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Theoretical estimation of the applicability range
of the differential pressure type flowmeters
in presence of pulsation of the mass flux

B. DOBROWOLSKI and J. POSPOLITA (OPOLE)

IN THE PAPER one- and two-dimensional mathematical models of the pulsating flow of an
incompressible viscous fluid through a pipe orifice were formulated. The one-dimensional
model was formulated on the grounds of the Cauchy-Lagrange integral, and the two-dimensional
model was derived with the use of Reynolds equations and the k-¢ turbulence model equations.
The Reynolds equations and the equations of turbulence model were solved by the finite
difference method. The obtained variable in time, velocity and pressure fields were used for
the analysis of flow through a pipe orifice and for the estimation of simplyfying assumptions
made in the one-dimensional model. The one-dimensional flow description was found to be
limited, what is due to dependence on time of the coefficients in the equations. The range of
application of this description was assumed to be dependent on the mass flow pulsation am-
plitude and on the Strouhal number. The one-dimensional model was used to estimate the
metrological properties of orifice meters in presence of mass flow pulsations. The additional
measurement error caused by pulsation was related to the frequency, amplitude and shape of
pulsation. For the assumed value of additional error of measurement the equations were given,
which can be considered as criteria for the range of application of the differential pressure type
flowmeters to the measurements of the mean value of a pulsating mass flux. The obtained for-
mulae were also transformed to display the dependence of measuring error on the frequency
and amplitude of differential pressure pulsation. Criteria formulated in this way are of great
usefulness from the viewpoint of measuring practice. Results of theoretical studies were com-
pared with the available results of measurements. Good conformity was observed.

W pracy sformutowano jedno i dwuwymiarowy model matematyczny pulsujacego przepltywu
lepkiego i niescisliwego przez rurociag ze zw¢zka. Model jednowymiarowy zostal sformutowany
na podstawie catki Cauchy’ego-Lagrange’a, a dwuwymiarowy na podstawie réwnan Reynoldsa
i rownafh k—e modelu turbulencji. Réwnania Reynoldsa i rownania modelu turbulencji roz-
wiazano numerycznie metoda roznic skoficzonych. Wyznaczone zmienne w czasie pola pred-
kosci i ci$nienia wykorzystano do analizy przeplywu w obrgbie zwezki oraz do oceny zatozen
upraszczajacych przyjetych przy formutowaniu modelu jednowymiarowego. Stwierdzono ogra-
niczonos¢ opisu przeptywu rownaniem jednowymiarowym ze wzglgdu na zmienno$¢ jego wspol-
czynnikow w funkcji czasu. Uzalezniono zakres stosowalnosci tego rownania od amplitudy
pulsacji strumienia masy i liczby Strouhala. Model jednowymiarowy wykorzystano do oceny
wilasnosci metrologicznych zwezek pomiarowych przy obecno$ci pulsacji strumienia masy.
Uzalezniono dodatkowy biad pomiaru spowodowany pulsacja od jej czgstotliwosci, amplitudy
i ksztattu. Przy zalozonej wartosci dodatkowego blgdu pomiaru podano réwnania o charakterze
kryterialnym, okreslajace zakres stosowalnoéci zwezek do pomiaru s$redniej wartosci pulsuja-
jacego strumienia masy. Otrzymane zalezno$ci przeksztalcono rowniez tak, aby uzalezni¢ blad
pomiaru od amplitudy i czestotliwosci pulsacji ci$nienia réznicowego. Tak sformulowane
kryteria maja duza przydatno$¢ z punktu widzenia praktyki pomiarowej. Rezultaty badan
teoretycznych porownano z dostgpnymi wyynikami pomiarow, otrzymujac dobra ich zgodnosé.

Cchopmy/IMpoBaHB 0/IHO- M JBYMEPHasd MAaTEMAaTHYECKAs MOMAENb, OMKCHIBAIOIIAA HEYCTaHO-
BHBLIEECA TEYECHHE HECKUMAEMOIl YKUIKOCTH 4depe3 TPYyOOIpOBON € M3MepHTenbHOH auad-
parmoii. Bosiee obmas MoJeIb IPUMEHEHa K aHAJIM3Y ABJICHHA TEUEHHs M OLEHKH HHTEpBaJa
BOKHOCTH YNPOIUAIOLIMX IIPENOIOYKEHHH, IPHHUMAEMBIX NpH (opMyJIHpOBKe Haubolsee
YacTo MPUMEHsEMON oXHOMEePHOM Mopmesm. FccieqoBaHo BIIMAHME AMIUIMTYALI, YaCTOTBI
M opMbI MysIbCALMIA Ha OIUMOKM H3MEPEHHA IOTOKA Macchl. IIpemIoyKeHbl IPOCThIE, aHAIH-
THYECKUE KPHTEPHSA, IO3BOJIAIONIAE OLEHHTh MOAKET JIH ObITh IyJIbCHPYIOIEe TeUEHHE TPaK-
TOBAHHBbIM KAaK KBa3HyCTaHOBMBILIEECS TEUCHHE.
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1. Introduction

FLOWS IN INSTALLATIONS are accompanied by pulsations and transient states concerned
with operation of hydraulic systems or with presence of disturbances of random charac-
ter. Practically it means that if any method of measurement is used, in which an assump-
tion of the steadiness of flow is made, then the additional errors of measurement can
occur. In the cases of pulsating flows encountered in practice, values of such' errors de-
pend among others on the frequency and amplitude of pulsation. Among the known
methods of measurement, discussed in detail in the works by KREMLEVSKI [8] and MILLER
[10], the differential pressure type flowmeters method, which is characterized by simplicity
and great accuracy, is widely applied. This is reflected in Polish [17] and international [7]
normative documents, which describe several selected types of orifices and nozzles recom-
mended for measurements of steady flow. In the literature of the considered subject the
term “steady flow” is not defined precisely with respect to the methods of measurement
of mass flux. Hence, the range of applicability of the considered method to measurements
of flows which are variable in time is not known. Numerous attempts of using orifices
and nozzles in the measurements of pulsating mass flows [10, 11, 16, 19] indicated,
than in unfavourable conditions, measurement errors could be as large as 50% (e.g. [19]).
unless the suitable corrections in calculations or modifications of measuring apparatus
had been made. In some papers [3, 4, 13] attempts were made to estimate the range of
parameters in which a transient state could be considered as quasisteady and modification
of the method of calculation was not required. The majority of investigators assume
that the range of application of the theory of quasi-steady flow depends on the ampli-
tude of pulsation of mass flux (or differential pressure) and on the value of criterial
Strouhal number, which is a function of pulsation frequency. As for the limit values
of these parameters, in the literature there is a great divergence of opinions. In the
paper by OppENHEIM and CHILTON [15] the value Sh < 0.002 is recommendes irrespective
of the flowmeter type and pulsation amplitude. On the experimental grounds of the
EsTeL [6] stated that at small pulsation amplitudes (h; < 0.2), error of measurement
mean value of mass flow is less than 19/, irrespective of the value of Strouhal number. Mo1-
TRAM and ZAReK [12] related the limit value of the Strouhal number (Sh = 0.006--0.1) to
the type of flowmeter and stated that it did not depend on the pulsation amplitude. In the
paper by ZArek [19] a more complex criterial number was proposed, which comprised,
beside the Strouhal number, the quotient of the differential pressure pulsation amplitude
and its mean value. In the work by SAUER [18] it was stated that for Sh < 0.2 the influence
of mass flux pulsation on the measurement of the mean value of flow is negligible. Similar
results were presented by PALENCAR and VIEsT [16] on the grounds of experiments carried
out for Strouhal numbers in the range 0--0.01. In the paper [3] the dependence of the
limit value of Strouhal number on the nozzle type and the amplitude and form of mass
flow pulsation was stated. From the above review it follows that in literature there is no
agreement neither on the form of criterion nor on the limit values of Strouhal number.
Therefore broader analysis of the influence of pulsation on the characteristics of a stream
and on the errors of mass flow measurement seems very advisable. 1t would be profitable
to find the theoretically supported criterion for the range of parameters in which a transient
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How can be treated as a steady one, the admissible error of measurement being assumed.
Considerations will be carried out with the use of one- and two-dimensional mathematical
models describing a transient flow throug a pipe orifice. The more general model will
be applied in an analysis of admissibility of the simplyfying assumptions generally made
in formulation of the one-dimensional model.

2. One-dimensional mathematical model of flow

Reduction of the flow in a nozzle to a one-dimensional motion is an approach which
is the most frequently found in the theoretical papers concerning the discussed problem
[1, 12 and 14]. Considerations are usually limited to the main stream, and corrections
accounting for two-dimensionality of motion (and other factors) are made later.

A transient flow of an incompressible fluid through a pipeline with a orifice is consi-
dered (Fig. 1). By writing the Cauchy-Lagrange integral for Sects. | and 2 of the main

Fii. 1. Flow system with a pipe orifice.

stream, with energy losses taken into account, the relation between the difference of press-
ures in the Sects. | and 2 and the mass flux can be obtained:
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(2.1) Pi—pz = dz,

where M is the mass flux, w — average fluid velocity in the section, p — density, 4, —
cross-sectional area of the orifice and « is the discharge coefficient. If we introduce a factor

p = gl:g" accounting for the fact that the points 4 and B in which pressure is measu-
A~ VB
red do not have to coincide with the Sects. 1 and 2, and if we use the relation
41.4
W= —,
04
Eq. (2.1) will take the form
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in which the discharge coefficient is described by the formula

2.3) P A

V Cy+&—Cym?n?
In this formula x is the contraction coefficient, m — area ratio, C, and C, — Co-
riolis coefficients, & — coefficient of energy losses. Under the assumption that changes
in time of the cross-sectional area of the main stream are small, the last term in (2.2) can

Z2

be neglected. Formula — : f A(d—_j is replaced with the quotient /,/4, and p,—pg = Ap.

Then, Eq. (2.2) is as follows.

Ml dM
20043 " A, dt

Quantity /, is called the effective length of the orifice. On the grounds of acoustic investi-
gations, MOTTRAM and ZARex [12] presented relations between /, and the geometry of
a confuser for orifices and nozzles and for Venturi tubes. Equation (2.4) expresses the
dependence of the current value of mass flux M (t) on the differential pressure Ap(t) measu-
red in the orifice. The mean value of mass flux in the pulsation period T can be found from

(2.4) Ap =

T
= 1 .
(2.5) M = »be M(t)dr,

where the function M(r) is the solution of Eq. (2.4) for the given (e.g. measured) function
Ap(t). Examples of calculations were presented in the paper [2].

From the point of view of the aim of this paper, however, it is necessary to carry out
a broader analysis and estimation of the simplifications assumed in deriving the formula
(2.4). This concerns particularly the estimation of the range of changes of the flow number
o and of the cross-section of stream behind the nozzle as a function of amplitude and
frequency of pulsation. As these quantities are closely related to multidimensionality of
the phenomenon of flow, the more general mathematical model is required.

3. Two-dimensional mathematical model

3.1. Equations of motion and boundary conditions

A two-dimensional, time-dependent, turbulent flow of an incompressible viscous
fluid through a segment of the pipeline with an orifice is considered. The scheme of the
hydraulic system is shown in the Fig. 1. Axial symmetry of the stream is assumed. Aver-
age parameters of the stream can be described by the Reynolds equation, complemented
by the semi-empirical model of turbulence [20, 21]. In the cyllindrical coordinate set,
the general form of equations of transport is as follows:

0 d 1 ¢ d
on BilwprtLow= () L2 (i %)s
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where by the symbol ¢ the following quantities are denoted in turn: 1 (equation of con-
tinuity), axial U and radial ¥ components of the velocity vector, kinetic energy of turbu-
lence k, and rate of dissipation of kinetic energy of turbulence &. Coefficients of the set
of Egs. (3.1) are collected in the Table 1. In the above approach, the influence of turbu-

Table 1. Coefficients in Eq. (3.1).
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lent fluctuations of velocity on the average parameters of stream is modelled by the coeffi-
cient of effective viscosity

Ver = V1 +7,
where », is a turbulent viscosity, which can be found on the basis of the Laundner and
Spalding k— ¢ model of turbulence,

Y, = C.L&*;'

The following values of empirical constants were taken:
C,=009 Cy =143, C;=192, o,=10, d=13.

They correspond with the recommendations from the paper [9]. As it was demonstrated
in numerous applications [21], the set (3.1) properly describes the average parameters
of a broad class of turbulent flows.

Because of the character of equations of the mathematical model and the aim of cal-
culations, it is necessary to formulate the boundary conditions for all the dependent
variables of the set (3.1).

In the inlet section y, (Fig. 2a) the fully developed pulsating flow is assumed. Then,
V = 0, dp/dz and the set (3.1) is reduced to

oy 18 a6
(3.2) *at" = *r* *8? (rr4, ~ r—) +S¢,
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F1a. 2a. Difference mesh with marked boundaries of the region of calculations.

the difference mesh with denotations.

Table 2. Coefficients in Eq. (3.2).
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where ¢ denotes U, k, ¢, in turn. Coefficients of the set (3.2) are collected in the Table 2.
The set (3.2) is solved under the following assumption on the form of pressure gradient:

ap

dz

A+ Bsinot,

where 4 and B are constants. As a result, the required distributions of all the variables in
the section y, are obtained, for every value of time.
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On the axis of symmetry of the tube y, the conditions ¥ = 0 and d¢/dr = 0 are as-
sumed to account for axial symmetry of the stream. In the section y; the boundary con-
ditions are assumed arbitrarily

y=2% _y, MT =M[ )
oz :7’: !Y!
where M denotes the mass flux of the fluid, as the information about distribution of
variables in this section is missing. The influence of the boundary conditions in the section
v on the fields of pressure and velocity in the region of the orifice is small provided the
section is far enough from the nozzle.

In the nodes of the difference 'mesh which are adjacent to the walls of the orifice and
the pipe (y4) boundary conditions are formulated according to the model k—¢ for large
Reynolds numbers [9]. If it is assumed that the point P is in the region of developed turbu-
lence, then the component Up of the velocity vector, parallel to the wall, is described by the
logarithmic formula

Up 1 Eyp(7,0)u
e == =il f it
(zlo)w % [
where v, is the distance of point P from the wall, » = 0.42 and E = 9.7 are the empirical
constants. Assumption that the shear stress v are constant along the segment connecting
point w on the wall and point P in the boundary layer, implies
P
Compiling the above formulae we obtain the identity
= G Uy
* In{EypCil*ok'?[u}
which relates the shear stress on the wall to the kinetic energy of turbulence and the
component of velocity vector parallel to the wall.
Value of energy dissipation ¢, in the boundary point can be found from the relation
g, = CORE 2 Iny,,,

Value of kinetic energy of turbulence k, in the point adjacent to the wall is found from
the general equation of balance with diffusion neglected. The component representing
dissipation o¢ in the equation of transport is estimated as follows:

ko2 | | EveCultkp'2 |
>

0NE = C[:”’A
4

1

The obtained boundary value problem for the set of five nonlinear differential equations
was solved by means of the finite difference method. As the initial conditions, the distri-
butions of dependent variables corresponding to the steady flow were used.

3.2. Finite-difference equafions and computational algorithm

Discretization of the differential equations of transport was based upon integrating
the components of these equations on the difference mesh (Fig. 2a), the fragment of which

2 Arch. Mcch. Stos. nr /87
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is shown in Fig. 2b. As a result of integration, the following finite-difference equation
was obtained:
n+1
A¢(¢n+1 p)+{rU¢—rI' 3(]5} Acb

n+1

qu IMI

ar |,

3(;1’) n+1
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where the indices e, w, n and s denotes the nodes lying half-way from the central point P
to one of the adjacent main nodes E, W, N and S. Quantities 4¢ are related to the areas
of surfaces formed by edges of a control surface, when it is rotated by a unit angle, and
A% = Az- Ar. Components S¢ and S§ are concerned with the linearization of source
terms of the set (3.1).

Since in the general difference equation the unknowns in the main nodes of difference
mesh must appear, the estimation of shares of the convection and diffusion fluxes through
the control surfaces is required. In the paper [20] it was demonstrated that the stability of
algorithm is ensured by a hybrid scheme, which is a combination of a central scheme and
a ,,stream oriented” scheme. Considering the surface A% we obtain

Uyl AS(do+p)
. % 6 _ —TIyr,A%(¢,—¢,)8. for |Re| < 2,
(3.3) (U¢—I.»--az—)“rw4w = \Uor A2d.  for |Re S 2

U,r.A%p, for |Re’|< -2,

where Re? = oU, 4z/(I';),, is a mesh Reynolds number. After applying the hybrid scheme
to the remaining elementary surfaces we obtain the difference equation in a general form:
(34) apdpt! = ardEt +alglt! +aleht +atdit + 1, A7 Si+ M,dy.
where

a® = af+ad+af+al—r,ALSC+M,,

M, = ..f_lﬂ_t, Af,’
and the upper index ¢ is related to the variable ¢p. The difference equation (3.4) is valid
in every interior point of a difference mesh. It relates the value of variable ¢ in the central
point P of the mesh to the corresponding values in four neighbouring main points. Coeffi-
cients a® refer to the joint share of convection and diffusion estimated according to the
scheme (3.3). As the difference scheme for variable 7 is implicit, the sets of difference
equations of type (3.4) are solved iteratively, for every time step n+ 1. Solution of the set
of difference equations is based on the method SIMPLE [20]. Algorithms are the exten-
sion of methods applied in paper [1] to the problem of transient flow. A single interior
iteration cycle consists of the solution of the set of equations of motion

e Y v
avi = NaVitSi+ AN (p-p,),

i

b Ui = N alUs + S+ Apo—py).
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where quantities denoted ()* are the approximate values and solution of a Poisson equation
for the pressure correction p’

apy = D arp+ Sy

J
for satisty continuity equation the correction for velocity field
v, = V;‘ +DV(p.—p,)

is carried out for the current values of pressure correction p’. Component Sf depends
sources of mass resulting from the fact that the approximate velocity field does not satisfy
on the the equation of continuity. Equations of the turbulence model are solved simul-
taneously with the equations of motion.

The internal iteration process is continued until the convergence criterion is fulfilled

(3.5) max{Res(¢)} < 4,
where
Res(p) = max{atp,— ' atep,— 58},
LJ N,s,E,w

When condition (3.5) is satisfied, the calculations concerning the next time step I/ are
undertaken. Value of A¢ was chosen experimentally. No limitation on the value of /¢
concerned with the stability of algorithm was encountered.

FiG. 3. Isolines of stream-function for various times in one pulsation period.
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Periodic solutions were obtained by integration of the set of Egs. (3.1) in the time in-
terval which was much larger than the one period of pressure pulsation 7. Full oscillation
of dependent variables was obtained after 2 cycles.

4. Discussion of simplyfying assumptions in the one-dimensional model

On the grounds of the mathematical model presented in Sect. 3 the calculations for
turbulent pulsating flows were carried out. Solution of the set (3.1) determines the vel-
ocity and pressure fields in the orifice area. Knowing these fields one can examine the
function dp = f(M) as well as analyze the simplyfying assumptions made in the one-
-dimensional model.

Results of the calculations for a flow sinusoidally pulsating with a frequency equal
to 210 rad/s and amplitude /; equal to 0.175 is displayed in the form of isolines of the
stream function for several time points in one pulsation cycle, Calculations were made
for the fluid with density ¢ = 10° kg/m3 and viscosity » = 10-% m?/s flowing through
a nozzle with modulus m = 0.25. Influence of the flux pulsation on the of fluid motion
in the region before the orifice is comparatively small, and it is significant only for large
mass flux amplitude /4. Behind the orifice a periodical growth and decrease of the length
of recirculation zone can be noticed. Numerical calculations demonstrated that for large

Table 3. Comparison of the values of the terms of Eq. (2.2)
for various amplitudes and freyuencies of pulsation.
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values of w and hy a ,separation” from the orifice and segmentation of the recirculation
zone can take place. This testifies to the strong dependence of the processes taking place
behind the orifice on the pulsation character and, consequently, to the limited range of
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applicability of Eq. (2.4). Therefore, it is an important problem to estimate the changes
of coefficients in Eq. (2.4) concerned with the processes taking place in the orifice.

In the Table 3 the comparison is presented of the terms of Eq. (2.2) (with coefficient y
taken into account) for two different mass flux pulsation amplitudes and pulsation fre-
quencies equal 9, 20 and 150 rad/s, respectively. The average Reynolds number for the
tested flows was equal 2.5x 10, Values of the terms have been related to the instanta-
neous value of differential pressure, and then absolute values of the obtained quotients
have been averaged in time. The results indicate that the value of the inertia term 1I in-
creases as o and Ay, increases and for @ = 150 rad/s it is comparable with the term
M2 /2002 A§. Value of the third term in the considered range of changes of @ and /iy is
smaller by several orders of magnitude than the other terms and the assumption consisting
in neglecting it is correct.
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F1G. 4a. Influence of pulsation frequency on the range of changes of discharge coefficient. b. Influence of
pulsation amplitude on the range of changes of discharge coefficient number as a function of time.

In Figs. 4a and 4b the influence of amplitude and frequency of flux pulsation on the
range of changes of the discharge coefficient was plotted as a function of time. The
value of o was found from Eq. (2.2), in which the required quantities were calculated
on the basis of known fields of velocity and pressure. The discharge coefficient has been
related to the value of o, was found for a steady flow, the parameters of which cor-
respond to the average values for the pulsating flow. Results of the calculations indicate
that together with the increase of pulsation amplitude and frequency (Strouhal num-
ber), the range of changes of the discharge coefficient as a function of time increases.
Broader analysis demonstrated that, among the quantities determining the internal
structure of the discharge coefficlente (formula (2.3)), changes in time of the coefficient
y play the greatest role. For large values of w, pressure gradient in the axial direction
periodically assumes negative values. In the nearest neighbourhood of the orifice a con-
siderable radial pressure gradient also appears. For these reasons, for large amplitudes
and frequencies of flux pulsations, the value of y can periodically assume negative values.
In this case the one-dimensional model (2.4) may not be applied to the description of
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the considered flow. For instance, for frequency w = 150 rad/s and amplitude A; = 0.6,
in a certain range of pulsation cycle it is impossible to find the discharge coefficient from
Egs. (2.2) and (2.3). On the other hand, the results indicate that there exists a range of
pulsation amplitudes and frequencies, in which the changes of « are negligible.
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Fic. 5a. Influence of pulsation frequency on the range of changes of the integral as a function of time.
b. Influence of pulsation amplitude on the range of changes of the integral as a function of time.

Figures 5a and 5b display the influence of amplitude and frequency of pulsation on

7 odz
= Az, t)
in the above expression was calculated numerically, and the cross-sectional area of the
stream A(z, t) was found from the known stream function. The range of changes in time
of the considered expression grows together with the amplitude and frequency of pulsa-
tions of flux. Changes of the coefficient v as a function of A; and o are essential here,

the range of changes of the expression = as a function of time. The integral
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FiG. 6. Influence of pulsation on the range of changes of the integral as a function of time.
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S : © dz
whereas the influence of these parameters on the value of the integral J —————as a
L

.0
tfunction of time is comparatively small. Results shown in the Fig. 6 confirm this statement.
Calculations demonstrated that for 44 < 0.1 and o <20 rad/s the influence of 4z and @
on the value of the expression under consideration is negligibly small. This corresponds
to the range of parameters, in which also the flow number is practically constant, This
means that the Eq. (2.4) can be used to calculate the instantaneous values of mass flux,
on the grounds of measurement of the function Ap (¢). On the other hand, for larger
values of @ and /iy, Eq. (2.4) does not describe correctly the pulsating flow through the
orifice meter, because of the strong dependence of coefficients on time and character of
pulsations.

5. Estimation of the range of application of nozzles to transient flows

Analysis carried out in Sect. 4 demonstrated that the simplyfying assumptions, com-
monly made when deriving the equation (2.4), can lead to significant errors for pulsations
with large amplitude and frequency. This results from the fact that the coefficients « and
/. depend on time and on the form of pulsation. In consequence, the orifice method of
measurement of mass flux can not be applied for transient flows if the value of Sh is large,
even when calculations are carried out on the basis of Egs. (2.4) and (2.5).

When the Eq. (2.4) correctly describes the transient flow through a flowmeter, the
mean value of mass flux can be found from Eqs. (2.4) and (2.5) for measured values
of the function Ap(t). However, this involves significant complication of the methodo-
logy of calculations. From the practical point of view, it is advisable to find the range
of application of the formula recommended for calculating the steady flows

(5.1) M = aA,y 204p,

which results from Eq. (2.4) by setting dM/dt = 0. Two cases should be distinguished
here. In the first case, the mean value of a pulsating mass flux is found from Egq. (5.1)
on the basis of the mean value of differential pressure, i.e.

(5.2) M* = ady V2dp,
where

T
1

dp= J Ap(t)dt.

0
In this case the error of measurement o is defined as
M*— M
(5'3) g = =
M
Value of o can be estimated if the character of pulsations of mass flux is known. As-
suming that the function M(t) can be expressed as
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M() = M(1+haf(0) = M (145 N Asinoit),
i=1
where f(t) denotes an arbitrary periodic function, normalized in an interval < —1, 1>, we
obtain that o is expressed by the formula

e
(5.4) a=]/1+—2'"-2,,43—1.

Expanding the radicand into a series, we obtain an approximate formula for the error.

h3
(5.5) o= h ZA?.

Coeflicients 4; depend on the shape of mass flux pulsation, expressed as a sine series.
For constant discharge coefficient, the value of ¢ is independent of frequency of mass
flux pulsation.
In the second case, the mean value of mass flux is found on the basis of the mean value
of the root of differential pressure, i.e.
(5.6) T = iy
T

o

T
f V 204p(t)dt.

Then, for the assumed form of pulsation of flux, using Egs. (2.4), (5.3) and (5.6), the
error ¢ can be expressed by the formula

T S
_ 1 i 2 . 2 [e ((f(f)
.7 ¢ = Tof ]/(1+th(:)) +2hg Y A t—1.
Examples of calculations for various amplitudes, frequencies and forms of pulsation of
the mass flux were presented in the paper [3]. Under the assumption that the following
relation is satisfied

(5.8) 20+ f20)+ 2 <
wo dt |

the integrand can be expanded into a series, what yields

h m“!
(5.9) g = — TM o*Sh? (Z A?i’).

i=1
Relations (5.5) and (5.9) are the approximate formulae which allow for estimating ana-
Iytically the error of measurement, when the form, amplitude and frequency of pulsa-
tion of the mass flux is known. Differences in structures of these formulae result from the
difference in defining the mean value of mass flux in the period of pulsation.

From the point of view of measuring practice, information on the flow is obtained
from the measured values of 4p as a function of time. It is therefore useful to relate the
value of ¢ to the characteristic parameters of differential pressure. This can be obtained
by transforming the relations (5.4), (5.5) and (5.9) and replacing the mass flux pulsation
amplitude with the quantities characteristic for the pulsation Zp(t). By linearizing the
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second term of Eq. (2.4), for every harmonic a relation between the differential pressure
pulsation amplitude and mass flux pulsation amplitude can be obtained,

(5.10) By, = 2hi AV 1+ o*Sh%2,

where the circular frequency in the Strouhal number is the fundamental frequency. Sub-
stituting (5.10) into (5.5) we obtain

o0

2
(5.11) I S‘ i

16 .=~ 1+aSh**
and in the second case, for which Eq. (5.9) has been derived, o is expressed by

2#Sh? X hp i*
16 £y 1+o*Sh%?°

i=1

(5.12) e

In the case of pulsation of sinusoidal or nearly sinusoidal shape, assuming that the addi-
tional error of measurement should be smaller than a specified number (say 0.1), from
(5.11) and (5.12) the simple criterial relations can be derived

(5.13) hy, < 0.4
when M is calculated from Eq. (5.2) and
(5.14) hy,2®Sh < 0.4

when M is found from Eq. (5.6).

v
-0054+— I SRS R S—
‘ Fﬁ;: m | —— Numerical
| Tw Jogs jos2| ~— Eq. (544)
-01 +— ® 078 0104!
m 0.85]0393
A 057 0383
o [042]010¢
-015 [ ,
Q05 ol 0.2 03 04 05 1 2
*2Sh
FI1G. 7. Measurement error resulting from the assumption of quasi-steadiness of flow (— — numerical
calculations, — —- — — — — — Eq. (5.14)).

In Fig. 7 the results of numerical calculations are presented, in which the values of
the error o, defined by Eq. (5.3), were found by solving Eq. (2.8) for sinusoidal pulsa-
tions of differential pressure

Ap(t) = Ap(1+hy,sinwt).
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Results of calculations have been related to the experimental data obtained by MOHAMAD
and MottraM [11] for the similar, but not strictly sinusoidal, form of pulsation. The sa-
tisfactory quantitative and qualitative conformity of calculations with experiments can
be noticed. The range of parameters for which |o| < 0.01, with the condition (5.8) taken
into consideration, has been marked by the dotted line found from Eq. (5.14). In this
range it is assumed that the pulsating flow can be treated as a quasi-steady one. Figure 8

U s

Q
0,
005 1 o*S hi< 001 o g
A0
o o
05+ Lm_[01 Jo33o3s]oet % Y
o |V |O |a i
|
003+ s} ;P
002t
001 ‘t
I
0 } | } " ]
0 0.2 0.4 06 08 h 1
ap

FiG. 8. Measurement error vs differential pressure pulsation amplitude for orifices of different
area ratios.

g 2
ochsn®< 001
005
Re
004 4 o [19-10%
v [271-107]
(5.13)
003T | x[373.104 ;
w2l | [a53-104
0074
0 }
0 02 Q4 06 0g 1
Ap

FiG. 9. Measurement error vs differential pressure pulsation amplitude for various Reynolds
numbers.

shows the measurement error o found experimentally by MoHAMMAD and MoTTrRAM [11]
for orifices with various area ratios, and Fig. 9 displays the results of investigations by
MotTrRAM and ZAReK [12] for an orifice with area ratios equal to 0.1, and for flows with
various Reynolds numbers. The solid line displays the relation (5.11) in which the ex-
pression @*Sh?i? in denominator has been neglected, accounting for its small value. Very
good quantitative conformity of the results of experiment with Eq. (5.11) can be noticed.
The vertical line illustrates the condition (5.13). It can be stated that for Ay, < 0.4, the
value of error o does not exdceed 0.01. For the assumed value of ¢ this condition can
also be treated as the criterion of separation between the quasi-steady and pulsating flow.
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6. Conclusions

On the grounds of the one- and two-dimensional mathematical models, the influence
of the pulsation of stream on the errors of measurement of the mass flux was analysed.
The two-dimensional model was applied in the analysis of the flow phenomenon. It was also
used to estimate the range of changes of the coefficients in a one-dimensional model.
It was stated that the generally used one-dimensional model is limited and can be applied
to the description of flows for large frequencies and amplitudes of pulsation of the mass
flux. This results from the dependence of discharge coefficient « and effective length /; on
time. As it was demonstrated by numerical investigations, when the amplitude of pulsation
of the mass flux hj exceeds 0.1, then &,, > 0.2, and when the value of Strouhal number
Sh is greater than 0.4, the coefficients in the one-dimensional model can not be considered
constant. In consequence, this model only approximately describes the phenomenon of
flow.

From the one-dimensional model the analytical relations were derived which express
the error of measurement of the mean value of mass flux as a function of amplitude, fre-
quency and shape of pulsation. The critical conditions which allow for estimation of the
range of application of the differential pressure type flowmeters to measurements of
pulsating flows were formulated. It was stated in the case of pulsations of sinusoidal
shape with pulsation amplitude Ay < 0.1 (hy, < 0.2) and Strouhal number Sh < 0.1,
the coeflicients in the model (2.8) are practically constant and the error of measurement
of the mean value of mass flux o is less then 19. Results of the calculations were com-
pared with the available experimental data and satisfactory conformity was oberved.

It seems advisable to extend the scope of investigations by considering the system:
confuser-differential manometer or confuser-differential pressure converter to account
for the fact that dynamical properties of an instrument used to measure the pressure
difference can have significant influence on the results of measurement.
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