
Arch. Mech., 38, 1-2, pp. 103-115, 1986 

A remark on kinematic hardening 
I. Time-dependent theory ef plastic multi-component materials(*) 

J. STICKFORTH (BRAUNSCHWEIG) 

STARTING from the concept of an intermediate configuration, it is shown that a thermo-mechanic­
al theory with internal state variables qt. q2 , ••• automatically amounts to a time-dependent 
theory of plasticity with kinematic hardening (including isotropic hardening) if a linear relation 
is introduced, which connects the microscopic rates of change q" with the plastic flow tensors 
stemming from the plastic subelements of the material. This procedure amounts to substituting 
the variables q" by internal back-stress tensors a.a> correlated with the plastic subelements. Since 
the idea of a yield condition has not yet been introduced, it is improssible to fully concretize 
the laws of workhardening and of plastic flow. 

Wychodz'lc z koncepcji konfiguracji posredniej wykazano, i:e termo-mechaniczna teoria z para­
metrami stanu wewn~trznego q1 , q2 , automatycznie przechodzi w zalei:n'l od czasu teori~ 
plastycznosci ze wzmocnieniem kinematycznym (z wl'lczeniem wzmocnienia izotropowego) 
jei:eli wprowadzi si~ liniow'l zalei:nosc, kt6ra uzalei:nia mikroskopowe pr~dkoSci zmiany Qt 
od tensor6w plastycznego plyni~ia wywodZ'lcych si~ z plastycznych subelement6w materialu. 
Ta procedura jest r6wnoznaczna z podstawieniem zamiast zmiennych q" tensor6w napr~i:en 
wlasnych a.0 > odnosZ'lcych si~ do subelement6w plastycznych. Ze wzgl~du na to, i:e nie wprowadza 
si~ poj~ia warunku pastycznoSci, niemoi:liwe jest pelne skonkretyzowanie praw wzmocnienia 
i plastycznego plyni~cia. 

lfCXO,!VI H3 KO~emum KOCBeHHOH KOHqmrypal\HH llOKa3aHO, liTO TepMOMeXaHHtieCKaH TeopWI 
C napaMeTpaMH BHYTpeHHero COCTOIDIWI q1 H q2 aBTOMaTHlieCKH nepeXO~HT B 3aBHC.SimyiO OT 
BpeMeHH Teopmo llJiaCTHl!HOCTH (BKJIIOliaH H30TpOllHOe ynpol!HeHHe), eCJIH BBO~TL JIHHeHHOe 
COOTHOIIIeHHe, KOTOpoe CTaBHT B 3ilBHCHMOCTL MHKpOCKOllHlieCKHe CKOpOC'l:H H MeHeHIIH q~c 
OT TeH30pOB llJiaCTHlieCKOrO TelieHHe, BhiTeKaiO~ H3 nJiaCTHlieCKHX cy6:meMeHTOB MaTep­
HaJia. 3Ta npol\e~pa paBH03Hal!Ha no~CTaHOBKe BMeCTo nepeMeHHhiX q" TeH3opoB co6CTBeH­
HhiX Hanp.fDKeHHH IX.(J)' OTHOCHII.{HXCH K nJiaCTHtieCKHM cy63JieMeHTaM. B CBH3H C TeM, liTO 
He MO>I<HO llOJIHOCThiO yTOl!HHTh 3aKOHbl ynpol!HeHHH H llJiaCTHlieCKOrO TelieHHH. 

1. Introduction 

HARDENING, in the most general sense, is the change of plastic response of materials if 
they undergo plastic deformations. The main objective of this manuscript is this general 
hardening, and the adjective kinematic in the title expresses the fact that, from the thermo­
mechanical point of view, the interrelation between plastic behaviour and the existence 
of an internal state necessarily amounts to internal back-stress tensors «oh .. . , «en> similar 
to the kinematic hardening tensor « of A. Yu. ISHLINSKIJ [1] and W. PRAGER [2] with 
n indicating the number of plastic subelements. Therefore, kinematic hardening must 
be considered as the principal feature of every form of plastic hardening, including so-called 
isotropic hardening. 

(*) The paper has been presented at 3th German-Polish Symposium on Mechanics of Inelastic Solids 
and Structures, Bad Honnef, September 1984. 
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104 J. STICKFORTH 

The paper presents a thermo-mechanically consistent treatment of plasticity before 
introducing the idea of a yield condition. It does not contain any thought which may 
not be found in the investigations of many other authors. The decisive step is the combina­
tion of thermo-mechanics with an idea of E. KRoNER [3] concerning the connection 
of plastic deformation increments with the increments of the internal state variables. 
as well as with the Heyn-Masing-Prandtl idea of a multitude of plastic subelements as 
used by J. F. BESSELING [4], or Z. MR6z [5, 6], for instance. It is only the arrangement 
of arguments which leads to results not generally recognized in the literature. The time­
dependent theory of plasticity thus attained is not yet complete, because neither the law 
of plastic flow nor the hardening laws determining the tensors cx0 h ... , cx<n) can be specified 
without introducing the nonthermomechanical concept of a yield condition. 

Our treatment of plasticity is founded on three pillars: 
(1) On general nonlinear thermodynamics of irreversible processes (TIP) which­

though presuming local equilibrium, too - is a theoretically open extension of Onsager's 
theory; 

(2) on Eckart's and Kondo's concept of an intermediate configuration amounting 
to the multiplicative decomposition of the deformation gradient F; 

(3) on the concept of an internal state Q which is described by an infinite set of (non­
measurable) internal state variables q1 , q2 , .•• with rates ?/k which are linear functions 
of the plastic strain rate contributions stemming from the different plastic subelements. 
(1), ... , (n). 

As regards the first point, TIP merely represents the most direct nonlinear extrapolation 
of Onsager's philosophy to look at the dissipation function. Because the structure of this. 
function strongly depends on the decomposition of the velocity gradient, we start with 
the second point. 

2. The concept of an intermediate configuration 

If a material undergoes inelastic deformations, these must be conceived as the effect 
of processes occurring on the microscale, independent of material embedding into Euclid­
ean space on the macro-scale, so that the momentary material configuration resulting 
from inelastic deformation alone becomes a non-Euclidean one, in general. This so-called 
intermediate configuration is often linked with Kondo's name, though it has been introduced 
already by C. EcKART [7]. Nevertheless, apparently the first explicit analytic formulation 
of the concept, valid for arbitrary large inelastic and elastic deformations, is due to E. KRo­
NER [8] (1) amounting to a multiplicative decomposition of the so-called deformation 
gradient F into an inelastic part F(i), and into an elastic part F<eh according to 

(2.1) F = F<e>F(i). 

Taking into account the fundamental lemma of continuum mechanics 

(2.2) . :FF-1 = G, 

(1) Other authors who independently rediscovered the formula (2.1) are J. F. BESSELING [9], and 
E. H. LEE and D. T. Lru [10]. 
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with G representing the velocity gradient 

(2.3) 

(t indicates transposition, and v means the velocity field), we deduce from the relation. 
(2.1) an additive decomposition of G, 

G = G<e>+G(i), 

(2.4) 

Gm : = FF(i: Fco F- 1
. 

Furthermore, the inelastic velocity gradient Gm must be decomposed into a scalar and 
into a deviatoric part 

(2.5) • 1 
G(l) = 3 e(i)l+~, 

with 1 indicating the unit tensor and with 

(2.6) e(i) = (lndetF(i)). 

representing the inelastic expansion stemming from the formation of micro-voids, wherea& 
the deviator ~ means the volume conserving true plastic flow tensor effected by yielding 
of the plastic subelements (1), ... , (n) so that 

(2.7) ~=~co+··· +~en>· 

The number of plastic subelements should be expected to be very large in generale). 
Nevertheless, the order of this number is unimportant regarding the following derivations,. 
and for practical purposes even n = 2, or even n = 1, often represents a useful approxima­
tion. 

Another additive decomposition of the velocity gradient G is the well-known Euler­
Cauchy-Stokes decomposition 

G = D+W, 

D:= 5G, W:= 0 G, 
(2.8) 

with s and a indicating the symmetric and the skew part, respectively. D is called the 
deformation rate tensor, whereas W is the so-called vorticity tensor, or spin tensor, with 
the latter name expressing that the rotation tensor n, resulting from integrating the differen­
tial equation 

(2.9) n=wn 
' 

describes t._ material rotation. 
It is essemtal to notice at this instant already that thermodynamical reasoning suggests 

the plastic flow tensors ~( lb ... , ~<n> to be symmetric so that the total and the elastic 
spin tensors become identical: 

(2.10) W(e) = W. 

(2) Replacing the neutral word "plastic subelement" by the term "glide system", our decomposition 
of G amounts to a similar decomposition put forward in a paper of E. KRONER and C. TEooosro [11) 
concerning viscoplastic deformation of single crystals. 
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106 J. STICKFORTH 

3. lbe first law of thermomechanics 

We now tum to the thermodynamical standpoint, beginning with the first law of 
thermodynamics which presupposes the mechanical conservation laws of linear momentum, 
of rotational momentum, and of energy. The first two of these conservation laws amount 
to Cauchy's first and second law of motion, 

(3.1) 

(3.2) 

ev = divT+eb, 
T = tT, 

(e - mass-density; b- body-force vector field per unit mass; T - Cauchy's stress tensor), 
whereas the law of energy conservation is equivalent with the existence of a scalar equation 
{)f balance of total energy without internal supply of energy, 

(3.3) ee = -divJ +er, 
withe meaning the specific total energy, J representing the flux of total energy and r indica­
ting the specific external supply of energy. 

Assuming that the body-force b is derived from a specific potential energy epot according 
to 
(3.4) 

the first law of thermodynamics states the existence of a specific internal energy u so that 

(3.5) 1 2 
e = 2 V + epot + u. 

From Eqs. (3.1)-(3.3) we then obtain the equation of balance of internal energy, 

eu = -divh+T · D+er, 
h := J+Tv. 

{3.6) 

The internal supply of internal energy, T · D, is the so-called stress power, whereas the 
flux of internal energy, h, represents the so-called heat flux. (Note that- Tv means ·the 
flux of kinetic energy). 

In the first place, the specific internal energy must be a function of the metric change 
necessary for restoring euclidicity in the actual configuration after deforming into the 
non-Euclidean intermediate configuration. This metric change is described by the elastic 
right Cauchy-Green tensor 

(3.7) 

Furthermore, the specific internal energy depends on the internal state variables q1 , q2 , ••• . 

as well as on the material parameters a 1 , .•• , aN, as, for instance, variable elastic moduli, 
directions of anisotropy, or concentrations of different phases in alloys, etc. The latter 
is the phenomenon of anelasticity. Whereas the ai are measurable variables, the internal 
state variables q 1 , q2 , • • • are nonmeasurab/e ones, in principle. 

NoTE. Attention should b~ drawn to the thermodynamical distinction between state 
variables, on the one hand, and extents of reaction, on the other hand. As not all authors 
accept this stringent distinction, a comparison of this paper with the results of other authors 
is difficult. 
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4. The fundamental equation of state 

In the next step we take into account the first part of the second law of thermodynamics. 
This postulates the existence of a · specific entropy s, if local equilibrium is warranted 
by the existence of local intensive state variables. Therewith, we arrive at a Gibbsean 
fundamental equation for the specific internal energy which has the form 

(4.1) 

so that the absolute temperature {} amounts to 

(4.2) 

Equation ( 4.1) is needed to establish the equation of balance of entropy in the next chapter. 
After this has been done, the equation of state ( 4.1) will not be used any more because 
the experimentalist operates with the temperature only. In order to obtain the final formulae 
in a practical form, we must introduce the specific free energy 

(4.3) 1p = u-Ds. 

The Gibbsean fundamental equation of state for this function follows in the usual way from 
Eqs. (4.1)-(4.3) in the form 

(4.4) 1jJ = 1p(D, Cce); ai, qk) 

so that 

(4.5) S= 
a'fjJ 

- cD, 

whereas 

(4.6) 
a'fjJ au 

ac(e) ac(e) ' 

(4.7) a'fjJ au 

aai aai ' 

(4.8) a'fjJ au 
aqk = aqk · 

As to the structure of the specific free energy function ( 4.4), we introduce the stored-energy 
hypothesis assuming that 1p is built up additively from a specific free elastic strain energy 
'fJJ<e> determining the elastic and anelastic behaviour of the material, independent of its 
internal state Q, and from a specific free stored-energy 'fJJcq>, independent of the state of 
elastic stress, so that 

(4.9) 

This hypothesis is justified by observing that in cyclic stress-strain curves the slope of the 
linear elastic curve segments remains unchanged. 
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108. J. STICKFORTH 

5. Derivation of the dissipation function 

This chapter is a straight-forward continuation of the preceding one, embracing the 
bulk of mathematical routine. This amounts to, first, solving Eq. (4.1) with respect to s 
so that 

(5.1) 

and then differentiating this function with respect to time, taking into account Eq. (3.6) 
describing the balance of internal energy, and recognizing the well-known implicit function 
theorems, as well as Eqs. (4.6)-(4.8). 

We thus obtain the equation of balance of entropy, 

(5.2) es = -div (h/D)+ ~ (b+er), 

with · b representing the following rather complex expression: 

b = bcon + bloc' 

(5.3) 
1 

bcon : = h · DV -D, 
N oo 

b1oc := (T-a)·D+(G-G<e>)·a+ .l;ai(-e ;:.)+ _27qk(-e -!~-), 
1 ' 1 qk 

where a means the elastic stress tensor, 

(5.4) a · 2 ·F O'lfJ rF .= (2 <e> a-c ce>· 
(e) 

From Eq. (5.2) it is evident that b/D is the entropy production per unit volume and unit 
time so that b is the so-called dissipation function consisting of two contributions, a dissipa­
tion function by conduction of heat, bcon, and a local dissipation function b 1oc which is caused 
by local entropy producing processes. The usual way of looking at the latter function 
lies in recognizing that the terms a · D and G · a cancel each other so that 

N oo 

(5.5) b1oc = T·D-G<e>·a+ 2 ai(-e ;:.)+ 2 <7.( -e :"'). 
1 ' 1 qk 

Though Eqs. (5.3h and (5.5) are mathematically identical, they are quite different from the 
standpoint of thermodynamics of irreversible processes. Indeed, whereas all left factors in 
Eq. {5.3h vanish under reversible conditions, this is not true in the case ofT and G<e> 
in Eq. (5.5). In this paper we are exclusively dealing with the representation (5.3h of the 
local dissipation function. 

Evidently, the left factor of the first term in Eq. (5.3h has the same structure as the 
definition (3.6a) of the heat flux h so that the stress difference 

(5.6) ?; := T-a 

represents the negative irreversible flux of linear momentum which is called the stress 
tensor of internal friction. As to the second term in Eq. (5.3h, the left factor G-G<e> 
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means the inelastic velocity gradient G(i) which must be interpreted as spatial slippage, 
and which splits up according to Eqs. (2.5) and (2.6). Decomposing the elastic stress 
tensor a into its scalar and deviatoric parts, 

(5 .7) (J = -pl+'t", 

with p meaning the thermodynamic pressure and 't" indicating the elastic shear-stress tensor, 
we thus arrive at the following bilinear representation of the local dissipation function: 

(5.8) <51oc = ~ · D+e(i)( -p)+~(l) · "t"+ ··· +~(n) · 't" 
N oo 

+ )1 ai ( _ (! O'lfJce> ) + \1 qk ( _ (! O'lfJcq>) ' 
~ oai .L.J oqk 

1 1 

if, furthermore, the stored-energy hypothesis Eq. ( 4.9) is taken into account. 
From this stage on we shall omit internal friction, inelastic expansion, and anelasticity, 

as expressed by the fluxes ~' em, and a1, respectively. In the following discussion we thus 
cofine ourselves to the reduced local dissipation function describing only pure plastic 
flow: 

00 

(5.9) ~ d.. A d.. ~~ O ( 01plq) ) 
Up = '*"(1) • 't"+ ··· +'*"(n) • 't"+ .2 qk - (! -

0
-- ' 

. 1 ~ 

We shall call this the dissipation function of plastic flow. 

6. Thermodynamics of irreversible processes and its application to plastic Oow 

Now we turn to the second part of the second law of thermodynamics which states that 
<510c is positive, 

(6.1) <51oc > 0, 

if any irreversible process occurs, i.e. if any of the "fluxes" (left-factors) does not vanish .. 
Just like in Onsager's linear theory we have a dissipation function of the bilinear type, 

(6.2) 

with irreversible fluxes Jk which are caused by thermodynamic forces Xk. Presuming 
independent fluxes J 1 , • .. , lm, the main idea of thermodynamics of irreversible processes 
is the assumption that the fluxes are suitable functions of the forces, 

(6.3) 

with the adjective "suitable" meaning that <51oc is positive for all imaginable values of the 
forces X1 , ... , Xm. 

Especially, in linear thermodynamics this assumption amounts to 

(6.4) 
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with the symmetric part of the Lk,-matrix being positive, 

(6.4') s(Lu) = positive matrix. 

However, it is a well-known fact that this general linear thermodynamics of irreversible 
processes still is an open theory so that further restrictions regarding the Lkl are needed, 
as is the case with the so-called Onsager-Casimir reciprocity relations which are derived 
from the principle of microscopic reversibility. Likewise, it is a well-known fact that there 
is no general nonlinear extension of Onsager's theory existing (cf. B. H. LAVENDA [12], 
for instance). 

Accordingly, regarding the dissipation function of plastic flow Eq. (5.9), two items are 
of primary importance: 

(1) The fluxes f'lto>, ... , tlt<n> and q1 , q2 , ••• are not independent. 
(2) Plasticity is a nonlinear phenomenon . . 
As to the first item we assume a linear relation connecting the internal state rates qk 

with the plastic flow tensors f'ltc 0 , ... , tlt<n>, as well as with the inelastic expansion e<0 , 

(6.5) 

with the last term representing recovery, thus generalizing an idea of E. KRONER (cf. [3], 
p. 370). Inserting Eq. (6.5) into Eq. (5.9), and neglecting both, the contribution from e<i> 
as well as recovery, we obtain the following expression for the dissipation function of 
plastic flow: 

(6.6) ~P = f'lt(l) · ('t'-Cl<o)+ ... +t'ft<n> · ('t'-Cl(n)), 

where the tensors 
co 

. '\'1 iJ1p(q) 
Clw . = .L.J g<J>k!! - (}-- , .i = I, ... , n, 

I qk 
(6.7) 

indicate the internal back-stresses which are produced if the plastic subelements are yielded. 
According to their physical meaning, we expect the coefficients g<J>i( to depend primarily 
on the internal state, apart from temperature, 

(6.8) g(j)k = g(j)k({), q), 

so that the same is true with the tensors e~0,, 

(6.9) Cl(j) = Cl(j)({}' q). 

NoTE. From the standpoint of the thermodynamical theory of chemical reactions 
(cf. J. KESTIN [13], for instance), the plastic subelements (1), ... , (n) must be looked at 
as n independent. chemical reactions with the reactant mole numbers q1 , q2 , •••• The plastic 

flow tensors f'ltu>' ... , tlt<n> are representing the respective rates of reaction with the g<J>k 
meaning the stoichiometric coefficients, whereas the e~0> must be interpreted as the affinities. 

Only deviatoric tensors Cl(J> must be considered, and because the Cl(j) appear on the same 
footing as the elastic shear stress 't', we assume the Cl<J> to be symmetric, too, so that 

(6.10) 
Cl(j\ = t Cl(j) ' 

tre~(J) = 0, 

j = 1, ... , n, 

j=1, ... ,n. 
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Replacing Eq. (5.9) by Eq. (6.6) we now have arrived at a dissipation function of plastic 
flow with independent fluxes 4-0 >, ... , 4-cn> which are caused by the forces 

(6.11) 

Now, turning to the second item mentioned above, the question is left open how to con­
struct suitable nonlinear tensor-valued material functions 

(6.12) 

in accordance with Onsager's general philosophy of looking at thermodynamics of irrever­
sible processes. These functions will be called the laws of plastic flow. A change of plastic 
response, that means hardening, solely originates in a change of the tensors ex(}), and, 
recognizing the "kinematic" structure of the forces -r<J>, we therefore may also call these 
tensors kinematic hardening tensors. Thus we are stating that workhardening is kinematic 
hardening in any case, notwithstanding the fact that the explicit appearance of the tensors 
ex(}) in Eq. (6.12) amounts to a so-called isotropic hardening. 

In the spirit of Curie's first heuristic principlee) we assume the plastic flow tensors 
4-u> as symmetric ones, 

(6.13) 

because only the symmetric parts appear in the dissipation function of plastic flow. 
Furthermore, we may suppose independence of plastic flow of different plastic subelements 

so that 

(6.14) 

with each 4-o> fulfilling the thermodynamic condition 

(6.15) 6(}) := .z,(}).,.(}) ~ 0, j = 1, ... ,n. 

Certainly, this hypothesis means an extreme simplification which might be queried. 

7. The law of workhardening 

In the preceding chapter the elimination of the microscopic internal state rates qk 
has been paid by introducing new varibles, namely the internal back-stress tensors cx<J>. 
As to their measurability, these new variables take an intermediate place between the 
internal state variables qk and the elastic shear stress -r, because the cx<i> are directly measu­
rable only if there are existing yield conditions for the related plastic flow tensors 4-u,. 
Apparently, this hierarchy represents the essential conceptual problem of plasticity. If 
we now turn to the formulation of evolution equations for the tensors cxu>, we thus shift 
the conceptual problem to questioning' how to define physically reasonable initial states 
for integrating these equations. 

(3) II n'est pas d'effet sans causes. 
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In order to obtain the rate equations for the back-stress tensors cxu>, we should differen­
tiate Eq. (6.9). However, we must take account of the fact that the cxu> are material tensors, 
and that the same is true with the internal state variables q", or, at least a subset of them. 
As it is well known, rates of material tensors can only be formulated in the corotating 
system of the moving particle. Therefore, neglecting change of temperature, as well as, 
for simplicity, inelastic expansion and recovery (the latter will be introduced later), we 
derive from Eq. (6.5) an expression for the Jaumann derivative only, namely, 

(7.1) 
V n 

am = }; x<Jo · ~<o 
i= 1 

with material fourth-order tensors Xuo, which are called the tensors of hardening moduli, 
whereas Eq. (7.1) represents the law of workhardening. Clearly, the tensors Xon indicate 
the central point of interweaving macroscopic theory with microscopic kinetic models. 
As to the Jaumann derivative of an arbitrary tensor A, this is defined by 

(7.2) 

with W representing the vorticity tensor Eq. (2.8h. 
Next, we consider the rates of change of the effective stress-intensity squares II 't'(J)II 2 

on account of hardening alone, 

(7.3) 

( ll 't'(J) II 2)"[hard = -2't'(J)' cX(j), 
v 

- 2't'(j) · aw. 

According to experimental experience, we demand that these rates of change must be 
negative 

(7.4) 

Thus, affirming the hypothesis of independent plastic subelements, this demand suggests 
to assume that 

(7.5) 

with ~11 indicating Kronecker's symbol so that 

(7.6) (ll't'(J)II 2)" [hard = -2't'(j) · (x(j) · ~())), 

because, on account of the thermodynamic condition Eq. (6.15), Eq. (7.4) is warranted 
then by simply demanding that 

(7.7) 

with xu> representing a positive scalar 

"(}) > 0. 

This is effected most directly by assuming the projection 

, (s 1 ) , 't'u ,®'t'<n 
x(j) = x0 > - -

3 
1®1 +xU> 

't'(j). 't'()) 
(7.8) 
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with S representing the fourth order unit tensor on the space of symmetric second­
-order tensors so that 

(7.9) 

If u;)> vanishes, we obtain a Prager hardening law [2], whereas vanishing u~i> amounts 
to a Ziegler hardening law [14]. Further decisions cannot be made at this stage. 

Finally, we may ask how to modify the workhardening law thus arrived at, if additio­
nally, recovery must be taken into account. Most naturally, this can be done by assuming 

v Qu> 

(7.10) a.U> = Xu;·fiJ<1>-Ywe-RiJa.<1>, j= 1, ... ,n 

with positive coefficients of recovery 

(7.10') y(J) > 0, 

and with Qu> representing the activation energy of recovery in the j-th plastic subelement. 

8. Retrospect and outlook 

In the preceding chapters a time-dependent theory has been developed for plastic 
materials consisting of a multitude of plastic subelements. This theory is determined by 
a welJ-defined complete set of evolution equations which we are going to compile now. 

In the first instance we possess the two classical evolution equations of continuum 
mechanics, the trivial equation 

(8.1) r = v, 

and Cauchy's first law of motion, Eq. (3.1), 

(8.2) ev = divT + eb, 

with the symmetric Cauchy stress-tensor T being given as the sum of two symmetric material 
tensor functions, 

(8.3) 

where 

(8.4) a = a(F<e>; 0.) 

represents the elastic stress tensor according to Eq. (5.4), whereas 

(8.5) ~ = ~(D; {}), 

with D meaning the deformation rate tensor 

(8.6) D = 5 (V®v), 

indicates the stress tensor of internal friction which, however, has been omitted in this 
paper. 

In the second place the decomposition of the deformation gradient F according tQ 
Eq. (2. 1) affords a further tensorial evolution equation, either for F<eJ' or for Fm. Because 
of the law of elasticity Eq. (8.4), we opt for F<e>. From Eqs. (2.4) and (2.4) 1 we obtain 

(8.7) F(e) = e<V®v)-Gw)F(e)' 

8 Arch. Mech. Stos. nr 1-2/86 
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\ 

or, in the case of neglecting inelastic expansion, 

{8.8) F(e) = ('(V®v)-clt)F(e)' 

with 

{8.9) cit = cit( 't', «o >, ... , a<nb {}) 

representing a deviatoric symmetric tensor-valued material function of the elastic shear 
stress -r, and, apart from temperature, of the internal back-stressesm0 >, ... , «<n> describing 
the plastic subelements (1), ... , (n). 

NoTE. Usually other authors opt for F<O instead of F<e>' thus drawing from Eq. 
(2.4h an evolution equation for Fm which reads 

(8.10) 

However, a procedure of integration based upon this equation is much more troublesome, 
first, because Eq. (2.2) must be used as a further differential equation then, and secondly, 
because the law of elasticity Eq. (8.4) becomes very complicated if we substitute 

(8.11) F<e> = FF(i>1
• 

A direct confirmation of this statement may be obtained by comparing the author's two 
papers [15] and [16]. 

In the third place, we have derived an evolution equation for the specific entropy, 
namely the equation of balance of entropy Eq. (5.2). However, instead of an equation 
-for the specific entropy s, we need an evolution equation for the temperature {}, which 
is obtained from Eq. (5.2) by differentiating Eq. (4.5) with respect to time. We are thus 
lead to the rather complex differential equation of heat conduction 

(8.12) (!CuD= -divh+ bioc+er+D ~: · (D-Gm) 

where 

(8.13) 

means the specific heat capacity at constant F <e>, a1, and qk. The anelastic fluxes a1 must 
be looked at as given constitutive functions, whereas the internal state rates qk must be 
substituted according to Eq. (6.5). Further discussing this heat equation, however, sur­
passes the present concern. , 

Finally, beside the evolution equations for position r, for velocity v, for the elastic 
deformation gradient F<eb for temperature {}, and eventually for the anelastic material 
parameters a1, we have arrived at evolution equations for the internal back-stress tensors 
«< 1>, ... , «<n>' as expressed by Eqs. (7.8) and (7.10) which represent the law ofworkhardening 
including recovery. 

We have thus attained a complete set of evolution equations, only leaving over the 
question how to specialize the law of plastic flow Eq. (6.14) in accordance with physical 
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reality, and how to specity the tensor of hardening moduli, as represented by Eq. 
(7.8). To answer these questions we must introduce the concept of a yield condition, as 
will be shown in a forthcoming paper. 
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