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On the initial layer and the existence theorem for the nonlinear 
Boltzmann equation; differentiability of the solution 
of the corresponding system of linear equations 

M. LACHOWICZ (WARSZAWA) 

A LINEAR system of integra-differential equations, which appears in the asymptotic analysis 
of the nonlinear Boltzmann equation in [9], is considered and the local existence and differentia­
bility of its solution is obtained. Moreover, the estimates, which are necessary in [9], are shown. 

W pracy bada si~ pewien liniowy uklad r6wnan calkowo-r6i:niczkowych, pojawiajl!CY si~ w asymp­
totycznej analizie nieliniowego r6wnania Boltzmanna, przeprowadzonej w [9]. Dowodzi si~ 
lokalnego istnienia i r6i:niczkowalnosci jego rozwil!zail oraz prawdziwosci oszacowail niez~dnych: 
do analizy w [9]. 

B pa6oTe HCCJie~yeTCH HeKOTopaH HeJIHHeM:HaH CHCTeMa HHTerpo-~H<l>cPepeHI..UiaJibHhiX ypaB­
HeHHM, noHBJIHIOI..Qancn a aCHMnTOTHqecKoM aHaJIH3e HeJIHHe:HHoro ypaaHeHHH EoJibl\MaHa,. 
npoBe~eHHOM B [9]. .[(oKa3biBaeTCH JlOKaJibHOrO cyi..QeCTBOBaHHH H ~HcP<l>epeHQHpyeMOCTK 
ero perneHHH, a TaK:>Ke HCTHHHOCTH OQeHOK He06XO~HMhiX ~JIH aHaJIH3a B [9]. 

1. Preliminaries 

IN [9] WE HAVE considered the truncated Hilbert expansion including the initial layer 
terms and replaced the singular perturbed Boltzmann equation by a weakly nonlinear 
system of equations. However, specific smoothness properties of the solution of a corres­
ponding system of linear equations (named CSLE) were required. In the present paper 
we prove these properties t<;> be true and show the estimates which are necessary in [9]. 
Similarly as in [9], real-valued functions defined in I x Q x R3 are considered, where I 
is an interval and Q is a d-dimensional torus (in this paper, without losing the generality~ 
we assume d = 3). Then t E I is the time, x E Q is the position of a particle in a rectangular 
domain [0, pd x [0, p2 ] x [0, p 3 ] and ~ E R3 is the velocity. Q may be treated as a torus 
because we assume that all functions encountered in our analysis are periodic with the 
fundamental domain [0, p 1 ] x [0, p 2 ] x [0, p 3] (for simplicity we assume p 1 = p 2 = p 3 = 1). 

Let us denote by J the symmetric bilinear collision operator 

J(q, r) = J+(q, r)-J_(q, r), 

where 

J+(q, r)(~) = ~ J J k(~, ~*' n)(q(~')r(~~)+q(~~)r(~'))dnd~*' 
Rl S2 

and vq(~) = J J k(~, ~*' n)q(~*)dnd~* 
Rl S2 

http://rcin.org.pl



128 M. LACHOWICZ 

The notation is conventional ([2, 3, 5]), ~and ~* denote velocities of the colliding particles 
before the collision, and 

f = ~+n(n(~-~*)), ~~ = ~*-n(n(~-~*)) 

after the collision; here n E S2
• 

As~ume that the collision kernel k corresponds to the Grad's cutoff hard potentials. 
CARLEMAN [2] proved that the unique solution of 

(1.1) l(fo,fo) = 0 

is the function 

loW~ e(2nT)-} exp(- l$~;12 
), 

where (!, T and u are called the fluid-dynamical parameters of fo and may depend on t 
and x. If(!, T and u are constant in t and x, fo is called a global Maxwellian, while in other 
cases it is called a local Maxwellian. To distinguish them we denote a global Maxwellian 
by M = M(~). 

The fluid-dynamical parameters of fo are assumed to have the following property: 
(AI. I) The functions(!, u and Tare smooth enough in [0, t0 ] xQ and satisfy the 

conditions 

where c(!, cT are constants. 

0 < c(! ~ inf e(t, x), 
te[O, to] 

xeD 

0 < cT ~ inf T(t, x), 
te[O, to] 

xeD 

A simple consequence of (AI. I) is the existence of positive constants c- and c+ such 
that 

(1.2) 

where, throughout the paper, wcx denotes the following function 

(1.3) 

Let us introduce the following function spaces. As usual, the space of (real-valued) functions 
the second power of which is integrable in R 3 is denoted by L 2 (R 3

). The norm in L 2 (R3
) 

is denoted by II ·; L 2 (R3)!1. Bf! denotes the space of continuous real-valued function 
on R 3 with the weighted norm 1/q;Bf!ll = suplw11!q. HHQ) is a usual Sobolev space 

;eR3 

equipped with the norm 

( 
'\-., {' ( (;l lrl )2 )1 /2 

llq; HH!J)II = L.J . Tx; dx , 
O~lr l ~k D 

where 

01rl 
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ON THE INITIAL LAYER AND EXISTENCE THEOREM FOR NONLINEAR BoLTZMANN EQUATION 129 

Ck(Q) is a space consisting of functions which, together with all their derivatives of orders 
!yl ~ k, are continuous and equipped with the norm 

I 
o lYlq I !!q; Ck(Q)II = sup ~. 

O~IY!~k . uX 
xefJ 

FinaUy, introduce the spaces X!.k2, X~.koo and Xf; ~ consisting of real-valued functions on 
Q x R 3 and equipped with the norms 

llq; X!.k2!! = ll (l!q; HHD)!I); B!l! ,. 
llq; xe;~ooll = l!(!lq; Ck(Q)II); B!ll, 
llq; Xf:~ll = l!(l!q; HH£2)11); L2(R3 )1!. 

The most frequently used norm II·; X~.k2 1! is denoted simply by II· W· k. 

2. Basic estimates 

From our definitions it follows directly 

(2.1) 

The following inequalities ([7], theorems 200-202) are used: 

(J (J q(x, y)dyr dx Y'2 
~ J (J q2(x, y)dxr

12 
dy, 

(2.2) (J (~ qix)tdxY'
2 ~ 4 (f qJ(x)dxf

12
, 

J J 

which hold for non-negative functions. In view of Eq. (1.2), the following estimate holds 

(2.3) 

where A E [0, 1] depends on the particle interaction potential, and c2. 3 and cf. 3 are positive 
constants, independent of x and t. 

Let us denote by v* a constant such that 

(2.4) 

We have 

(2.5) I ::~::- Jgl ,; cw2<1vi+I>fg, 

I 
a,,, 1 

OXY yfo ! ~ CW;. 

where A. is the same as in Eq. (2.3). 
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130 M. LACHOWICZ 

GRAD [5] proved that 

(2.7) sup lwp(~) J J k(~, ~*' n)M1 12 (~*). (Mlf2(~')q(~~) 
~eR3 R3 s2 

where 

for fJ = 0, 

for fJ = 1, 2, ... , 

and 

(2.8) sup I J J k(~, ~*, n)M1 12 (~*)( Mtl2(~')q(~~) 
~ER3 R3 82 

+ M112 (~~)q(~') + M112a)q(~*))dnd~*~ :::; cllq; L2(R3)11. 

Moreover, we have 

(2.9) lwpM- 112J(M112 q, M 112r)l :::; cw;.(suplwpql) (suplwprl), 
R3 R3 -

for fJ = 0, 1, 2, .... 

3. System ·of CSLE equations 

The system of linear CSLE equations has the form 

(3.1) 

+ }; A(M~f2qt)+sad~ 
i=l, 2 

(3.2) 

e E ]0, s0 ] is a small parameter representing the mean free path of the mean collision time. 
fo = f 0 (t, x, ~)is a local Maxwellian such that (A1.1) holds . .Yt is the operator defined 
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ON THE INITIAL LAYER AND EXISTENCE THEOREM FOR NONLINEAR BoLTZMANN EQUATION 

by :lfq = 2J+(j0 , q)- fo · vq. M+ = M+(;) is a global Maxwellian given by (1.2). 

fo = io(t/e, x, ;) is a function such that: 

131 

(A3.1) r ~ M+1
'
2.fo(r) is a continuously differentiable function from [0, + oo [into 

X~.~ (i.e. M+1
'
2/o E C1 ((0, +oo[;X~.~)) where {3 and k are suitably large, and 

(3.3) 

where the constant () can be chosen small enough and the decay exponent ~ is positive. 

Next, a is an integer. Xi = x1(;) is the characteristic function of the ball of radius "i 
with the center at the origin in R3

• The operator A is given by Aq = M+ 112J(!F, q) where 

(A3.2) M+ 1
'
2!F E C1([0, t0 ]; X~.~) 

with {3 and k the same as in (A3.I). 

In the CSLE linear system ([9]), the equivalent of the sum of nonlinear and nonhomo­
geneous terms is the term d which is treated as a given function of t. The conditions as­
sumed concerning d will be specified later. 

Putting aside the collisions, we introduce the idea of a (extrinsic or free-streaming) 
trajectory (see [IO]). For fixed t and ; let lfY<r,;> be the translation on Q defined by 

(3.4) lfJ<r. e>x = x + t; (mod I) 

If a particle has position x E Q and velocity ; at time 0, then its position at time t, taking 
no account of collisions, is given by lfY<t, e>x. Its (extrinsic) trajectory in R 1 x Q x R3 is the 
curve defined parametrically as follows 

(3.5) t--+ (t,lfY<t.;>x,;). 

Now, let C/>t be a one-parameter family of operators 

(3.6) 

Let us define a function q* as the function q considered along the (extrinsic) trajectories 
(cf. [8]). More precisely, -

(3.7) q*(t) = (/>tq(t)~ 

An important property of the norms introduced in Sect. I is 

(3.8) llq*(t)ll = llq(t}ll. 

Let us now introduce the following two-parameter families of operators 

(3.9) 

t 

U,(t, a)q = (<P,_,q)exp (- -4-J <P.,._,vf,(a')da') 
C1 

and 

t 

(3.IO) V,(t, a)q = q · exp (- -4-J v!,( a')da'). 
C1 

9* 
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132 M. LACHOWICZ 

In this paper the following two (equivalent) integral versions of CSLE with initial data 
(3.2) are analysed 

t 

(3.11) q1(t) = U8 (t, t1)Q1+ I Ue(t, a).Q1 [q0 , q1 , q2 , d; c](a)da, i = 0, I, 2; 

and 

(3.I2) qt(t) = Ve(t, t1)($,
1
Qt) 

t 

+I Ve(t, a)(.Q1[q0 , q1 , q2 , d; s])*(a)da, i = 0, I, 2; 

where .00 , .01 and .02 are the right-hand sides ofEqs. (3.1) 1 , (3.Ih and (3.lh, respectively. 
Let _us define the following space of functions which depend on t E [t1 , t2 ], 0 ~ t 1 < 

< t2 ~ to: 

zP. k = {q: q E Loo ([tl' !2]; x~.\)nC0 ([tl' t2]; x~~1·k-l) 

nC1([t1, t2]; X!~~,k- 2) and q* E C0([t1, t2]; X!-;-~· k)nC1([t1, t2]; X!~~· k)} 

and the following norm 

(3.I3) lliqlliP.k = sup llq(t)IIP.k. 
IE(tt, t2) 

Let us notice at the end of this section that the operator ~ · gradx + _..!__ v1 cannot possess e o 

a dense domain in the spaces X~.k2 • Therefore, although Uf is given by a simple expression, 
it is not continuous with respect to tin such spaces. Neither is Ve in the general hard po­
tential cases. Nevertheless, applying the methods known from [II], we are able to prove 

· t4at a solution to the system (3.11) belongs to zP. k. 

4. Estimates of terms of the integral form of CSLE 

Immediately from (1.2), (2.3), (2.4) and {2.5) we obt'\in 
LEMMA 1. Let 0 ~ a~ t. Then 

for all y, where constant c depends on lyl. 
LEMMA 2. 

t 

(i) Ill J Ue(t, a).Oo[qo, qt, q2; s](a)dalll'~.k ~ clllqolllfl',k+ }; cexp(cxf} lllq,lll 0
'\ 

It i= 1,2 

where {3' is the same as in (2. 7); 

t 

(ii) Ill J + Ue(t, a)(fo 1 12~(fJ12qo))(a)daJIIo.k ~ c sup l!q0 ;X~:~Ii; 
,, [It, ll] 

D 
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ON THE INITIAL LAYER AND EXISTENCE THEOREM FOR NONLINEAR BoLTZMANN EQUATION 133 

t 

(iii) I JI J Ue(t, a).00 [qo, q1 , q2 ; s](a)da jW'J,k 
ft 

P r o o f. First, we investigate the term 

t 

(4.1) /4,1 = J + Ue(t, a)(fo 112%(f/Pq0 ))(a)da. 
ft 

Let us notice that 

fr/ 12 (t, (/J(a-t.~)X, ~) f f k(~, ~*' n)fo(t, (/J(a-t. e>X, ~') 
R3 S 2 

·fb12 (t, (/J<a-t , e>X, ~*)qo(t, (/J<a-t. ~>x, ~~)dnd~*. 

Using Eqs. (2.5) and (1.2), the -; :: derivatives of the last term can be estimated by 

c .2; J .f k(~,~*,n)M~'2 (~')Ml12 (~*) ;;:~ qo(t,q;<a-t. ~>x , ~~)dnd~*. 
0~ Jy' I" Jy J R3 S 2 

The other terms in / 0 1'
2 %(fl'2q0 ) are estimated in the same way. Thus, by Eq. (2.2) and 

Lemma 1 we have " 

+ M!12 (~~) II ~:~ qo( (j' • ' n L, (.Q)II + M!'' mil ~:~ qo( IX' • ' ~ .) ; L, (.Q)II) dnd~.) drJ. 

From Eq. (2.7) we obtain 

(4.3) 

Similarly, by means of Eq. (2.8), we obtain (ii). Next, let us investigate the term 

t 

(4.4) /4.4 = J _!_ Us(t, a) (x,fo 1 ' 2%(M~12q,))(a)da. 
t, c 
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134 M. LACHOWICZ 

We notice that 

( 4.5) I wp X• ~:~ (fo 1'2 M !'2)1.:; cw P+2ivl xdo 1'2 M~'2 
.;; cexp( c><f) 

and the term M"f!'2 :K(M!'2qi) can be estimated in the same way as previously. Therefore 
we obtain (i). 

Next, we can estimate exp (-
1~ " v.) by I in (4.2) and (4.4) to obtain (iii). 0 

LEMMA 3. 

(i) llx,/o 112 :K(M!12q,); X~: ~ll ~ cexp(cx;)JI q, ll 0
'k; 

(ii) II a~. ( 2/o 1'2 JCfo ,f~12 q.))- 2/o 112 J (!• .!~'2 ~!; } ; Xf: ~~~ .;; cllqo llw. •, 

where ). is the same as in Eq. (2.3). 
Proof. (i) follows from Eqs. (2.1), (4.5) and (2.7). To prove (ii) let us notice that 

(4.6) _ a_ (fo1f2:1((JJ'2qo))-fo1f2:K(t~'2 ~) ox, ax, 

= I J k(~ , ~*' n) { a~ <t~,2~~~) ·tJ '2<~*))qo(~~) 
R3 sl 

1 

and 

(4.7) 
a oqo a 

-- (q0 Y1 )- - - Y1 = q0 --Y1 . ox, 0 ax, 0 ax, 0 

Using Eq. (2.1), applying the methods of Lemma 2 to (4.6) and using Eqs. (2.6) to (4.7) 
we obtain (ii). D 

LEMMA 4. 

I . 

Ill J Us(t, a).Odqo , qi, q2 , .91; t:](a)daJII /J,k::::; Ccl/lq0 lll 0
'k 

I t 

+ ( (I +~1 ) 1 +A + cO+ce) lllq1 IIIP·'+celllq2IIIP. '+ce-+
11!1 ~1 -"'lir' 

Proof. By Eqs. (2.5) and (1.2) we have 

1 iJ IYI ( ofc1'2 )II 
(4.8) iwpM:;: 1

1
2 ox>' + +~ · gradxfJ12 

::::; c. 

Therefore, using {2.2) and Lemma 1 we obtain 

(4.9) Ill/ U,(t. ~) (- M;:1'2 ( a1:2 

H. gradxfJ ' 2
) qo) (a)da/r · .;; celllqo ll l"·'. 
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Next, we have 

(4.10) sup ((1- x1) -
1
- f w, exp (- t- a v.w.~) da) ~ (1 + ~.)•u . 

~ Wt+A It E e 

Thus, by Eq. (2.2), Lemma 1, Eqs. (2.5), (1.2) and (2.7) we obtain 

I 

(4.Il) Ill J + U,(t' u) ((I- x,)M:;112JI'"(M!i2q,))(u)dullr·.;; (I+~,)'" lllq,IW· •. 
It 

Finally, by Eqs. (3.3) and (2.9) we have 

(4.12) II j ~ U,(t, u)(M:;''2Jcfo, M!'2q1))(u)dui iM.;; cexp (- + <~)o lllq,jHP·•. 
It 

Similar arguments and (A3.2) yield the estimates of the other terms. 
In the same way we obtain 
LEMMA 5. 

t 

135 

0 

(i) Il l J U,(t, u).Q>(qo, q>; e)(u)dui iiP.•.;; ( (I+ :
2
)1+' +cO) lllq2IW·'+ c0111qolll 0

' •; 

It 

I 

(ii) i I f Ue(t, a).02 [q0 , q2 ; e](a)dal lly,k 
It 

t 

.;; -~- I :,
2 
J exp (-

1~" v.) llq>(u)IIP·•du 
It 

5. Solution to the integral form of CSLE 

We construct a solution to the integral form of CSLE in the time interval [t1 , t2], 

where t 1 is given and t2 will be specified below, by the method of successive approximations. 
Let q? = 0 (i = 0, 1, 2) and (q~, q{, qD for j = I, 2, 3, ... be given by 

I 

(5.1) q{(t) = Ue(t, t 1)Q1+ J U8 (t, a).Q1 [q~-I, q{- 1
, q4-1, d; e](a)da. 

Now, by Lemma 2 (iii), Lemma 4 and Lemma 5 (i), if we choose 
(C5.1) "•, " 2 -large enough; 
(C5.2) 00 , e0 - positive and small enough (00 - dependent on "•, " 2 ; and e0 -

dependent on " 1 , " 2 , Oo); 
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136 M. LACHOWICZ 

fixed e and 0 such that 0 < e ~ e0 ,0 ~ 0 ~ 00 ; (C5.3) 

(C5.4) t2 such that 12
-

11 
is positive and small enough (dependent on x1 and x2) 

e 
then we find positive constants b0 < I, b1 and b2 such that the inequalities 

2 2 

(5.2) }; lllq{+ 1 -q{IW'·k ~ ho}; lllq{ -q{- 1 /W'·k 
i=O i=O 

and 

(5.3) 

hold for all integers j and integers {Ji (i = I, 2, 3) such that {32 ~ {31 • Thus the sequence 

{(q~, qf, q4)} converges in n Loo ([t 1 , 12 ]; X!':n. Let its limit be denoted by (q0 , q1 , q2). 
i=0,1,2 

We will investigate the differentiability of (q0 , q1 , q2 ) in the next Sections. Let us note that 
e will not be important in this consideration. Therefore, we take e = I, for simplicity. 

6. Some lemmas 

In agreement with the previous remark, let us put e = I. Similarly as in Lemma I, 
we have 

LEMMA 6. Let a ~ t. Then 
. ' t 

I ;:: ( 1-exp (- J <P.,_,vf,(a')da') )1.; c(t- a)w, 
a 

for all y, where the constant c depends on lyl. D 
LEMMA 7. Let Q E xe;\. Then 

· (i) lim IIU(t+h, t1)Q- U(t, t1)QII/1-l.k-l = o, 
h~o 

(ii) l~ II! (U(t+h, t 1)Q- U(t, t1 )Q)+vf,(t) · U(t, t1)Q+ 

+.:-.grad. u(r, r,>Qir->.k-
2 

= o. ror r E [r,, 121· 

· Proof. For simplicity, let h > 0. First, we show the following estimates 

(6.I) 

and 

(6.2) II ! (<P,, -u+>>Q-<P,,_,Q) + ,\'. grad.(<P,,-,Q)IIP-2.k-2 .; ch. 

Let ~ E R3 be fixed and Q( ·, ~) E Ck(!J). Then we have 

(6.3) 
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ON THE INITIAL LAYER AND EXISTENCE THEOREM FOR NONLINEAR BOLTZMANN EQUATION 137 

where a0 E [0, I], and 

I h 
(6.4) h (cJ)t 1 -(t+h>Q-cJ)tt-tQ)+~ · gradx{(f\-rQ) = 2 (~ · gradx)2 (<Pr

1
-(t-ath)Q), 

where a 1 e ]0, I[. 
Approximating HH.Q)-functions by Ck(.Q)-functions (cf. [4]- Part I, Lemma I5.1) 

and using the fact that .Q is a torus (cf. [I]- Theorem 3.I4) we obtain 

(6.5) !!<Ptt-<t+h)Q-c})tt-tQ; n~-l(.Q)II ~ chwti!Q; H~(.Q)II 

and 

(6.6) II ! (1>,,-(<+hlQ-1>,, _,Q)H. grad.(1>,,_,Q); m- 2 (!2)11 .; chw2iiQ; HHD)II' 

for~ E R 3
• Hence, Eqs. (6.1) and (~. 2) follow. Next, owing to the Assumption (AI. I),. 

the function v10( ·, ·, ~), for fixed ~ is smooth (in the classical sense). Therefore, using 
Lemma I we obtain (i) and (ii) in the same way as previously. D 

LEMMA 8. Let Q E x~.k2. Then 

(i) lim IIV(t+h, t1)(c}), Q)- V(t, t1)(<Pr Q) II P-t.k = 0 
h~o 1 1 

and 

for t e [t1 , t2]. 

Proof. Let h > 0, for simplicity. We have 

l+h 

(6.7) V(t+h,tt)(<Pt
1
Q)-V(t,t1)(<PrtQ) = V(t,t1)(<Pr

1
Q)(exp(- J vJ:(a')da')-1). 

t 

Hence (i) and (ii) follow immediately by the same arguments as previously. 0 
I 

LEMMA 9. Let--w;.--.0 EL00 ([t1 , t2];Xe;~2)nC0 ([t 1 , t2];X~-:~·k- 1 ). 

Then 

t+h t 

(i) lim 11 J 
h~o It 

J 1/

P-t.k-l 
U(t+h, a).Q(a)da- U(t, a).O(a)da = 0 

It 

and • 

t+h t 

(ii) ~~~~ ! (f U(t+h, a)i).(a)da- J U(t, a)i).(a)da) 
It It 

+vf,(t) · j U(t, a)i).(a)da+' ·grad, j U(t, a) i)(a)da-n.(t)IIP-2.k-
2 

It It 

= 0 for t e [t 1, t2l 
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138 M. LACHOWICZ 

Proof. Let h > 0. We have 

t+h t 

(6.8) J U(t+h, a')D(a)da- J U(t, a)D(a)da 

h I 

= J U(t+h, t+a)D(t+a)da+ J (U(t+h, a)D(a)- U(t, a)O(a))da. 
0 It 

Now let us examine the first term of the right-hand side of Eq. (6.8). We have 

(6.9) II rh l'fJ-1,k-1 1111 lllfJ,k-1 0 U(t+h, t+a)D(t+a)da I ~ ch ' W;. n 

and 

Il
l fh II{J-2.k-2 

{6.10) h U(t+h, t+a)D(t+a)da-O(t) 
0 

I fh ll l II/J-1,k-2 I fh Il l II{J-1.k-2 ~ h w;(O(t+a)-D(t)) da+h W;. ((q>o-hD(t+a)-O(t+a)) da 
0 0 

sup 
xeD 
;eR3 

O~ I Y I ~k-2 

h 

I~; :;: ( 1-exp (-J (/).,_,v1 ,(t+ a')d<t) )Ida, 
0 

Due to :). 0 E C0([t.' t2]; x~~~.k- 1 ), the first term of the right-hand side of Eq. (6.10) 

tends to 0 with h. By the same arguments as in Lemma 7 we conclude that the second 
term of the right-hand side of (6.10) can be estimated by 

(6.11) 
111

1 I'I{J.k-1 
ch -01 . 

W;. , I 

By Lemma 6, the third term is estimated by 

{6.11') 

Next, we examine the second term of the right-hand side of Eq. (6.8). Using the arguments 
as in Lemmas 7 and 4 we obtain 

I 

(6.12) lim \\ J (U(t+h, a)D(a)- U(t, a)D(a))da\\ fJ-t.k-l = 0 
h--+0 It 
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and 

I 

(6.13) ~~II! J (U(t+h, a).O(a)- U(t, a).Q(a))da 
It 

+v1 ,(t) f U(t, a).O(a)da+~· grad, f U(t, a).O(a)daliP-
2

.k-

2 ~ 0. 
It It 

To end the proof let us note that the same results can be obtained for h < 0. D 
In the same way we obtain the following lemma. 

1 
LEMMA 10. Let -.0* ELoo((t1 , t2];Xe;k2)nC0 ([tt, t2];Xe,-~·k). 

W;. • • 

Then 

t+h I 

(i) lim III V(t+h, a).O*(a)da- f V(t, a).O*(a)dalr-I,k = 0 
h~o t It 

and 

l+h I 

(ii) i~ II! (J V(t+h, a).Q•(a)da- J V(t, a).Q•(a)da) 
. It It 

+v!.,(t) · / V(t, a).Q•(a)da-.Q•(t)w-
2

·k ~ 0 

for tE[t1 ,t2]. D 
A simple consequence of Lemmas 7, 8, 9 and 10 is the following lemma. 

1 
LEMMA 11. Let {3 ~. 2, k ~ 2, Q E X~k2 , - .Q E ztl.k 

• W;. 

and 

I 

(6.14) q(t) = U(t, t1)Q+ J U(t, a).Q(a)da, t E [t1 , t2 ]. 

It 

Then 

(i) q E zP.k; 

(ii) q is a strong solution in X~-:~·k- 2 of the problem 

(6.15) 

and 
(iii) q* is a solution in xe,~i·k of the problem 

(6.16) 
oq* 
--+v*. q* = .Q* ot lo ' 
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7. Main result 

We now return to the sequence {(q6, q{, q1)} given by Eq. (5.1). We have proved 

that it converges in n L 00 ([t1 , t2]; X~J:~) to (q0 , q1 , q2) provided (C5.1)-(C5.4) hold. 
i~O. 1.2 

Let Po ~ 2, P1 ~ 2, P2 ~ P1 and k ~ 2. Then, by Lemma 11, if 

(i = 0, 1' 2), 

(i = 0, 1 , 2; j = I) then 
(i) q{ E zP,.k; 

(ii) (q6, q{, q1) is a strong solution in X~-:l·k- 2 of the system 

(7 I) aq{ t d j j ~ [ j-1 j-1 j-1 ..JI . at+s-. gra xqi +vfo. qi = -4.:tlt qo ,q1 ,q2 ,.-j, 

and 
(iii) 

(7.2) 

Thus 

qf/t=tt = Q, i = 0, 1' 2; 

(q6, q{, q1) is a solution ·in X~-:l'k of the system 

aq{~ +v~. q!~ = (.Q [qi-1 qi-1 qi-1 d])~ 
at fo ' l 0 ' 1 ' 2 ' ' 

q, E C0((t1, t2]; X~-:l·k- 1), qi E C0([tt, t2]; X~-:l·k) 

and the sequences {~ · gradxq{}, {v10 · qf }, {.0; [q6-t, q{-t, q4-1, d]} converge to~· gradxq;, 
Vfo' qb .0;[qo, q1, q2, d], respectively, in C0 ([t1 , t2]; X~-:22 ,k- 2); moreover, the sequences 
{vJ;, · qf*} and {(.Q1[q6-t, q{-t, q4-1, d])*} converge to vl, · q;* and (.0; [qo, qt, q2, d])* 

~ ~a'} \a!}* respectively, in C0 ([t1 , t2]; X~-:l·k). Thus a~ and a~' converge to .O;[q0 , q1, q2; d) 

-v,o·q;-~·gradxqi and (.O;[q0 ,q1 ,q2;d])*-v.fo·q;*, respectively, in the suitable 
spaces. In this way we obtain that q1(t) and q;* (t) are continuously differentiable in 
X~-:l·k- 2 and X~-:f·k, respectively. This completes the proof of the following theorem: 

THEOREM. Let Po ~ 2, P1 ~ 2, P2 ~ P1, k ~ 2 and 0 ~ t1 < t0 • Let the constants 
e, () and t2 be the same as in (C5.3) and (C5.4). Furthermore, let the Assumptions (ALI), 
(A3.1) (with P = P2) and (A3.2) (with P = P1) be satisfied and 

(i = 0, 1' 2), 

Then there exists such (qo' q1' q2) E n zP,.k which is a unique, strong in n x~-:f·k-Z 
i=O, 1.2 i=O, 1.2 

solution of CSLE (3.1) with the initial data qilt=o = Q;. 
This result is used to prove the existence of a solution of CSLE in the whole time 

interval [0, t0 ] and to obtain suitable estimates of this solution. Namely, in [9] we have 
proved the a priori estimates, provided that the objects considered are smooth in the sense 
mentioned above. In this paper the existence of solution and its smoothness have been 
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proved only in the small time interval. However, the a priori estimates taken from [9] 
make it possible to obtain a solution of CSLE in the whole time interval [0, t0 ], by the 
continuation arguments. Furthermore, the fulfillment of the a priori estimates on [0, t 0] 

enables us to treat the full nonlinear problem by the method of successive approximations 
(see [9]). 
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