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Nonhomogeneous tension-torsion of neo-Hookean 
and Mooney-Rivlin materials 

R.M. CHAO, K.R. RAJAGOPAL (PITTSBURGH) 

and A.S. WINEMAN (ANN ARBOR) 

THE EXAcr solutions for a nonlinear elastic layer being non-uniformly extended and then twisted 
are presented in the cases of both the neo-Hookean and Mooney-Rivlin materials. 

Scisle rozwi<tzania dla nieliniowej spr~zystej warstwy poddanej nier6wnomiernemu rozcil:lganiu, 
a nast~pnie skr~caniu, przedstawiono w przypadku materialu typu ,neohookean", jak i materialu 
Mooneya-Rivlina. 

TotiHhie pemeHIDI .D;JUI Hemm.eH:Horo yrrpyroro cJioH, rro.n;aeprHYToro HepaaHoMepHoMy pac­
TIDKeHmo, a 3aTeM c.KpyqHaamno, rrpe.n;craaJieHbi a CJI~ae MaTepnaJia Tnna ,neohookean", 
I<a.K H MaTepnaJia MYHeH-PHBJIHHa. 

1. Introduction 

THERE ARE few nonhomogeneous exacts solutions that are available within the context of 
isotropic nonlinear elasticity. However, in recent years, there has been a great deal of 
interest in the study of such deformations, (cf. CuRRIE and HAYES [1], RA.JAGOPAL and 
WINEMAN [2], RAJAGOPAL, TROY and WINEMAN [3]). A discussion on the relevance and 
resurgence of interest in such investigations, and the lack thereof in previous years, can be 
found in the recent paper on the existence of nonhomogeneous deformations in incom­
_pressible isotropic elastic materials by McLEOD, RAJAGOPAL and WINEMAN [4]. 

RAJAGOPAL and WINEMAN [2] have extended the classical problem of homogeneous 
:uniaxial extension of an elastic layer, by investigating the possibility of the existence of 
nonhomogeneous solutions. They obtain a class of explicit exact solutions to the problem. 
The classical solution belongs to this class. To support these nonhomogeneous solutions, 
-certain tractions have to be provided at infinity. Nonetheless, these surface tractions can 
be precisely determined and such a nonhomogeneous solution induced and supported 
by the application of such tractions. 

In this short note, we study the possibility of a nonlinear layer being non-uniformly 
.extended and then twisted. It is found that the problem admits exact solutions in the case 
.of both neo-Hookean and Mooney-Rivlin materials. The equations of equilibrium reduce 
to a set of nonlinear equations which at first glance looks hopelessly complicated. How­
ever, these equations can be integrated and the solution expressed implicitly in terms of 
.standard integrals. 
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2. Kinematics 

Consider the deformation (cf. Fig. 1) 

(2.1) x ~ v'~' {Xcos.Q(Z)-Ysin.Q(Z)}, 

(2.2) 

(2.3) 

y = ./ {Xsin!J(Z)+ Ycos!J(Z)}, 
J' A.' 

z = A.(Z), 

where (x, y, z) denote the coordinates in the deformed state of a material point originally 
at (X, Y, Z) in the undeformed state. The above deformation corresponds to a nonhomo-

geneous extension followed by twisting Q(A.(Z)) = Q(Z). As observed in the introduction, 

FIG. 1. Domain of deformation. 

when Q = 0, i.e., for the problem of nonhomogeneous extension, RAJAGOPAL and 
WINEMAN [2] established a one-parameter family of solutions in the case of a neo-Hookean 
material, and RAJAGOPAL, TROY and WINEMAN [3] extended these results in the case of 
a Mooney-Rivlin material. 

Define C = cos!J, S = sinD, and 

(2.4) [ 
1 A." Q' ] f=f(X, Y, Z) = -
2 

(XC-YS)+ . ; - (XS+YC) , 
(A.')3J2 J' A.' 

(2.5) 
[ 

1 A." Q' ! ] 

g = g(X, Y, Z) = - T (A.') 312 (XS+ YC)- yA.' (XC- YS) . 

It follows from (2.1)-(2.3) that the deformation gradient F has the structure 

'/ 
s i\ - --

).' yY 
(2.6) F= s c 

yY yY g 

\ 0 0 ;.) 
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thus we find that the Cauchy-Green strain tensor B, and B-1 have the following matrix 
representations: 

(2.7) 

(2.8) 

{_I J2 
A.' + fg 

B= 
fg 1 2 

-y+g A.'g ' 

\ A.'f A.'g 

-g 

( 

A.' 0 
0 ).' 

B-1-

-f -g 

-f ) 
1 2 1 . (y) + yif2+g2) 

Thus, the principal invariants of B are 

2 
18 =traceD= -y +(.?.')2+f2+g2, 

(2.9) 1 ( 1 )
2 

1 liB = 2 {(traceB)2
- trace(B2

)} = 2.?.' + -y + -y (J2 + g2) ~ 

1118 = detB = 1 . 

3. Equations of equilibrium 

The Cauchy stress Tin the Mooney-Rivlin theory of elasticity is given by (cf. TRUESDELL 
and NOLL [5]) 

(3.1) 

where - pl is the spherical part of the stress due to the constraint of incompressibility~ 

- 1 - 1 - 1 
The material constants p, and {3 are such that p, > 0, - 2 ~ {3 ~ 2 . When {3 = 2 , the 

constitutive relation reduces to the neo-Hookean case 

(3.2) T = -pl+p,B. 

First, let us consider the equations of equilibrium in the case of the neo-Hookean 
material. On neglecting the body forces, the equations of equilibrium reduce to 

(3.3) divT = 0. 

We shall find it convenient to express the equations of equilibrium in terms of the ref­
erence configuration and thus 

(3.4) 
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Replacing - (pIp.) by P, a lengthy but straightforward calculation yields 

(3.5) . 1--,( aP of ag) ,. 1--, ( ap of ag) ;." of 
Cr A ax +fax +faY -s., A ay +fay-fax + -yf+ az = o, 

(3.6) •1---,( aP of og) .1--,( aP of ag) ;." ag 
c.,;. ay +g ax +gay +Sr;. ax -gaY +g ax + -yK+ az = o, 

(3.7) c;.'3f2 (of + ag )+s;.'3'2( ag - of)-;.'-1'2(Sg+Cf) aP 
ax aY ax ay ax 

- ).'-1!2(C - Sl'\ oP _I oP 2)." = 0 g 'J' ay + ;.' az + · 

It follows from the definitions off and g, i.e., (2.4) and (2.5), that (3.5)-(3. 7) can be 

re-written as 

(3.8) 
oP 1 ( of ag) 
ax=- y;.' coz +Soz' 

(3.9) oP = _I_(s of -c ag), 
oY yF oz oz 

(3.10) 
oP - [ 1 ;." . of D' of 1 ;." ag 
oz = - ;.' ;." + c (y' ;.') 2 ).'2 x oz + 7 Y az + 2 ;.'2 Y az 

_ D' og ] ,- [ 1 ;." of 
yx oz +S(y;. ) - 2 ;.'2 Y az 

D' of 1 A" og D' og ] 
+ -yx az + 2 ;.'2 x az-+ 7 Y az · 

It follows from (3.8) (2.4) and (2.5) that 

{3.11) o2
P 1 [( 1 A" ) d ( !J' )l 

ax oY = - y A' T A' 3' 2 !J' - dz yi' ' 

while from (3.9), (2.4) and (2.5) that 

·(3.12) ()2 p . 1 [( 1 A" ) d ( !J' )] 
axaY = y ;.' 2 A'312 !J' - dz VA' · 

.Equations (3.11) and (3.12) imply that 

.(3.13) 

·which in tum implies that 

. (3.14) _!!____(~) = 0 . 
dZ ).' 
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We assume that the bottom layer at Z = 0 is held fixed while that which was at Z = His 
twisted by angle !10 • Then, by integrating (3.14) we obtain 

(3.I5) 
!lo !lo 

!l(Z) = J..(H) J.(Z) = h J..(Z), 

On substituting (3.I5) into (3.IO), and using (2.4) and (2.5), we obtain 

(3.16) oP ).' )." I )." (X2 Y2)Q(Z) az = - + 2 J..'3f2 + , 
where 

(3.I7) 

Next, note that (3.8) can be rewritten in virtue of (2.4), (2.5) and (3.I7) as 

(3.I8) 
oP I 
ax=- JfJ..' XQ. 

It follows from (3.16) and (3.I8) that 

I dQ d ( I ) 
(3.I9) y ).' dZ = Q dZ y' ).' . 

It immediately follows that 

(3.20) 

where A 1 is a constant. 

I 
Q(Z)=A1 JfJ..'' 

Let us introduce a function 17(Z) through 

(3.21) 
1 

rJ(Z) = .;- . 
J' ).' 

Equations (3.19), (3.20) and (3.21) imply that 

(3.22) 1 ( !l' )
2 

1]"=A11J+rr 7 , 

A2 
= AtrJ+ -3 , 

1] 

where the second equality is true in virtue of (3.I5) and A = !10 /(J..(H)) is a constant. If 
A = 0, the governing equation (3.22) reduces to that which governs the non-uniform 
extension of a neo-Hookean material studied by RAJAGOPAL and WINEMAN [2] .We shall 
now proceed to show that the nonlinear equation (3.22) can be integrated twice, and the 
solution exhibited explicitly. 

Multiplying (3.22) by 17' and integrating it once, we obtain 

(3.23) (rJ')2- A11J2 + A21J-2 = A2' 

where A 1 is a constant. Solving for 17', we obtain 

(3.24) 17' = ± [A11J2 + A2- A21J-2]1t2. 
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Introducing a function 

(3.25) ~(Z) = r/(Z), 

(3.24) can be rewritten as 

(3.26) 

Let us define 

(3.27) 

Depending on the respective values of the constants At, A 2 and A, different explicit 
expression for the integral of (3.26) are possible. The only physically acceptable solution 
corresponds to At < 0, L1 < 0, and it follows that (cf. [6]) 

(3.28) 1 -1 . -t ( 2At~+A2 )- z A ± - .. I sm .. I - + 3' 
2 r-At r -L1 

where A3 is a constant. Thus 

(3.29) A'(Z) = 2At { -A 2 + (1/ -L1)sin[2(y -A!)(Z +A 3)]}-
1 

and thus 

where A3 is a constant. 

4. Mooney-Rivlin material 

Let us now turn our attention to the equations of equilibrium of a Mooney-Rivlin 
material. In this case a lengthy but straightforward calculation yields 

•1,- aP .1,- ap ( 1 -) of ( 1 -) { s ( of 
(4.1) CrA ax -SrA ay + y+/1 az + y-/1 VA' faY 

of ) c ( of of ) 1 of } -gfax- VA' fax +gay +-y az =O~ 

(4.2) v',aP ;,-oP (1 -) ·ag (1 -){ s ( og s A ax +Cy A ay + y+/1 az + T -/1 VA' fay 

ag ) c ( og ag ) I ag } _ -g ax- VA'- gay +fax +-y az -O,. 

(4.3) 1 a P 1 a P 1 a P ( 1 -) , 
Y az - v A' (Cg-Sf) ay - VA' (Sg+Cf) ax + T +/1 A 

( 
I - ) ( A" 2A" 1 ( of og ) ) 

+ 2 - f1 - T + A'4 - A'2 2! az + 2g az = 0 · 
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It follows from (4.1), (4.2), (4.3), (2.4) and (2.5) that 

(4.4) y'Y }_!__ = - (__!_ +P) (c~ +S~) - (__!_ -P) { f (etC-yS) ax 2 az az 2 y A.' 

g c of s og} 
+ y.A.' (etS+yC)+;: az + ;: az ' 

(4.5) ¥Y ~~ = - ( ~ +if)(c ~~ -S :i)- ( ~ -if){~· ( -aS-yC) 

g c og s of} 
+ y.A.' (etC-yS) + J: az - J: az ' 

(4.6) _o_f!_ = (-~ + f{) [(etQ + Ry)(X2 + Y 2
)- A.' A."]+ (__!_- lf) ( 1 

(- et3 

az 2 2 y.A.' 

2A." 1 ) - ety2)(X2 + Y2
)- )!3 +A."- -y {etQ + Ry)(X2 + Y2

) , 

where 

1 A." 
et = 2 ;_'3!2 , 

(4.7) 
( 

1 A." ) d ( Q' ) 
R = T .A_'3J2 Q' - dZ y A.' . 

Notice that (4.4) and (4.5) reduce to Eqs. (3.8) and (3.9), when {i = -}. A simple and 

straightforward computation using (4.4) and (4.5) yields 

(4.8) ( I -) (A."Q'- A.'Q") ( 1 -) ( Q" ) 
2 +fJ A.'3t2 = 2-fJ A.'3j2 - · 

Let us introduce a constant fJ through 

(4.9) 

Then 

(4.10) A." Q'- (A.'+ {J)Q" = 0. 

It immediately follows that 

(4.11) !J(Z) = [ A(H~:{JH] (A(Z)+fJZ). 
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Using the expression for .Q(Z) in (4.11) and substituting this into (4.4) and (4.6), it 
follows by cross-differentiating and eliminating the pressure that 

( 4.12) r( Q - nQ' + 4B2'1'1' /1 ( ~2 + /1) = /1 ( 4B2'1'1' /1 + 4 B217317' /12 + 3'12 '1' 17" + 17 3 r( "), 

where 

(4.13) 
.Qo 

B = ).(H)+{JH . 

On dividing both the sides of ( 4.12) by 'YJ2, rearranging the terms and subsequently inte­
grating it, we find 

(4.14) 

where F is a constant. 
It follows from (3.17) and ( 4.11) that 

(4.15) Q = n" -B2
'1 (:2 +Pr 

Substituting (4.15) into (4.14), we get 

B2 
(4.16) 'YJ"- - 3 - FrJ = B2{J2(- 2fJ'YJ 3 + 'YJ)- fJrJr;' 2- [Jr;2r;". 

'YJ 

On multiplying the above equation by 'YJ' and integrating one obtains 

B2 
('Y/')2+ _ 2 +F'YJ2 = B2[J2( _'YJ4fJ+'YJ2)-[Jr;2'YJ'2+D, 

'YJ 
(4.17) 

where D is a constant. 
It follows from equation (3.25) that ( 4.17) can be rewritten as 

(4.18) 

Thus 

(4.19) 

which can be integrated to yield 

I r ( B2[J2;2(1- {J;) +Fe+ D;- B2 )-tt2 --
( 4.20) ± 2 ~ 1 + p; a; - z + E, 

where E is a constant. We can thus in principle determine ).'. 

In our derivation we have made the tacit assumption that fJ =1= 0, i.e., 7J =I= - ~ • 

If 1f = - ~ , the constitutive expression reduces to 

( 4.21) T = -pl-,uB-1 
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In this case it is easy to show that explicit exact solutions can be exhibited, in a manner 
identical to that of the neo-Hookean case. 
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