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Formulation of the brittle fracture criterion 
for three-dimensional problems 

E. KOSSECKA (WARSZAWA) 

THE CRACK propagation in three dimensions is considered. The fracture criterion takes into 
account the energy balance and the crack geometry at the same time. For the preferred fracture 
process, the ratio of the corresponding energy release rate and the magnitude of a newly-created 
crack surface reaches the maximum. 

Rozwai:ana jest propagacja szczeliny w trzech wymiarach. Kryterium p~kania uwzgl~dnia jedno­
czesnie bilans energii i geometri~ szczeliny. Dla preferowanego. procesu p~kania stosunek uwol­
nionej energii spr~i:ystej do wielkosci nowopowstalej powierzchni szczeliny osi(lga maximum. 

PaccMaTpHBaeTcH pacrrpoCTpaHeHHe Tpe~HHhi a Tpex H3MepeHHHX. KpHTepH:H pa3pyrneHHH 
yqHTbiBaeT OAHOBpeMeHHO 6anaHC 3HeprHH H reoMeTpHIO Tpe~HHbl. ,UJIH rrpeAUOtUITeJihHOrO 
rrpo~ecca pa3pyrneHHH OTHOllleHHe OCB060>KAeHHOM yrrpyro:H 3HeprHH K BeJIHqHHe HOBOB03HH­
KaiO~eM IIOBepXHOCTH Tpe~HHbl AOCTHraeT MaKCHMyMa. 

1. Introduction 

WE CONSIDER the fracture process as the propagation of a macroscopic crack in the perfect,. 
elastic body. 

The fracture process is determined by the applied loads and by the geometry of the 
initial crack and the body. The trajectory along which a crack spreads is distinguished as 
the trajectory of maximal energy release rate. 

However, the prediction towards the fracture geometry in the complex three-dimensional 
case is a very heavy task. Yet, with the help of contemporary numerical methods a lot can 
be done. 

Taking this into account, we formulate the fracture criterion using the idea of the 
energy release rate referring to the subsequent states of the propagating crack instead 
of using quantities referring to the "initial" state of stresses around the crack. 

2. The crack as a surface defect 

We consider the ideal three-dimensional linearly-elastic medium, cracked along the 
surface S. The two faces of the crack s+ and s- lie close together when the medium is 
unloaded, and displace with respect to each other when stresses due to external loadings 
appear in the medium. They remain stress-free at the same time, as the free surfaces of the 
medium. 
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In the frames of the linear theory of elasticity, the crack of arbitrary shape can be 
treated as the surface of discontinuity of the displacement field. The surface of discontinuity 
is of course the crack surface S, whereas the discontinuity U of the displacement field u 
-depends on the stresses due to external loadings (see [1, 2, 4, 5]). 

The condition of discontinuity of the displacement field is written in the form 

{2.1) u+(~)-u-(~) = i[u(~)]l = U(~), ~ E S. 

u+ and u- are the limits of the field u on s+ and s- appropriately (Fig. 1). 

FIG. 1. 

The growth of the ·surface S is the propagation of the crack. 
To find the displacement and stress field of the crack, different methods are used (sec 

{7, 8, 9, 10]). Only for the simplest geometries are exact solutions available. 
From the theory of defects the method of singular boundary integral equations results. 
The displacement and stress fields u and a in the medium with a crack are represented 

in the form of a sum of the "external fields" ue, ae, which would be produced by external 
loadings in the medium of the same shape but without a crack, and the "self-fields" u5

, a; 
-due to the crack itself. 

The displacement field us, due to the crack, is represented by the elastic potential 
·Of a double layer of the Lame equation [1, 2, 4]: 

{2.2) 

G is the Green tensor of the Lame equation. 
The expression (2.2) has the following properties see [1]: 

{2.3) 1 [z4ll = ui, 
{2.4) nki[O'fk]i = 0 on S, o1k = aik(ul,k). 

The displacement discontinuity U for the crack is to be found from the condition 
·Of equilibrium of the crack surface: 

{2.5) nk o1k(r) + nk ajk(r) = 0 for rES. 

The above condition leads to the strongly singular integral equation for the function U. 
The equation of equilibrium of the plane crack, opened by the normal stress a applied 

to its surface, has the form 

(2.6) - 4nt-v) (Vi+V;) J ds'U(r') lr~r'l =a, 
s 

r, r' E S, U = 0 at the boundary of S. 
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Only for the circular and elliptical crack does the exact solution exist; in other cases 
the equation has to be solved numerically. 

As follows from the known exact solutions, the stress field of the crack in the linearly 
elastic medium has the singularity of the order 1 tv r in the surroundings of the crack 
boundary, whereas the displacement discontinuity function behaves as yr at the boundary 
of the surface S. 

In two dimensions we represent the stress field of the plane crack (stressed in a given 
mode) at a distance r from the crack tip and at an angle(} with respect to the crack plane 
(or line) in the form 

(2.7) 
K y - fu(O), 
2nr 

K is called the stress intensity-factor. For a crack of the length a under the constant stress G, 

K is proportional to G ya. The critical stress-intensity factor Kc, at which fracture occurs, 
is a material parameter and plays an essential role in fracture analysis. 

In three dimensions the analogues of K vary, in general, along the crack boundary. 

3. On the calculation of the elastic energy release rate 

To be able to examine the energy balance for the fracture phenomenon, one must 
be able to estimate the elastic energy release rate LJp corresponding to crack propagation. 

The general expression for this quantity, independent of the boundary conditions 
on the external surface of the body with a crack, has the following form (see RICE in [12]): 

(3.1) LJ P = ~ J dsT LJU, T = na, 
. LJS 

where LJS is the newly-created area of the crack surface S, Tis the stress vector on iJS 
before it became a part of the crac'.l\. surface, and L1U is the displacement discontinuity 
on LJS after the crack propagation. LJp thus depends on the asymptotic values of stresses 
and displacements discontinuities at the crack boundary. 

Only for simplest geometries L1P can be calculated analytically. 
For two-dimensional plane cracks under constant str~ss, the derivatives of P with 

respect to · the crack length I are proportional to the squares of the stress-intensity factors 
(see [7, 9, 10,-11]). Assuming the crack propagates in its own direction we thus obtain 

(3.2) 

Also only for two-dimensional problems of semi-infinite plane cracks, the expression 
(3.1) is equivalent to the so-called Rice integral J, calculated over the arbitrary path around 
the crack tip. 

For numerical calculations, another expression, suggested by the theory of defects, 
could be suitable. 
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To derive it, we represent the strain and stress fields as he sums of the "external" 
and "self" fields: 

(3.3) 

The body occupies the region V, the crack faces s+ and s- and the surface sr where the 
external stresses Te are applied belong to its boundary. 

The potential energy of the body is equal 

(3.4) P= ~f dvae- f dsTeu = ~ f dv[aeee+2aees+ases]- f dsTe[ue+us]. 
v ST v ST 

After integration by parts, taking into account the discontinuity condition (2.1 ), we obtain 

{3.5) P = pe+ f dsTel[us]l+ f dsTeus+ ~ f dsTsj[us]l- f dsTeus, 
S ST S ST 

where pe depends only on the "external fields". 
Taking into account that on S Ts = - Te, we obtain for P the expression (see [2, 6]) 

(3.6) P = pe+ ~ J dsTeU. 
s 

For LJP we obtain the expression: 

(3.7) LJP = ~- f dsTe LJU. 
S+L1S 

To calculate this expression numerically, one has to find U first for the crack having the 
surface S, then for the crack having the surface S+LJS and, subsequently, calculate the 
integral (3.7) over S+L1S. 

We are now going to formulate the fracture criterion in terms of the quantity LJP. 

4. The three-dimensional fracture criterion 

Having in mind the classical Griffith reasoning, we assume that in the brittle material 
a crack can propagate if the elastic energy released upon the crack growth is sufficient to 
provide all the energy that is required for the crack growth. 

We assume that the energy LJL necessary for the formation of the new surface area 
LJS depends only on the magnitude of LJS, not on its orientation and location on the crack 
boundary. 

The fracture along the given surface LJS can thus occur if for this surface 

(4.1) LJ(P+L) ~ 0 . 

Denoting 

(4.2) LJL = 2yLJS, 
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we obtain the fracture condition in the form 

(4.3) 
LIP 

-L1S~2y. 

147 

The question arises now at which region of the boundary and at which angle the fracture 
can occur. 

It is generally assumed that the fracture first occurs around those points of the boundary 
where the stress-intensities are the greatest. The fracture angle is indicated by the maximum 
circumferential normal stress criterion or by the minimum strain-energy-density criterion 
of G. C. SIH e.g. (see [9, 10, 11, 14]). Here the stresses, their intensities and strain-energy' 
densities refer to the "initial" state of the crack, whereas the quantity L1P refers to the 
"subsequent" states of the crack. 

The fracture criterion, which is not only the energy criterion, but also gives directions 
towards fracture geometry, in terms of L1P can thus be formulated as follows. 

Considering the subject in three dimensions, we assume first that the crack propagation 
proceeds as the formation of the new relatively smooth surface areas, with smooth bound­
aries. This assumption is motivated by the fact that the stress intensity factor at the curved 
crack boundary decreases together with the curvature of the boundary (as follows from 
the known solutions for the circular and elliptical crack). 

We then state that for the preferred process of crack propagation, the ratio LIPfL1S 
will be comparatively the greatest; however, the necessary condition of crack propagation 
is Eq. (4.3). 

The estimation of the expression LIPfL1S for the postulated crack growth process in 
most cases has to be done numerically (see e.g. [13]). 

5. The example of the elliptical crack 

We consider now as an example the case of an elliptical crack in the field of the uniform 
normal stress a. 

The existence of the exact analytic solution (see [7, 11]), enables us to avoid numerical 
calculations. The crack is characterized by two parameters a and b, which are the major 
and . minor semiaxes of the ellipse, constituting its surface. 

10'-

We are going to compare two kinds of crack propagation processes, preserving the 
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elliptical form of the crack - the propagation along the major and minor axis of the 
ellipse (Fig. 2). 

The surface S of the ellipse and its derivatives are equal: 

(5.1) 

(5.2) 

S =nab, 

as 
--= nb aa ' 

as 
ab = na. 

The displacement discontinuity function U is equal: 

1 - v 2ba -. j x2 y 2 

u =--;;- (}I b2) Jl 1-~-¥' 
E l----a2 

(5.3) 

where E is the elliptical integral of the second kind. The elastic energy connected with the 
presence of the crack in the medium, according to Eq. (3.4) is equal: 

(5.4) 
1 { 1-v 2 2n b2 

P-P• = -2 S dsaU = --;;-a E(V !- !: ) 3 a . 

Comparing the ratios of the derivatives of the elastic energy P and the surface S with 
respect to ellipse parameters, we obtain the following expression: 

(5.5) 

where 

(5.6) 

ap ap 
ab aa 

----as = (X ----as' 

2-_!_ aE b 
E ab 

(X=-----

1 aE 
1- - --a 

E aa 

ab aa 

E(k) (k2 + 1)-K(k) (l-k2
) 

E(k) (2k2 -l)+K(k)(l-k2
)' 

k = V !- !: , K(k) is the elliptical integral of the first kind. 

The variation of the quantity a with the ratio !!_ is illustrated in Fig. 3. Since for all 
a 

values !!_ < 1 we have a > 1, we come to the conclusion that the elliptical crack has the 
a 

tendency to propagate in the direction of the minor axis and to reach the shape of a circle 
(see also [11]). 

Analysing the formula giving the values of the stress-intensity factor along the crack 
boundary, we would come to the same qualitative conclusion; however, we would estimate 
the tendency of the crack to propagate in the direction of the minor axis as being much 
greater. 

http://rcin.org.pl



FORMULATION OF THE BRITTLE FRACTURE CRITERION FOR THREE-DIMENSIONAL PROBLEMS 

~:_ 

0 0.2 

\ 
\ 
\ j3 
\ 

I 
0.4 

\ 
\ 
\ 

\ 

I 
0.6 

' 

FIG. 3. 

' ' ~ 
I 

0.8 
I ., 

1.0 b/a 

149 

The stress-intensity factor given as the function of the polar angle cp, has the form 

(5.7) 

The measure of the tendency of fracture in the direction of the minor axis, basing on the 
stress-intensity factor, could be the quantity 

x.z/ ~) a 
(5.S) fJ = Kl(O) = b. 
We notice that the quantity fJ is essentially greater than the quantity DC, especially for small 
bfa (see Fig. 3). For bja = 0.1 DC ~ 1.9, whereas fJ = 10. We claim, that the quantity DC 

takes into account better the fracture geometry than the quantity {J. 

6. Conclusions 

The criterion formulated above of three-dimensional fracture takes into account the 
complete fracture geometry. 

The calculation of the energy release rate can be carried out solving the integral equation 
for the displacement discontinuity function -for the "initial" crack and for the extended 
crack. 

Predictions towards the fracture geometry must point out not only the regions of the 
crack boundary where the fracture first occurs and the inclination of the newly-created 
area of the crack surface, but also its shape, taking into account that its boundary should 
be a comparatively smooth curve. 

The simple example of the elliptical crack indicates that predictions towards fracture 
geometry basing on the idea of the energy release rate, may differ from those basing on the 
idea of the stress-intensity factor in some aspects. 
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