEHO M K APYIHM 3aJayaMm, JOMYCKAIOUHM HHTETPATLHYIO MOCTAHOBKY.

WE sHALL examine CHARNEY's formulation [1] of the quasi-geostrophic problem describing
the large scale atmospheric flow in middle latitudes. It will be shown that if a linear problem
to be defined later does have eigenvalues of odd multiplicity, then bifurcation will occur
at these eigenvalues in the nonlinear problem.

In order to simplify the calculations, the nonlinear boundary conditions will be extend-
ed to the entire boundary, but the proof can be modified in such a way that it carries over
to Charney’s boundary conditions. The problem will be reformulated as an integral equa-
tion, whereby the domain of the unknown streamfunction will be extended from the usual
set of infinitely often differentiable functions. The result derived concern the integral
equation.

Given two strictly positive and infinitely often differentiable functions k,(z) and k,(z)
(z is the vertical coordinate) on 0 < z < 1.

Let y(x, y, 2) be an infinitely often differentiable function defined on the domain

D: 0<x<lIl, 0<y<l, O<z<l]l.
We denote the boundary of D by 8D.
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On 4D the stream function y must satisfy prescribed conditions of the form

(M dp/on = By+2(y),

where B # 0 is a uniformly bounded function defined on 2D, n is the direction of the ex-
terior unit normal vector to D on dD. h is a function of y and the coordinates of the bound-
ary. It has Frechet derivatives of up to and including second order with A4(0) = A'(0) = 0
and h''(0) # 0. From Charney’s problem the following nonlinear elliptic differential equa-
tion on D for the unknown stationary streamfunction y can easily be derived.

@ k1(9*|0x*+ 3% |9y*)p+0/0z(k, 0y[02) = k1 Sf(y, 2),

where the Frechet derivatives of f of up to and including second order exist with £ (0, z) =
= 0 = 0. Itiseasily seen that y = 6 = 0 is a solution of the problem under these conditions.
In this paper we shall consider the related problem

u(P) = [k, Gf(u(Q), 0)d0— [ k,Gh(u(0),0)d0— [ k.Gh(u(Q),Q)dO,
b Do éDy,

(3) for
u=Gu= Fu+H,u+H,u,

where Q is a point in D, and G is the Green’s function that is a solution of the boundary
value problem

) ki(0%/0x*+ 8%/0y*)G+ 0/02(k,0G|3z) = 6(x—&E)d(y—n)d(z—0)
and
(5) dG/én—BG =0 on aD.

dD, denotes the vertical boundaries and 9Dy the horizontal boundaries. The function u
is continuous (u € C(ﬁ)), and the operators G, F, H; and H, map Cx D and Cx dD re-
spectively into C.

We make the following assumptions:

H.1. F, H; and H, have Frechet derivatives F’, H{ and H;, respectively, atu =6 = 0,
and the operators G, F, H, and H, satisfy the conditions G6 = 0, F6 = 6, H,0 = 6 and
H,0 = 6, respectively.

H.2. For every fixed u € C(D) fand h are continuous functions of Q, and they are unifor-
mly bounded.

It is not difficult to show that these assumptions are satisfied for a large number of
quasi-geostrophic flow topographies.

We want to prove that the operator G is completely continuous. In order to do so we
shall first prove the complete continuity-of the operator H,

©) Hu = — [ k:G(P, Qh(u(0), 0)dQ.

4D,

Let us also consider the linear operator

Q) = —af k,G(P,Q)$(Q)dQ, ¢ € C(3Dp)

for an arbitrary fixed P € D.
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We now define the distance between the points P and Q
r=|P-0|

and split up the kernel G in the following way:

G(P,Q) forr=n,,
GI(P’Q)={ 0 forr < #,,
0 forr = n,,

Ga(P, Q) = {G(P, Q) forr<m,.

We denote the domain 2, = dDn {Pe D, Q € dDg|r > n,}, where 7, is a positive
real number. We can write

® —m{ k2G(P, Q) ¢ (Q)dQ = ~af sz.(P.Q)tﬁ(Q)dQ-af k2 G,(P, 0) $(Q)dQ
H DH DE
=Glﬂ+qu-

We start out to prove that the operator L is completely continuous as an operator from
C(2,) - C(2,).

Proof. Let {¢,(Q)} be a set of uniformly bounded functions defined on a set of do-
mains {2}, |I¢.ll < k.

Since G has a simple pole at r = 0, and is a uniformly continuous function everywhere
else, the functidn

0a(P) = pf k>G(P, Q) $x(Q)dQ

is uniformly bounded. If, for example, the area of the domain of integration is S, then
lloa(P)Il < M- k- S,,

where M = max G(P, Q) k;, P,Q € 2,.

Since G(P, Q) is uniformly continuous in D x £, then a § > 0 exists such that for any
prescribed ¢ > 0

k2l G(Py, O~ G (P, Ol <

for |P,—P,| < & and every Q € 2,. S is the area of dDg.
Then we have

® lloa(P2)—au(Py)Il < fllkzlill(?(f’u 0)—G(P2, Q)lllI$x(D)N1dQ < &
On

for all functions o,(P) when only |P,—P,| < 6.

Arzela’s theorem then shows that the set {o,(P)} is compact. Since the operator G,

maps every bounded set {¢,(Q)} into a compact set in C(£2,), then G, is completely con-
tinuous.
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As the next step we choose a sequence of operators {G;,} which converges towards
G — i.e. a sequence of radii {n,} in which 5, - 0 for n —» 0.
In the neighbourhood of r = 0 we can express the kernel G in the following way:

2P, Q)
r

G(P, Q) = +R(P, Q),

where as well @(P, Q) as R(P, Q) are uniformly bounded for r — 0 (i.e. P - Q);
(kZQj(P’ Q) < Cl 3 k! R(P! Q) g CZ)

We now have

(10)  ILd=Gundll = max( [ (2G(P,006@d0~ [ k2G1n(P, Q)$(0)d0)
£y

éD,

< max( [ k67, 04(©@d) = max( [ ks 2@ g Q)

r<tn r<fn

+ [ kR, 06@do)< €, 2 _fl¢(Q)dr+Cz'2n f b
o 0

F<mn
< ThQC,nu+Cam?) < &
if only

£
.
S G+ Ck

We have now shown that
|ILp—Gndl| >0 for n-— o,

and since all G,, are completely continuous in the norm of the space C, so is L according
to Theorem 2 on page 146 in LYUSTERNIK and SOBOLEV [2].

Since the linear operator L (C(dDy) — C(dDyg)) is completely continuous and the
operator h (h¢ = h(¢, Q)) acts from C(8Dy) to C(8Dy) and is both continuous and bound-
ed according to the assumption H.2., then the operator H = Lh acts in C(dDy) and is
completely continuous according to the argument on page 46 in KRASNOSIELSKI [3].

The proof of complete continuity of the operators H, and F is analogous. Since the
sum of F, H, and H, is the operator G and the sum of three completely continuous oper-
ators is itself a completely continuous operator, then G is completely continuous. Now,
Theorem (2.1) on page 196 in KrAsNOSIELSKI [3] applies to the operator G. Thus the ex-
istence of bifurcating solutions is proven provided the linearized integral operator defined
in the theorem has eigenvalues of odd multiplicity.
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