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On the initial layer and the existence theorem for the nonlinear
Boltzmann equation; differentiability of the solution
of the corresponding system of linear equations

M. LACHOWICZ (WARSZAWA)

A LINEAR system of integro-differential equations, which appears in the asymptotic analysis
of the nonlinear Boltzmann equation in [9], is considered and the local existence and differentia-
bility of its solution is obtained. Moreover, the estimates, which are necessary in [9], are shown.

W pracy bada si¢ pewien liniowy uktad roOwnan catkowo-rozniczkowych, pojawiajacy si¢ w asymp-
totycznej analizie nieliniowego rownania Boltzmanna, przeprowadzonej w [9]. Dowodzi sie
lokalnego istnienia i rozniczkowalno$ci jego rozwiazan oraz prawdziwosci oszacowan niezbednych
do analizy w [9].

B paGote ncciemyeTcs HEKOTOpas HEJIMHEHHAs CHCTEMa HMHTErpo-aupdepeHUnanbHbIX ypaB-
HEHMH, NOSBJISIOLIAACST B ACHMITOTHYECKOM aHAJIM3e HeJIMHEHMHOro ypaBHeHHs Boiblumana,
nposefeHHoM B [9]. IloKasbiBaeTCs JIOKAJIBHOIO CYLUECTBOBAaHHA M OuddepeHLHpYyeMOoCTH
€ro pelleHHit, a TaK)Ke HCTHHHOCTH OLIEHOK HeoOXOQMMBbIX IS aHaIK3a B [9].

1. Preliminaries

IN [9] WE HAVE considered the truncated Hilbert expansion including the initial layer
terms and replaced the singular perturbed Boltzmann equation by a weakly nonlinear
system of equations. However, specific smoothness properties of the solution of a corres-
ponding system of linear equations (named CSLE) were required. In the present paper
we prove these properties to be true and show the estimates which are necessary in [9].
Similarly as in [9], real-valued functions defined in I x £ x R*® are considered, where [
is an interval and £2 is a d-dimensional torus (in this paper, without losing the generality,
we assume d = 3). Then ¢ € I is the time, x € 2 is the position of a particle in a rectangular
domain [0, p;]x [0, p,] x [0, ps] and & € R? is the velocity. £2 may be treated as a torus
because we assume that all functions encountered in our analysis are periodic with the
fundamental domain [0, p,]x [0, p,] x [0, ps] (for simplicity we assume p, = p, = p; = 1).
Let us denote by J the symmetric bilinear collision operator

Jq,r)=J.(qg,r)—J_(q,n),
where

1@ N@ =5 [ [ ke & m@EE) D) dnde,

R3 §2

L@n=g@utr) md n®= [ [KE & e,

R3 52
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The notation is conventional ([2, 3, 5]), &£ and &, denote velocities of the colliding particles
before the collision, and

E=E4nn(E-£)), & = E—m(n(E-E)))

after the collision; here 11 € S2.
Assume that the collision kernel & corresponds to the Grad’s cutoff hard potentials.
CARLEMAN [2] proved that the unique solution of

(1-1) J(fo,fo) =0

is the function
§—u?

2T )
where o, T and u are called the fluid-dynamical parameters of f; and may depend on ¢
and x. If p, T and u are constant in ¢ and x, f, is called a global Maxwellian, while in other
cases it is called a local Maxwellian. To distinguish them we denote a global Maxwellian
by M = M(%).

The fluid-dynamical parameters of f, are assumed to have the following property:

(Al.1) The functions g, v and T are smooth enough in [0, 7] x £2 and satisfy the
conditions

3
fo(8) = oQnT) 2 exp ( —

0<ec, < inf o(,x)),
1e[0, to]
xef}

0 <epr< inf T(,x),
te[0, to]
xeq

where ¢,, ¢r are constants.
A simple consequence of (Al.l) is the existence of positive constants ¢~ and ¢* such
that

(1.2) cM_<wfo<c*M, Vtel0,1], xef, aecR!
where, throughout the paper, w, denotes the following function
(1.3) wa(§) = (1+]8%)%2.

Let us introduce the following function spaces. As usual, the space of (real-valued) functions

the second power of which is integrable in R? is denoted by L,(R3). The norm in L,(R3)

is denoted by ||-; L,(R®)||. B denotes the space of continuous real-valued function

on R*® with the weighted norm ||g; B%|| = s%plwﬁm. H%(2) is a usual Sobolev space
éeR?

equipped with the norm
- . 8!” 2 1/2
lg: H5(@)]| =( > (-——"-) dx) :
0<|y <k Q

where

olvi alvl

X’ - o oxgon Iyl = Y1+¥21¥s-
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Ck(£) is a space consisting of functions which, together with all their derivatives of orders
ly| € k, are continuous and equipped with the norm

s

;CHD)| = su
llg; C*(I ogmpﬂ: |
xef2 .

Finally, introduce the spaces X%*,, X%*_ and X} % consisting of real-valued functions on
£2x R? and equipped with the norms

llg; X551 = 1I(lg; HE5@ID; BEl,.
llgs XEX 1 = 11(llg; C*EDID; BL I,
llg; X3 %11 = 11(llg; HEE|)); Lo(R3)]|.

k

The most frequently used norm || -; X%:k,|| is denoted simply by || ||?¥.

2. Basic estimates

From our definitions it follows directly
(2.1) ligs X3, 511 < cllgl|®*.
The following inequalities ([7], theorems 200-202) are used:

(f ([ qtx, y)dy)zdx)m < [([ a2cx. spax) a,
2.2) ( [ (Z qj(x))zdx)lfl < S a2 (xax)”,
(3 aeasf’) " < f 3 i)

I
which hold for non-negative functions. In view of Eq. (1.2), the following estimate holds
(2.3) ¢z 3wy < 75, < cf 3wy,

where A € [0, 1] depends on the particle interaction potential, and ¢5 5 and c3 5 are positive
constants, independent of x and ¢.
Let us denote by », a constant such that

24 0<w, <c5.3.
We have
awl |
o fo < ewyp 8,

giri+1
(2-5) 'W’fgl < CW2(}y|+1)fg:

Pl

W’Vf”! S CcW;

where 4 is the same as in Eq. (2.3).
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GRrAD [5] proved that

2.7 gtig‘w,;(f) f f k(E, &, WMYZ(E,) - (M'2(E)q(&))

R3 §2

+MIPE)GE)+ M q(E))dnde, | < csuplg. a,

where

, 0 fOI‘ /3 _— 0)

B :{ﬁ—l for f=1,2,..,
and
@8)  sup| [ [ kG, £, MURE) (MU2(E)g(EL)

£eR3 'p3 g2

+Ml’z(f;)q(rf’)+M1’2(§)q(§*))dnd§*‘ < cllg; L (RP)]].
Moreover, we have

2.9 |ws M-12J(M2g, MI25)| < cwa(sgap|wﬁq1) (s:galwﬁrl)i

for =0,1,2, ...

3. System of CSLE equations

The system of linear CSLE equations has the form

d 1 1 1 )

;IO +§gfﬂdx40+‘;”f.,‘]0 = ?fc_)lﬂf(fclllz%) -+ = Z x:fo P (Miqy),
i=1,2

094

1 8
ot +§gradxq1+ --E—-'anql = (-..M;l/?. (_a__t_+§gradx) 61/2) o

1 2 e
+ Y (=g M2 (M3 %q,) + - M2 (fy, MiPq)+ A(f6"*q0)
3.1)
+ D AMIPg) et

i=1,2

a9,
at

1 1
+ Egradxqz + ?‘vfoq2 = '_;3" (1 —XZ)M;I/Z‘%[(MiIZqz)

2 i ~
g MR M) & M5, [0

for te[t;, 1], 0< ¢, <1, €t,, with the initial data
(3.2) Qt|r=r1 =0, (=0,1,2).

£ €10, &] is a small parameter representing the mean free path of the mean collision time.
Jo = folt, x, &) is a local Maxwellian such that (Al.1) holds. & is the operator defined
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by #'q = 2J,(fo,9)—fo ve- My = M, () is a global Maxwellian given by (1.2).
fo = folt/e, x, &) is a function such that:

(A3.) t- ]jl;‘fz ﬁ,(r) is a continuously differentiable function from [0, + oo [ into
XG5 (ie. M2 fy e CY([0, +oo[; X% X)) where § and k are suitably large, and

(3:3) “Mll“f:) (-2—) s Xk < Oexp ( = «-2-6),

where the constant 6 can be chosen small enough and the decay exponent 6 is positive.
Next, a is an integer. y; = x;(£) is the characteristic function of the ball of radius »;
with the center at the origin in R3. The operator A is given by Aq = M1'2J(#, q) where
(A32)  M:7'2F e C([0, to]; X5 %)
with § and k the same as in (A3.1).
In the CSLE linear system ([9]), the equivalent of the sum of nonlinear and nonhomo-
geneous terms is the term &/ which is treated as a given function of z. The conditions as-
sumed concerning &/ will be specified later.

Putting aside the collisions, we introduce the idea of a (extrinsic or free-streaming)
trajectory (see [10]). For fixed ¢ and & let ¢, ¢ be the translation on £ defined by

(34) P, )X = x+t§ (mod ])

If a particle has position x € £ and velocity £ at time 0, then its position at time ¢, taking
no account of collisions, is given by ¢, ¢ x. Its (extrinsic) trajectory in R x 2 x R3 is the
curve defined parametrically as follows

(3.5) 1= (8, P, 6%, 6).
Now, let @, be a one-parameter family of operators
(3.6) (@:9)(x, &) = 9(pa. x, H).

Let us define a function g* as the function ¢ considered along the (extrinsic) trajectories
(cf. [8]). More precisely,

(3.7) g*(1) = Diq(1).
An important property of the norms introduced in Sect. 1 is
(3.8) llg* Il = llg()ll.

Let us now introduce the following two-parameter families of operators

(3.9) U.(t, 0)g = (D, q)exp (— % f a>a,_,v,°(a')da')

and

14

(3.10) V,(t, 0)q = q- exp (_ %J v}z(o’)da’).

9%
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In this paper the following two (equivalent) integral versions of CSLE with initial data
(3.2) are analysed

t
G1) ¢ = U, 1)0+ [ U(t, DQulgo, 41, 42, &3 €l@)do, i=0,1,2;

t
and

G12) gt (1) = V(t,1,)(P: Q)

t

+ [Vt 0 Qildo, 41, 42, 5 ED*(0)do, i=0,1,2;
[$%

where Q,, 8, and Q, are the right-hand sides of Egs. (3.1),, (3.1), and (3.1)5, respectively.
Let us define the following space of functions which depend on t € [t,,17,], 0 < ¢, <
<t € 1yt
ZPk = {q:q € Ly ([t,, 1,); X5 5N CO([1y, t5]; X5, 5+
NC'([ty, ,); X535 and  ¢* e CO[1y, ,]; X5 5N C ([t 1] X039}
and the following norm
(3.13) liglli** = sup |ig(2)II"*~

tefty, 1]

. : . 1
Let us notice at the end of this section that the operator & - grad, + - ¥y, Cannot possess

a dense domain in the spaces X% ¥, . Therefore, although U, is given by a simple expression,
it is not continuous with respect to ¢ in such spaces. Neither is ¥, in the general hard po-
tential cases. Nevertheless, applying the methods known from [11], we are able to prove
that a solution to the system (3.11) belongs to Z%*,

4. Estimates of terms of the integral form of CSLE

Immediately from (1.2), (2.3), (2.4) and (2.5) we obtgjn
LemMMA 1. Let 0 € o < ¢. Then

. t
o' . t—o
{6 = exp( f D, (0 )da) < cexp(-— v*w,l)
for all 9, where constant ¢ depends on |y]. O

LEMMA 2,

[ v, ) R0ld0, 41, 425 el (@da] | < elligoli*+ 3 cexplend) llaili®,
t; i=1,2

where £’ is the same as in (2.7);

@ || f — UL o) (f5*2 (f3P40)) (o) do|| < e sup lao; X251l

[t1,12]
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i) || [ Ut ) Rolgor 1. 42 el@)do||”

eI gy Y cexp (en) I g0,
r=l,2

Proof. First, we investigate the term

t

@.1) Liy= | — U(t o) (fo'2H (fo!"q0)) (0)do.

51

Let us notice that

F5Y20t, @t 0y, &) [ [ (&, &4y Wfolts Pocr, %, &)

R3 §2
S, Pomr vy, ED)Qo(ts Por, 1y X, E)dndE, = Rf S[k(i,E*m)ff‘,f’(u%-r.e)x’ £

'f(l)fz(ta Pla—t, 8% E*)QO(Is Pa-t, £yX> 5;)dnd§*
|71

Using Egs. (2.5) and (1.2), the g— - derivatives of the last term can be estimated by

c Z f fk(& 5*,n)M1/2(5')M1f1(§*) = qo(t Piot, 5%, E)dndé,.

0|y’ |y RJ 52

The other terms in /5 /> #°(f!'?q,) are estimated in the same way. Thus, by Eq. (2.2) and
Lemma 1 we have '

t

) =
@2 alPr<e D f%exp(_,'s_o,,*)
0<|y|<hk 1y
12 12 (g | ¢ - ’ ”
. EERF: (Wﬁ(é) iz[é[ k(E; E*,n) M+ (5*) (M+ (E) “ ax", qo(o‘, * . 5*); LZ(Q)“

+ M%&)

a7l | | a7l
’W qo(o, -,5’);Lz(!2)}+Mi“(§)“ 2x~;qo(a, -,5*);Lz(Q)H)dndE*)d0-

From Eq. (2.7) we obtain
4.3) e 1117 * < elllgolll®*.

Similarly, by means of Eq. (2.8), we obtain (ii). Next, let us investigate the term

(44) Low = [ UG o) (1524 (M320) o) do.
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We notice that

71

d i
4.5) wﬁx,W(fa”’Mi’Z)y < Wayap XS5 P ML < cexp(ex])

and the term M;!/2¢"(M}/*g;) can be estimated in the same way as previously. Therefore
we obtain (i).

* Next, we can estimate exp(— ’:gv*) by 1 in (4.2) and (4.4) to obtain (iii). [

LEMMA 3.
() xfe 2 (M2q); X231 < cexp(exd)l|q]|**;

< cllgol***°,

e (I fi40) =5 (f° 1 aqo) a

o |

where 1 is the same as in Eq. (2.3).
Proof. (i) follows from Egs. (2.1), (4.5) and (2.7). To prove (ii) let us notice that

990
48— (e firar (5

- [ [k 5*,,1){4 (F52(E) - 178 ) olE)

R3 S,

+ ‘;T, (S0 (E)f6*(£4))q0(£) — _5% (FI©)f22(8)) g0 &) dnde,

and
d 3q0 d
4.7 —_— -
( ) ax, (Go7r,) é?x, = {qo - 8x
Using Eq. (2.1), applying the methods of Lemma 2 to (4.6) and using Eqs. (2.6) to (4.7)
we obtain (ii). O
LemMma 4,

t 5
| [ vt )Rulg0. 91, 92, 5 l@)do|” < celligoliio:*

wl

4
+( (1+ )“’" +CG+C£)H1‘]1|W k-*-tﬂ‘e”[‘qzmi‘i k+(‘£"+1

Proof. By Egs. (2.5) and (1.2) we have

e
a? Car
Therefore, using (2.2) and Lemma 1 we obtain

1

+&- grad, "2)‘ <e.

(4.8) f“’" M=z

118, k
fU(t a)( M ‘“(af -+& - grad, ”")%)(G)da

(4.9) (S ce|l1goll|®%.
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Next, we have

1 f, = ( = ) :
.10 1—x1)- — - do | < ,
(4.10) S‘;P(( x1) Wien ) r exp - VyW, | do (I +#)

Thus, by Eq. (2.2), Lemma 1, Egs. (2.5), (1.2) and (2.7) we obtain

Il (1 -
@) || [ U (=) M3 01 @)

¢
< m;l’)i;{ HEAIGE
Finally, by Eqgs. (3.3) and (2.9) we have

Pk

|

(4.12) .! f% U.(t, G)(M;IIZJ(f;, Myqu))(a)da

t
< cexp(— - 5)9 Ilg]1IP%.

Similar arguments and (A3.2) yield the estimates of the other terms. O
In the same way we obtain
LEMMA 5.

Sl el
(1) JE J-Us(” U)Dz[‘h, g2 8](0)‘10“

Bk ¢
< (""(T_‘i_ﬁif +09)ilEtIzII\p"‘+691||qa|l|°"‘;

‘}'. k

@ | [ U0 0)R00, 425 o]

t

1 c t—a
& B Hik
= e l4x, fexp( ” 1’=|=)|](12('17)|| do

h

t

] t—

reo fexp(— ~ v*—%«5)(||q2(a)||ﬂ+*'*+nqo(a)nﬂ"‘)da.
t

O

5. Solution to the integral form of CSLE

We construct a solution to the integral form of CSLE in the time interval [¢,, 2,],
where £, is given and ¢, will be specified below, by the method of successive approximations.
Let g2 =0 (i=0,1,2) and (¢4, 9], q3) for j=1,2,3,... be given by

t
(5.1) gi(t) = U, 1)Qu+ [ Ut, D Qulgh ™, gl g4, o ; €l(0)do.

Now, by Lemma 2 (iii), Lemma 4 and Lemma 5 (i), if we choose

(C5.1) =x,, %, —large enough;

(C5.2) 04, &, — positive and small enough (6, — dependent on x,, »,; and &, —
dependent on x,, %,,0,);
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(C5.3) fixed & and 0 such that 0 < &£ < &,0 < 0 < 6,;
(C54) t, such thattf%t~1 is positive and small enough (dependent on %, and ix,)

then we find positive constants b, < 1, b; and b, such that the inequalities

2 2
(52) D lllgi*t —gfliife* < b Y lllaf— i~ 1117+
i=0 i=0
and
2 i il 1 [|Burke
53) D et < b, Dot +5, |- |
i=0 i=0

hold for all integers j and integers f§; (i = 1, 2, 3) such that 8, > f,. Thus the sequence

{(9d, 41, ) }convergesin  [| L, ([t;, 1,); X2:%). Let its limit be denoted by (4o, q1 , 42).
i=0,1,2

We will investigate the differentiability of (o, ¢, , ¢,) in the next Sections. Let us note that
¢ will not be important in this consideration. Therefore, we take & = 1, for simplicity.

6. Some lemmas

In agreement with the previous remark, let us put ¢ = 1. Similarly as in Lemma |
we have
LeMMA 6. Let ¢ < t. Then

a7 :
¥ra (1 —exp ( - fcbg,_ %7, (0") da’))

for all y, where the constant ¢ depends on [y|. O
Lemma 7. Let Q € X8 . Then

(D) }'in(l) IU@+h, 1,)Q— U, 1) QIIF -1+~ = 0,

>

L c(t—a)w,

(ii) }'ig; H% U@+h,1)Q-U@, 1,)0)+7,, (1) - U(t, )0+

B-2,k-2

+&-grad Uz, t,)0 =0, for telt,t].

Proof. For simplicity, let # > 0. First, we show the following estimates

(6.1) ||¢t,—(t+h)Q—q)t,—:Q”'ﬂ_l’k_l < ch
and
1
(6.2) HE‘ (@ri—(uh)Q—@tlvrQ)"' £ gfa-dx(d}t‘—eQﬂ| f=2:k=2 < ch.

Let £ e R® be fixed and Q(-, &) € C¥(£2). Then we have
(6.3) q}l,—(t+h)Q"'¢t1—tQ = h&- grad, D, _140m Qs
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where o, €[0, 1], and

h
64 & @@= PO+ E 220D, ) = 3 (¢ g VP, o).

where o, €]0, 1[.
Approximating H%(£2)-functions by C*(2)-functions (cf. [4] — Part 1, Lemma 15.1)
and using the fact that £ is a torus (cf. [1] — Theorem 3.14) we obtain

(6.5 1De,— ;@ —Pe, - Q5 H ()] < chwi[|Q; HE(Q)]]

and

(6.6) ‘

% (@rl—(wh)Q'—gprl—rQ)'I‘E ' grad,(@,l_,Q); H;‘—Z(Q){ < chw,||Q; Hé(Q)H,

for £ € R®. Hence, Egs. (6.1) and (6.2) follow. Next, owing to the Assumption (Al.1),

the function v, (-, -, £), for fixed & is smooth (in the classical sense). Therefore, using

Lemma 1 we obtain (i) and (ii) in the same way as previously. O
LemMA 8. Let Q € X%* . Then

(l) ilns HV(t+h, Il)((DtJQ)—V(t, ll)(qngQ)Hﬁ_l'k _0

and
1B=2.k

] =0

T (P )@, - V1, 1) (B, )+ V(t, 1) @,0)

Gi) lim '
h—0 |

for telty,t,)]
Proof. Let h > 0, for simplicity. We have

t+h

GT) V+h 1)@,O- V(1 1)(@,Q) = Ve, 1)@, 0 exo~ [ i 0)ar) -1).

t

Hence (i) and (ii) follow immediately by the same arguments as previously. a
1
LEmMA 9. Let TD € Ly ([11, t2]; X55)nCO([t,, 1,); X545 ).
p
Then
b I B—1,k-1
@ lim| [ UE+h, 0)Q)do— [ UG, 0)Qe)da| =0
h—0 A #i
and .
t+h t
(i) lim %(f U(t+h, o) Q(o)do — f U(t, a)D.(cr)do)
h—>0
[ 51 Iy

B-2,k-2

=0 for t€[t,t]

+v, (1) f U(t, o) Q(o)da+ £ - grad, f U(t, o) Q(o)do — (1)
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Proof Let h > 0. We have

t+h

68 [ Ut+h, 0)Q@do— [ U, 0)Qo)do

1§

h t
=fU(t+h,t+a)Q(t+a)do+ f(U(t+h,a)Q(o)—U(t,o‘)D(a))do'.
0 ty

Now let us examine the first term of the right-hand side of Eq. (6.8). We have

4

]ﬂ—-l,k-l Brk—1

69) |: [ v+, t+0) Q1+ 0)do|

and

B—2,k=2

h
(6.10) ” %f Ut+h, t+0) Q1+ 0)do— (1)
0

1 h
<7f

0

!
|

"Ivl; (R +0)—-2(1))

|l

Due to — D € C°([ty, t]; XE-%*-1), the first term of the right-hand side of Eq. (6.10)

B-1,k-2 p—1,k=2

do

h
do+% of H-H% (@, Qt+0)— Dt +0))

.D“‘H ’ f sup

xe!)

o'7i
W o (l—exp( f@a ,,vfo(z+6)do'))

°<Wlsk 2

tends to 0 with h. By the same arguments as in Lemma 7 we conclude that the second
term of the right-hand side of (6.10) can be estimated by

| I
(6.11) ch va
i|w1 Hi
By Lemma 6, the third term is estimated by
I 1Bok—2
6.11) ch '__ g’h
wi il

Next, we examine the second term of the right-hand side of Eq. (6.8). Using the arguments
as in Lemmas 7 and 4 we obtain

Hﬁ-l.k—l

6.12) lim | [ (Ut+h, 0)Q(0) - Ur, 0) Q(0)) do]| =0
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and
o
(6.13) lim IT f(U(H—h, 0)Q(0)— U(t, 0) Q(0))do
h"—o
1
4 i [6-2.k-2
+vf°(t)_f U(t, ) Q(c)do+&- gradxf u(e, U)D(U)dcll = 0.
151 ty
To end the proof let us note that the same results can be obtained for & < 0. O
In the same way we obtain the following lemma.
LemMA 10. Let %D* € Lo ([ty, 1] X5 H)NCO([1y, 1.); XE.379).
A
Then
t+h t Bk
@ tim|[[ V+h )R (@)do— [ V(1,0)Q*()do]| =0
h—0 'y A
and
t+h t
(ii) lim %(f V(t+h, o) Q*(0)do— fV(t, G)Q*(a)do')
h—0 ||
2 1y 1y
! [B=2.k
+vf (1) fV(t, a)Q*(a)da—Q*(z)‘ =0
it =
for telt,t,). |

A simple consequence of Lemmas 7, 8, 9 and 10 is the following lemma.

Lemma 11. Let $> 2, k> 2, Qe X%k, —;};—Dezﬁ"‘
A

and
t
(6.14) 4(t) = Ut, )0+ [U(t, ) Q(o)do, 1€ [y, 1,).
151
Then
(i) gqeZ¥
(i) ¢ is a strong solution in X%-%*-2 of the problem
d
6.19) SrrEgradegty, g =Q, gl = 0;
and

(iii) g* is a solution in X%:3'* of the problem

34!]4= * |
(6.16) ——+vfq* = QF, ¢t = D,0.



140 M. LACHowICZ

7. Main result

We now return to the sequence {(¢{,¢qi, q3)} given by Eq. (5.1). We have proved
that it converges in ” Lw([tl, 1,]; X6%) to (go, g1, 92) provided (C5.1)-(C5.4) hold.
=0,1
ﬂ

Let o =2, f, > > f; and k > 2. Then, by Lemma 11, if
QeXyh (i=0,1,2), WLM €ZPrk  and g/~'e ZPrk
A
(i=0, l,2;j= l) then

(i) g/ ezZPrk
(i) (qo,ql,qz) is a strong solution in X%~2'*=2 of the system

d :
(7.1) ;‘ +&- gradeg! +vp, - qf = Qilgd™, ¢ 27", A,
qi[l=!l=Qh l=03112;
and
(iii) (g, qi, qd) is a solution 'in X%—2* of the system
aq_}* 1 = j—1 *
72 < = @ulad, gt gt )",
q{ﬂm:, = czsrLQl-
Thus

g1 € C°([ty, t2]; X%, gf e C([ty, ) Xo ™

and the sequences {£ - grad, g/}, {v, - ¢/}, {Qilgd~*, qi~', q2~', o]} converge to & - grad.q;,
Ve, q., Qil9, 94, 95, .se:’] respectlvely, in C°([ty, t,]; X% *~?); moreover, the sequences
{7 - qf*} and {(Qi[gd~1, ¢~ 1, ¢4, #/])* } converge to vf g and (Q;[q0, 91, 92, FD*
respectively, in CO([¢,, 7,]; X% —*%). Thus {c';q'". } and {%tl } converge to Q;[q0, 41, 9,; ]
—vr, - q;—&-grad,q; and (D;[qo,ql,qz;d])#—v}z-q‘-#, respectively, in the suitable
spaces. In this way we obtain that g¢;(t) and ¢ (¢) are continuously differentiable in
Xb-7%-2 and Xf-2* respectively. This completes the proof of the following theorem:

THEOREM. Let .80 22, 8122 Ba=Pi, k=22and 0< t; <ty. Let the constants
&, 0 and t, be the same as in (C5.3) and (C5.4). Furthermore, let the Assumptions (Al.1),
(A3.1) (with B = B,) and (A3.2) (with p = B,) be satisfied and

1
QieXxls (i=0,1,2), —aeZl,
A

Then there exists such (qo, q,, q2) € [] ZPr* which is a unique, strong in X2
i=0,12 i=0,1.2

solution of CSLE (3.1) with the initial data q;|,—0 = Q;.

This result is used to prove the existence of a solution of CSLE in the whole time
interval [0, 7] and to obtain suitable estimates of this solution. Namely, in [9] we have
proved the a priori estimates, provided that the objects considered are smooth in the sense
mentioned above. In this paper the existence of solution and its smoothness have been
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proved only in the small time interval. However, the a priori estimates taken from [9]
make it possible to obtain a solution of CSLE in the whole time interval [0, t,], by the
continuation arguments. Furthermore, the fulfillment of the a priori estimates on [0, #,]
enables us to treat the full nonlinear problem by the method of successive approximations

(see [9]).
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