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Theoretical estimation of the applicability range 
of the differential pressure type flowmeters 
in presence of pulsation of the mass flux 

B. DOBROWOLSKI and J. POSPOLITA (OPOLE) 

IN THE PAPER one- and two-dimensional mathematical models of the pulsating flow of an 
incompressible viscous fluid through a pipe orifice were formulated. The one-dimensional 
model was formulated on the grounds of the Cauchy-Lagrange integral, and the two-dimensional 
model was derived with the use of Reynolds equations and the k-e turbulence model equations. 
The Reynolds equations and the equations of turbulence model were solved by the finite 
difference method. The obtained variable in time, velocity and pressure fields were used for 
the analysis of flow through a pipe orifice and for the estimation of simplyfying assumptions 
made in the one-dimensional model. The one-dimensional flow description was found to be 
limited, what is due to dependence on time of the coefficients in the equations. The range of 
application of this description was assumed to be dependent on the mass flow pulsation am
plitude and on the Strouhal number. The one-dimensional model was used to estimate the 
metrological properties of orifice meters in presence of · mass flow pulsations. The additional 
measurement error caused by pulsation was related to the frequency, amplitude and shape of 
pulsation. For the assumed value of additionaJ error of measurement the equations were given, 
which can be considered as criteria for the range of application of the differential pressure type 
flowmeters to the measurements of the mean value of a pulsating mass flux. The obtained for
mulae were also transformed to display the dependence of measuring ~rror on the frequency 
and amplitude of differential pressure pulsation. Criteria formulated in this way are of great 
usefulness from the viewpoint of measuring practice. Results of theoretical studies were com
pared with the available results of measurements. Good conformity was observed. 

W pracy sformulowan 6 jedno i dwuwymiarowy model matematyczny pulsujctcego przeplywu 
lepkiego i niescisliwego przez rurocictg ze zwt(:Zkct. Model jednowymiarowy zostal sformulowany 
na podstawie calki Cauchy'ego--Lagrange'a, a dwuwymiarowy na podstawie r6wnan Reynoldsa 
i r6wnan k - e modelu turbulencji. R6wnania Reynoldsa i r6wnania modelu turbulencji roz
wictzano numerycznie metodct r6znic skonczonych. Wyznaczone zmienne w czasie pola pr~
kosci i cisnienia wykorzystano do analizy przeplywu w obrt(bie zwt(:Zki oraz do oceny zalo:Zen 
upraszczajctcych przyj~tych przy formulowaniu modelu jednowymiarowego. Stwierdzono ogra
niczonosc opisu przeplywu r6wnaniem jednowymiarowym ze wzglt(du na zmiennosc jego wsp61-
czynnik6w w funkcji czasu. Uzalezniono zakres stosowalnosci tego r6wnania od amplitudy 
pulsacji strumienia masy i liczby Strouhala. Model jednowymiarowy wykorzystano do oceny 
wlasnosci rrietrologicznych zw~:Zek pomiarowych przy obecnoSci pulsacji strumienia masy. 
Uzalezniono dodatkowy blctd pomiaru spowodowany pulsacjct od jej czt(stotliwoSci, amplitudy 
i ksztaltu. Przy zalozonej wartosci dodatkowego blt(du pomiaru podano r6wnania o charakterze 
kryterialnym , okreslajctce zakres stosowalnosci zw~:Zek do pomiaru sredniej wartoSci pulsujct
jctcego strumienia masy. Otrzymane zaleznosci przeksztalcono r6wniez tak, aby uzale:Znic blctd 
pomiaru od amplitudy i c~stotliwoSci pulsacji cisnienia r6znicowego. Tak sformulowane 
kryteria majct du:Zct przydatnosc z punktu widzenia praktyki pomiarowej. Rezultaty badan 
teoretycznych por6wnano z dostt(pnymi wyynikami pomiar6w, otrzymujctc dobrct ich zgodnosc. 

C<flopMyJIHpoBaHB oAHO- H ABYMepH:m MaTeMaTH'tleCKaH MoAeJIL, onHChiBaiOI.l{aH HeyCTaHo
BHBilleec.fl Te'tleHHe HeC>KHMaeMOH >I<H,ro<OCTit 'tlepe3 Tpy6oHpOBO):t C H3MepHTCJILHOH ;:tHa$
parMOH. Eonee o6r.uaH MoAeJIL npHMeHeHa K aHaJIH3Y .fiBJieHWI Te'tleHH.fl H oueHKH HHTepsana 
Ba>KHOCTH ynpor.uaiOJ.UHX npe;:tnoJio>KeHHii, npHHHMaeMbiX npH <l:>opMyJIHpoBKe Haa6onee 
11aCTo npHMeH.fleMoii o;:tHoMepHoii ll'iOAeJIH. Hccne;:tosaao BJIWIHHe aMnJIHTYAhi, 'tlaCTOTbi 
H <flopMbl nyJI&CaUHif Ha OlliH6KH H3MepeHH.fl llOTOKa MaCChi. Ilpe;:tJio>KeHbi npoCTbie, aHaJIH· 
TH'tJeCKHe KpHTepH.fl, ll03BOJI.fiiOJ.UHe OUeHHTh MOA<eT JIH 6biTb nyJILCHPYIOJ.Uee Te'tleHHe TpaK• 
ToBaHHbiM KaK KBa3HyCTaHOBHBmeeC.fl Te'tJeHHe. 
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1. Introduction 

FLows IN INSTALLATlONS are accompanied by pulsations and transient states concerned 
with operation of hydraulic systems or with presence of disturbances of random charac
ter. Practically it means that if any method of measurement is used, in which an assump
tion of the steadiness of flow is made, then the additional errors of measurement can 
occur. In the cases of pulsating flows encountered in practice, values of such; errors de
pend among others on the frequency and amplitude of pulsation. Among the known 
methods of measurement, discussed in detail in the works by KREMLEVSKI [8] and MILLER 
[10], the differential pressure type flowmeters method, which is characterized by simplicity 
and great accuracy, is widely applied. This is reflected in Polish [17] and international [7) 
normative documents, which describe several selected types of orifices and nozzles recom
mended for measurements of steady flow. In the literature of the considered subject the 
term "steady flow" is not defined precisely with respect to the methods of measurement 
of mass flux. Hence, the range of applicability of the considered method to measurements 
of flows which are variable in time is not known. · Numerous attempts of using orifices 
and nozzles in the measurements of pulsating mass flows [10, 11, 16, 19] indicated, 
than in unfavourable conditions, measurement errors could be as large as 50% (e.g. [19]), 
unless the suitable corrections in calculations or modifications of measuring apparatus 
had been made. In some papers [3, 4, 13] attempts . were made to estimate the range of 
parameters in which a transient state could be considered as quasisteady and modification 
of the method of calculation was not required. The majority of investigators assume 
that the range of · application of the theory of quasi-steady flow depends on the ampli
tude of.pulsation of mass flux (or differential pressure) and on the value of criteria! 
Strouhal number, which is a function of pulsation frequency. As for the limit values 
9f these parameters, in the literature there is a great divergence of opinions. In the 
paper by OPPENHEIM and CHILTON [15] the value Sh < 0.002 is recommendes irrespective 
of the flowmeter type and pulsation amplitude. On the experimental grounds of the 
EsTEL [6] stated that at small pulsation amplitudes (h;., < 0 .. 2), error of measurement 
meanvalue of mass flow is less than 1%, irrespective of the value ofStrouhal number. MoT
TRAM and ZAREK [12] related the limit value of the Strouhal number (Sh = 0.006-:-0.1) to 
the type of ~owmeter and stated that it did not depend on the pulsation amplitude. In the 
paper by ZAREK [19] a more complex criteria! number was proposed, which comprised, 
beside the Strouhal number, the quotient of the differential pressure pulsation amplitude 
and its mean value. In the work by SAUER [18] it was stated that for Sh < 0.2 the influence 
of mass flux pulsation on the measurement of the mean value of flow is negligible. Similar 
results were presented by PALEN CAR and VIEST [ 16] on the grounds of experiments carried 
out for Strouhal numbers in the range 0-:-0.01. In the paper [3] the dependence of the 
limit value of Strouhal number on the nozzle type and the amplitude and form of mass 
flow pulsation was stated. From the above review it follows that in literature there is no 
agreement neither on the form of criterion nor on the limit values of Strouhal number. 
Therefore broader analysis of the influence of pulsation on the characteristics of a stream 
and on the errors of mass flow measurement seems very advisable. It would be profitable 
to find the theoreticaJiy supported criterion for the range of parameters in which a transient 
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flow can be treated as a steady one, the admissible error of measurement being assumed. 
Considerations will be carried out with the use of one- and two-dimensional mathematical 
models describing a transient flow throug a pipe orifice. The more general model will 
be applied in an analysis of admissibility of the simplyfying assumptions generally made 
in formulation of the one-dimensional model. 

2. One-dimensional mathematical model of flow 

Reduction of the flow in a nozzle to a one-dimensional motion is an approach which 
is the most frequently found in the theoretical papers concerning the discussed problem 
[1, 12 and 14]. Considerations. are usually limited to the main stream, and corrections 
accounting for two-dimensionality of motion (and other factors) are made later. 

A transient flow of an incompressible fluid through a pipeline with a orifice is consi
dered (Fig. 1). By writing the Cauchy-Lagrange integral for Sects. 1 and 2 of the main 

__ _ _ __ _ _J 

FIG. 1. Flow system with a pipe orifice. 

stream, with energy losses taken into account, the relation between the difference of press
ures in the Sects. I and 2 and the mass flux can be obtained: 

(2.1) 

where M is the mass flux, w- average fluid velocity in the section, e -density, A 0 -

cross-sectional area of the orifice and et is the discharge coefficient. If we introduce a factor 

1p = J! ... 1 
- p 2 accounting for the fact that the points A and Bin which pressure is measu-

PA-PB 
red do not have to coincide with the Sects. 1 and 2, and if we use the relation 

if 
lV = --- , 

eA 
Eq. (2.1) will take the form 

(2.2) 
M2 1 JZl dz dM M fz2 

1 oA(z, t) d 
PA-PB= 2Qet 2 A 5 + ·.v; A(z,t) - dt ---;;; A 2 (z,t) ot z, 

Z1 Zt 
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in which the discharge coefficient is described by the formula 

~yv; 
~ = ~========~~ V C2+~-C1m2~2 

(2.3) 

In this formula x is the contraction coefficient, m- area ratio, C1 and C2 - Co
riolis coefficients, ~-coefficient of energy losses. Under the assumption that changes 
in time of the cross-sectional area of the main stream are small, the last term in (2.2) can 

1 z
2 dz 

be neglected. Formula- J A( ) is replaced with the quotient le/A 0 andpA -p 8 = Llp. 
'ljJ Zt Z' ( 

Then, Eq. (2.2) is as follows: 

A M2 fe dM 
(2.4) LIP = 2(}rJ.2 A5 + Ao (j( . 
Quantity le is called the effective length of the orifice. On the grounds of acoustic investi
gations, MOTTRAM and ZAREK [12] presented relations between le and the geometry of 
a confuser for orifices and nozzles and for Venturi tubes. Equation (2.4) expresses the 
dependence of the current value of mass flux M(t) on the differential pressure Llp(t) measu
red in the orifice. The mean value of mass flux in the pulsation period T can be found from 

T 

(2.5) -;- 1 f . 
M = T M(t)dt, 

0 

where the function M(t) is the solution of Eq. (2.4) for the given (e.g. measured) function 
Llp(t). Examples of calculations were presented in the paper [2]. 

From the point of view of the aim of this paper, however, it is necessary to carry out 
a broader analysis and estimation of the simplifications assumed in deriving the formula 
(2.4). This concerns particularly the estimation of the range of changes of the flow number 
ex and of the cross-section of stream behind the nozzle as a function of amplitude and 
frequency of pulsation. As these quantities are closely related to multidimensionality of 
the phenomenon of flow, the more general mathematical model is required. 

3. Two-dimensional mathematical model 

3.1. Equations of motion and boundary conditions 

A two-dimensional, time-dependent, turbulent flow of an incompressible viscous 
fluid through a segment of the pipeline with an orifice is considered. The scheme of the 
hydraulic system is shown in the Fig. 1. Axial symmetry of the stream is assumed. Aver
age parameters of the stream can be described by the Reynolds equation, complemented 
by the semi-empirical model of turbulence [20, 21]. In the cyllindrical coordinate set, 
the general form of equations of transport is as follows: 

(3.1) of/!_+ _a_ (U¢) + ]__ ~ (rV¢) = -~- (r "'!_4!__) + ]__ -0- (rrq, !_p_) + Sq,, 
ot oz r or oz oz r or or 
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where by the symbol¢ the following quantities are denoted in turn: I (equation of con
tinuity), axial U and radial V components of the velocity vector, kinetic energy of turbu
lence k, and rate of dissipation of kinetic energy of turbulence e. Coefficients of the set 
of Eqs. (3.1) are collected in the Table I. In the above approach, the influence of turbu-

Table 1. Coefficients in Eq. (3.1). 

~ r~ s~ 

u Yet 
a ( C>U)+ 1 () ?JV 1 ()p 

Z)Z Yei ~ r~(rVef~)-"f~ 

v yet 
() () U • 1 () ( o V ) 2 YetV 1 ~ 

()z: (VetZ)rl r ~ rVet~- rZ -f ()r 

k Y..cl G- e 
(Jk 

E Yet E 

~ k(c~1 G - c~2f.l 

1 0 0 

G=Vet{2[1 g~ )2• ( ~~ )
2 

+ (fJ2].(g~ ~ ~ )2}. 

lent fluctuations of velocity on the average parameters of stream is modelled by the coeffi
cient of effective viscosity 

where v, is a turbulent viscosity, which can be found on the basis of the Laundner and 
Spalding k- e model of turbulence, 

The following values of empirical constants were taken: 

C"' = 0.09, Ce1 = 1.43, Ce2 = 1.92, ak = 1.0, ~ = 1.3. 

They correspond with the recommendations from the paper [9]. As it was demonstrated 
in numerous applications [21], the set (3.1) properly describes the average parameters 
of a broad class of turbulent flows. 

Because of the character of equations of the mathematical model and the aim of cal
culations, it is necessary to formulate the boundary conditions for all the dependent 
variables of the set (3.1). 

In the inlet section y 1 (Fig. 2a) the fulJy developed pulsating flow is assumed. Thent 
V = 0, ocf>foz and the set (3.1) is reduced to 

(3.2) yep_ = __! _ _}__ (rr, !_c/J) + S
41 ot r or or ' 
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l, bt_l ~~ r- - -+~ ' 1,-- -r-----~ ---- ~-l! - f.-
~ ~ l . :-r-- ~ ~-l 

I I II I I 
1 I ! IC:::~- -~ y,. 

r-T -- -f-+-+-+H+H-t-+~-tl l :-- r---r-- , ~ 

i i : j l ! 

b 6Z 

oU 
xv 
0 p,k,e. 

p~M Ft-1 . 
w EJ 

.:...-

pi."-1 

s 
Z· 

Fro. 2a. Difference mesh with marked boundaries of the re~ion of calculations. b. Fragment of 
the difference mesh with denotations. 

Table 2. Coefficients in Eq. (3.2). 

~ ~ s~ 

u Vet 
1 ~ -r () z 

k .Y.t.L ( () u t - e <'k , Vef '"5-r 

e ~ ~ (c~ 1 Yet(g~ )
2 

-ch f) C1e 

where cp denotes U, k, e, in turn. Coefficients of the set (3.2) are collected in the Table 2. 
The set (3.2) is solved under the following assumption on the form of pressure gradient: 

ap B. 
-
0

z- = A+ smwt, 

where A and B are constants. As a result, the required distributions of all the variables in 
the section y1 are obtained, for every value of time. 
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Oh the axis of symmetry of the tube y2 the conditions V = 0 and o¢/or = 0 are as

sumed to account for axial symmetry of the stream. In the section y 3 the boundary con

ditions are assumed arbitrarily 

i3¢ . I . I 
V = - -- = 0 M l = M l oz ' I ' Yt YJ 

where M denotes the mass, flux of the fluid, as the information about distribution of 

variables in this section is missing. The influence of the boundary conditions in the section 
y 3 on the fields of pressure and velocity in the region of the orifice is small provided the 

section is far enough from the nozzle. 
In the nodes of the difference ·mesh which are adjacent to the walls of the orifice and 

the pipe (y 4 ) boundary conditions are formulated according to the model k- s for large 

Reynolds numbers [9]. If it is assumed that the point Pis in the region of developed turbu
lence, then the component UP of the velocity vector, parallel to the wall, is described by the 
logarithmic formula 

__ __!!_!__ = } - ln ( Eyp( iw[))~f2 ) ' 
( -rle)~'2 x ~'-

where J'p is the distance of point P from the w.all, x = 0.42 and E = 9.7 are the empirical 

constants. Assumption that the shear stress -r are constant along the segment connecting 
point w on the wall and point Pin the boundary layer, implies 

ip = iw = (!C1!1 2k~. 
Compiling the above formulae we obtain the identity 

ex'clf4klf2 u 
i = __ ____ !! - __ }' __ __!--:-- -

1' 1n{EypC~'4 ek1 '2 /p,} 

which relates the shear stress on the wall to the kinetic energy of turbulence and the 
component of velocity vector para1Ie1 to the wall. 

Value of energy dissipation cp in the boundary point can be found from the relation 

c:P = C3f4k;/2 /xy p. 

Value of kinetic energy of turbulence kp in the point adjacent to the wall .is found from 
the general equation of balance with diffusion neglected. The component representing 
dissipation (!1:' in the equation of transport is estimated as follows: 

kp3f2 1 Eyp ctt4kptf2 l 
(!e = C3f4 __ ln "' f· 

p. X 'V 

The obtained boundary value problem for the set of five nonlinear differential equations 
was solved by means of the finite difference method. As the initial conditions, the distri
butions of dependent variables corresponding to the steady flow were used. 

3.2. Finite-difterence equations and computational algorithm 

Discretization of the differential equations of transport was based upon integrating 
the components of these equations on the difference mesh (Fig. 2a), the fragment of which 
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is shown in Fig. 2b. As a result of integration, the following finite-difference equation 
was obtained: 

{ 

()A. }n+1 
!'!!__A<~>(,~,.n+t_c/>n)+ rUcjJ-rF -'~~- Aq, 
At P 'Yp p q, OZ e e 

I ocJ> r + 1 { "4> \ n -1- I 

- rUe/> -rF(/1 - J A~+ rVcJ> -rFq, !!_I A1: oz w or n 

- {rVtJ> -rF• ~~ r1

At ~ (SttJ>p+St)~+lr"A~, 
where the indices e, w, n and s denotes the nodes lying half-way from the central point P 
to one of the adjacent main nodes E, W, N and S. Quantities A~ are related to the areas 
of surfaces formed by edges of a control surface, when it is rotated by a unit angle, and 
A~ = .Az • .Ar. Components s: and S$ are concerned with the linearization of source 
terms of the set (3.1). 

Since in the general difference equation the unknowns in the main nodes of difference 
mesh must appear, the estimation of shares of the convection and diffusion fluxes through 
the control surfaces is required. In the paper [20] it was demonstrated that the stability of 
algorithm is ensured by a hybrid scheme, which is a combination of a central scheme and 
a ,stream oriented" scheme. Considering the surface A! we obtain 

I

UwrwAe(c/Jw+if>r,) 

(3.3) (ucp-F@~p_) r Aq, = -FI/>rwA!(cJ>:-cf>w)bz for jRe
6

1 < 2, 
oz w w w UwrwAec/>w for IRe I :>: 2, 

UwrwAecf>p for 1Re6 l ~ -2, 

where Re6 = eUwAzj(FI/>)w is a mesh Reynolds number. After applying the hybrid scheme 
to the remaining elementary surfaces we obtain the difference equation in a general form: 

(3.4) a~cj>~+ 1 = a:cJ>'t+ 1 +aecJ>:,+t + atcp~+ 1 +a~cp~+ 1 +FPA~St + Mpl/>~, 
where 

~ = a~+ae+a~+a:-rpA~S:+Mp, 

M = !?__Aq, 
p Lit p 

and the upper index cp is related to the variable cJ>. The difference equation (3.4) is valid 
in every interior point of a difference mesh. It relates the value of variable l/> in the central 
point P of the mesh to the corresponding values in four neighbouring main points. Coeffi
cients a<~> refer to the joint share of convection and diffusion estimated according to the 
scheme (3.3). As the difference scheme for variable t is implicit, the sets of difference 
equations of type (3.4) are solved iteratively, for every time step n + 1. Solution of the set 
of difference equations is based on the method SIMPLE [20]. Algorithms are the exten
sion of methods applied in paper [1] to the problem of transient flow. A single interior 
iteration cycle consists of the solution of the set of equations of motion 

v v·~ \-, v v··· sv Av( ) aP ;· = .t...Jai .i"+ u+ s Ps-PP , 
j 

v · .,. \..,. v ··· v u( 
aD u;· = ....J aj Ut + Sv +Aw P\1·- pp) , 
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where quantities denoted ( )* are the approximate values and solution of a Poisson equation 
for the pressure correction p' 

a~p~ = 2; aj p; + S{; 
j 

for satisty continuity equation the correction for velocity field 

Up= u:+DU(pw-P;), 

Vp = v;+DV(ps,-Pp') 

is carried out for the current values of pressure correction p'. Component S{; depends 
sources of mass resulting from the fact that the approximate velocity field does not satisfy 
on the the equation of continuity. Equations of the turbulence model are solved simul
taneously with the equations of motion. 

The internal iteration process is continued until the convergence criterion is fulfilled 

(3.5) max{Res(¢)} ~ J., 

where 

Res(¢)= ~a.x{a:¢1'- 2; af¢1-st}. 
'•' N,s,E,w 

When condition (3.5) is satisfied, the calculations concerning the next time step ;Jt arc 
~ndertaken. Value of Li t was chosen experimentally. No limitation on the value of Li t 
concerned with the stability of algorithm was encountered . 

. 
~JC~~·-· 
~ 
T~ •OTI"~.9 - - -- . --- - - - · - - -

~ 
T1, • Q9t,&5 -- - - - - - . - . -

~ rrrc=:::==:='~ ~ ~\UL\\ 
~ 
__ j .. - -- - - - . -- - - - . - - -

Frcr . ~ - Jsolines of stream-function for various times in one pulsation period. 
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Periodic solutions were obtained by integration of the set of Eqs. (3.1) in the time in
terval which was much larger than the one period of pressure pulsation T. Full oscillation 
of dependent variables was obtained after 2 cycles. 

4. Discussion of simplyfying assumptions in the one-dimensional model 

On the grounds of the mathematical model presented in Sect. 3 the calculations for 
turbulent pulsating flows were carried out. Solution of the set (3.1) determines the vel
ocity and pressure fields in the orifice area. Knowing these fields one can examine the 
function LJp = f(M) as well as analyze the simplyfying assumptions made in the one
-dimensional model. 

Results of the calculations for a flow sinusoidaUy pulsating with a frequency equal 
to 210 radfs and amplitude hi.f equal to 0.175 is displayed in the form of isolines of the 
stream function for several time points in one pulsation cycle. Calculations were made 
for the fluid with density (! = 103 kg/m3 and viscosity v = I0- 6 m2 /s flowing through 
a nozzle with modulus m = 0.25. ·Influence of the flux pulsation on the of fluid motion 
in the region before the orifice is comparatively small, and it is significant only for large 
mass flux amplitude hi.t. Behind the orifice a periodical growth and decrease of the length 
of recirculation zone can be noticed. Numerical calculations demonstrated that for large 

Table 3. Comparison of the values of the terms of Eq. (2.2) 
for various amplitudes and frequencies of pulsation. 

~·/ Re :: 2.5 10 5 I (I l ( 2 ~C(:A! l/AP m = 0.4 

(II l 1 d t-'1 /
1
dz I iii ( ~~ ATz.fl) /LiP 

I 
(ill) l.[M /

1 1 utJ.z.t)dzl/A P I '*' AZiZtl 0 t z., ' 

_j T 

(X ) = +fIX I dt 
0 

h., =0 .1 I h r1 = 0.3 I 
I 

w 
(I) (ll) (III l (J) I -

I (ill) I rd/s Sh 
! 

(lll 
I 

9 0.024 1.007 0,008 9·10- 6 
1,014 : 0.032 2.94 · 10-

5 

20 Q053 1.016 0,015 2.9 ·10-
5 

1.020 l 0.060 9.6 · 10-
5 

150 0.396 1.013 0.11 2 · 10 -?. 1.o25 1 o.63 1.86 · 10-~ 

values of w and hM a ,separation" from the orifice and segmentation of the recirculation 
zone can take place. This testifies to the strong dependence of the processes taking place 
behind the orifice on the pulsation character and, consequently, to the limited range of 
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applicability of Eq. (2.4). Therefore, it is an important problem to estimate the changes 
of coefficients in Eq. (2.4) concerned with the processes taking place in the orifice. 

In the Table 3 the comparison is presented of the terms of Eq. (2.2) (with coefficient 1p 

taken into account) for two different mass flux pulsation amplitudes and pulsation fre
quencies equal 9, 20 and 150 rad/s, respectively. The average Reynolds number for the 
tested flows was equal 2.5 x I 05 • Values of the terms have been related to the instanta
neous value of differential pressure, and then absolute values of the obtained quotients 
have been averaged in time. The results indicate that the value of the inertia term II in
creases as OJ and h,w increases and for OJ = 150 rad/s it is comparable with the term 
M 2 /2erx 2 A6. Value of the third term in the considered range of changes of OJ and hM is 
smaller by several orders of magnitude than the other terms and the assumption consisting 
in neglecting it is correct. 

a 

ra /,,----- ..... , 1.6 

// 500 rd/s 1.4 

hril =0.1 
1.2 

0.8 

0.6 

0.4 
( Sh=0.024;0.053;0.396;1.32) 

0 0.5 tIT 1 

b 

0 0.5 

w =150 rd/s 

ISh =0.396 l 

tiT 

FIG. 4a. Influence of pulsation frequency on the range of changes of discharge coefficient. b. Influence of 
pulsation amplitude on the range of changes of discharge coefficient number as a function of time. 

In Figs. 4a and 4b the influence of amplitude and frequency of flux pulsation on the 
range of changes of the discharge coefficient was plotted as a function of time. The 
value of rx was found from Eq. (2.2), in which the required quantities were calculated 
on the basis of known fields of velocity and pressure. The discharge coefficient bas been 
related to the value of rxs was found for a steady flow, the parameters of which cor
respond to the average values for the pulsating flow. Results of the calculations indicate 
that together with the increase of pulsation amplitude and frequency (Strouhal num
ber), the range of changes of the discharge coefficient as a function of time increases. 
Broader analysis demonstrated that, among the quantities determining the internal 
structure of the discharge coefficlente (formula (2.3)), changes in time of the coefficient 
1p play the greatest role. For large values of OJ, pressure gradient in the axial direction 
periodically assumes negative values. In the nearest neighbourhood of the orifice a con
siderable radial pressure gradient also appears. For these reasons, for large amplitudes 
and frequencies of flux pulsations, the value of 1p can periodically assume negative values. 
In this case the one-dimensional model (2.4) may not be applied to the description of 
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the considered flow. For instance, for frequency w = 150 rad/s and amplitude hM = 0.6, 
in a certain range of pulsation cycle it is impossible to find the discharge coefficient from 
Eqs. (2.2) and (2.3). On the other hand, the results indicate that there exists a range of 
pulsation amplitudes and frequencies, in which the changes of a are negligible. 

a 

1.2 

O.B.. 

0.6 

0,4 
I Sh =0024; 0.053 ; 0.396 ; 1.32 ) 

0 0.5 

0.8 

0.6 

0.4 

tiT 0 

h,;, =0.6 

0.5 

w =150 rd/s 
ISh =0.3961 

tiT 

FIG. 5a. Influence of pulsation frequency on the range of changes of the integral as a function of time. 
b. Influence of pul.,ation amplitude on the range of changes of the integral as a function of time. 

Figures 5a and 5b display the influence of amplitude and frequency of pulsation on 
Z2 

the range of changes of the expression _!_ J Atz ) as a function of time. The integral 
'fJJ Zt Z' f 

in the above expression was calculated numerically, and the cross-sectional area of the 
stream A(z, t) was found from the known stream function. The range of changes in time 
of the considered expression grows together with the amplitude and frequency of pulsa
tions of flux. Changes of the coefficient 1p as a function of hM and w are essential here, 

t.2 1.2 
dz 

~ A(z.t) 

! 2 dz 
A(z) 

z1 1.1 

1.0 

0.95 h,;, =0.1 

W ~ 150 cad I sl 
! s h = 0.3Q 6 l I 

I 

0.9 ~J 
0.85 

0.8 '------- -+---
0 0.5 tiT 

FIG. 6. Influence of pulsation on the range of changes of the integral as a funct ion of time. 
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Z2 

whereas the influence of these parameters on the value of the integral J --(dz ) as a 
Zt A z' t 

function of time is comparatively small. Results shown in the Fig. 6 confirm this statement. 
Calculations demonstrated that for h;., ~ 0.1 and w ~ 20 rad/s the influence of h;, and w 

on the value of the expression under consideration is negligibly small. This corresponds 
to the range of parameters, in which also the flow number is practically constant. This 
means that the Eq. (2.4). can be used to calculate the instantaneous values of mass flux, 
on the grounds of measurement of the function LJp (t). On the other hand, for larger 
values of w and h;.,, Eq. (2.4) does not describe correctly the pulsating flow through the 
orifice meter, because of the strong dependence of coefficients on time and character of 
pulsations. 

5. Estimation of the range of application of nozzles to transient flows 

Analysis carried out in Sect. 4 demonstrated that the simplyfying assumptions, com
monly made when deriving the equation (2.4), can lead to significant errors for pulsations 
with large amplitude and frequency. This results from the fact that the coefficients ex and 
le depend on time and on the form of pulsation. In consequence, the orifice method of 
measurement of mass flux can not be applied for transient flows if the value of Sh is large, 
even when calculations are carried out on the basis of Eqs. (2.4) and (2.5). 

When the Eq. (2.4) correctly describes the transient flow through a flowmeter, the 
mean value of mass flux can be found from Eqs. (2.4) and (2.5) for measured values 
of the function LJp(t). However, this involves significant complication of the methodo
logy of calculations. From the practical point of view, it is advisable to . find the range 
of application of the formula recommended for calculating the steady flows 

(5.1) 

which results from Eq. (2.4) by setting dM/dt = 0. Two cases should be distinguished 
here. In the first case, the mean value of a pulsating mass flux is found from Eq. (5.1) 
on the basis of the mean value of differential pressure, i.e. 

(5.2) 

where 

T 

lip= { - f LJp(t)dt. 
0 

In this case the error of measurement (] is defined as 

(5.3) (]= 
M*-M 

M 
Value of (] can be estimated if the character of pulsations of mass flux is known. As
suming that the function" M(t) can be expressed as 
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n 

M(t) = M(l+hMf(t))=M(l+hMl~Asinwit), 
i = l 

where f(t) denotes an arbitrary periodic function, normalized in an interval (- 1, I), we 
obtain that l1 is expressed by the formula 

(5.4) 

Expanding the radicand into a series, we obtain an approximate formula for the error, 

(5.5) 

Coefficients Ai depend on the shape of mass flux pulsation, expressed as a sine series. 
For constant discharge coefficient, the value of l1 is independent of frequency of mass 
flux pulsation. 

In the second case, the mean value of mass flux is found on the basis of the mean value 
of the root of differential pressure, i.e. 

T 

(5.6) - lf M = aAo To Jl'2eiJp(t )dt. 

Then, for the assumed form of pulsation of flux, using Eqs. (2.4), (5.3) and (5.6), the 
error l1 can be expressed by the formula 

(5.7) 

. . 

Examples of calculations for various amplitudes, frequencies and forms of pulsation of 
the mass flux were presented in the paper [3]. Under the assumption that the following 
relation is satisfied 

(5.8) 

the integrand can be expanded into a series, what yields 

(5.9) 

Relations (5.5) and (5.9) are the approximate formulae which allow for estimating ana
lytically the error of measurement, when the form, amplitude and frequency of pulsa
tion of the mass flux is known. Differences in structures of these formulae result from the 
difference in defining the mean value of mass flux in the period ~ of pulsation. 

From the point of view of measuring practice, information on the flow is obtained 
from the measured values of LJp as a function of time. It is therefore useful to relate the 
value of l1 to the characteristic parameters of differential pressure. This can be obtained 
by transforming the relations (5.4), (5.5) and (5.9) and replacing the mass flux pulsation 
amplitude with the quantities characteristic for the pulsation LJp(t). By linearizing the 
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second term of Eq. (2.4), for every harmonic a relation between the differential pressure 
pulsation amplitude and mass flux pulsation amplitude can be obtained, 

(5.10) hLJp: = 2hMAi)/ l + tt4 Sh2 i 2 ~ 

where the circular frequency in the Strouhal number is the fundamental frequency. Sub
stituting (5.10) into (5.5) we obtain 

(5.11) 

and in the second case, for which Eq. (5.9) has been derived, a is expressed by 

(5.12) 

In the case of pulsation of sinusoidal or nearly sinusoidal shape, assuming that the addi
tional error of measurement should be smaller than a specified number (say 0.1), from 
(5.11) and (5.12) the simple criteria! relations can be derived 

(5.13) hLJp < 0.4 

when M is calculated from Eq. (5.2) and 

(5.14) 

when M is found from Eq. (5.6). 

-0.05 

-0.1 

-0.15 

005 0.1 

Numerical 
Eq. (5.14) 

0.2 0.3 0.4 0.5 

FIG. 7. Measurement error resulting from the assumption of quasi-steadiness of flow (---- numerical 
calculations,-------- Eq. (5.14)). 

In Fig. 7 ~~e results of numerical calculations are presented, in which the values of 
the error a, defined by Eq. (5.3), were: found by solving Eq. (2.8) for sinusoidal pulsa
tions of differential pressure 

L1p(t) = L1p(l +h.tpsinwt). 
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Results of calculations have been related to the experimental data obtained by MOHAMAD 

and MOTTRAM [11] for the similar, but not strictly sinusoidal, form of pulsation. The sa
tisfactory quantitative and qualitative conformity of calculations with experiments can 
be noticed. The range of parameters for which lal ~ 0.01, with the condition (5.8) taken 
into consideration, has been marked by the dotted Jine found from Eq. (5.14). In this 
range it is assumed that the pulsating flow can be treated as a quasi-steady one. Figure 8 

C1 

0.02 

0,01 

0 
0 0,2 0,4 0,6 0.8 hAp 1 

Fro. 8. Measurement error v~ differential pressure pul'\ation amplitude for orifices of different 
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Q02 

0.01 

0 

0 
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0 1.69·104 

'iJ 271 · 10 4 
. ( 

X 3.73·104 

• 4.53 ·104 

0.2 

area ratios. 

0.4 0 .8 h 1 
~p 

0.6 

Flo. 9. Measurement error vs differential prtssure pulsation amplitude for various Reynolds 
numbers. 

shows the measurement error a found experimentally by MOHAMMAD and MOTTRAM [11] 
for orifices with various area ratios, and Fig. 9 displays the results of investigations by 
MOTTRAM and ZAREK [12] for an orifice with area ratios equal to 0.1, and for flows with 
various Reynolds numbers. The solid line displays the relation (5.1 1) in which the ex
pression cx4Sh2 i 2 in denominator has been neglected, accounting for its small value. Very 
good quantitative conformity of the results of experiment with Eq. (5.1 1) can be noticed. 
The vertical line illustrates the condition (5.13). It can be stated that for h.1p < 0.4, the 
value of error a does not exdceed 0.01. For the assumed value of a this condition can 
also be treated as the criterion of separation between the quasi-steady and pulsating flow. 
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6. Conclusions 

On the grounds of the one- and two-dimensional mathematical models, the influence 
of the pulsation of stream on the errors of measurement of the mass flux was analysed. 
The two-dimensional model was applied in the analysis of the flow phenomenon. It was also 
used to estimate the range of changes of the coefficients in a one-dimensional model. 
It was stated that the generally used one-dimensional model is limited and can be applied 
to the description of flows for large frequencies and amplitudes of pulsation of the mass 
flux. This results from the dependence of discharge coefficient ex and effective length /4 on 
time. As it was demonstrated by numerical investigations, when the amplitude of pulsation 
of the mass flux hi.f exceeds 0.1, then hL1p > 0.2, and when the value of Strouhal number 
Sh is greater than 0.4, the coefficients in the one-dimensional model can not be considered 
constant. In consequence, this model only approximately describes the phenomenon of 
flow. 

From the one-dimensional model the analytical relations were derived which express 
the error of measurement of the mean value of mass flux as a function of amplitude, fre
quency and shape of pulsation. The critical conditions which allow for estimation of the 
range of application of the differential ptessure type flowmeters to measurements of 
pulsating flows were formulated. It was stated in the case of pulsations of sinusoidal 
shape with pulsation amplitude h;., < 0.1 (hL1P < 0.2) and Strouhal number Sh < 0.1, 
the coefficients in the model (2.8) are practically constant and the error of measurement 
of the mean value of mass flux a is less then 1%. Results of the calculations were com
pared with the available experimental data and satisfactory conformity was oberved. 

It seems advisable to extend the scope of investigations by considering the system: 
confuser-differential manometer or confuser-differential pressure converter to account 
for the fact that dynamical properties of an instrument used to measure the pressure 
difference can have significant influence on the results of measurement. 
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