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Multicriteria optimization of single-layer cable systems 

S. JENDO (WARSZAWA) 

THE PAPER deals with multicriteria structural optimization of cable structures. First, a general 
formulation of multicriteria optimization problem is presented and discussed. Next, some 
applications concerning the single-layer cable systems are considered. Minimum weight and 
maximum of the lowest natural frequency of free vibration are taken as optimization criteria. 
The permissible stresses and displacements are taken as behavioral constraints. The optimi­
zation problem is solved by using nonlinear programming and selected methods of multicriteria 
optimization. 

W pracy przedstawiono zagadnienie optymalizacji wielokryterialnej konstrukcji ci~gnowych. 
Najpierw przedstawiono og6lne sformulowanie zagadnienia optymalizacji wielokryterialnej, 
a nast~pnie rozwazono zagadnienie optymalizacji wielokryterialnej konstrukcji ci~gnowych 
jednopasowych. Jako kryteria optymalizacji przyj~to minimum ci~:laru konstrukcji i maksimum 
najnizszych cz~stosci drgan wlasnych. Ograniczenia zachowawcze dotycz'l: napr~zen i prze­
mieszczen. Zagadnienie optymalizacji rozwiC~:zano za pomoc'l: programowania nieliniowego 
i wybranych metod optymalizacji wielokryterialnej. 

B pa6oTe npe.I{CTaBJieHa 3a.I{atia MHoroKpHTepHanhHOH onTHMH3aQHH BaHTOBhiX KOHCTpyKQHii:. 
CuatiaJia npe.I{crasJieHa o61l.laH <l>opMyJIHpoBKa 3a.I{atiH MHoroKpHTepHaJII>Hoii onTHMH3aUHH, 
a 3aTeM paCCMOTpeHa 3a.I{atia MHOrOKpHTepHaJibHOH OllTHMH3al.lHH BaHTOBbiX O.I{HOllOH:CHbiX 
KOHCTpYKI..lHH. KaK KpHTepHH OllTHMH3aQHH npHHHTbl MHHHMYM Beca KOHCTpyKQHH H MaKCH­
MYM caMhiX HH3KHX qacToT co6crseHHhiX KoJie6aHHH. KoucepBaTHBHhie orpaHHtieHHH Ka­
caroTcH uanpHmeHHH H nepeMell.leHHii. 3a.I{atia onTHMH3al.lHH pemeua npH noMOII..lH HeJIHHeii­
Horo rrporpaMMHpOBaHHH H H36paHHbiX MeTO.I{OB MHOrOKpHTepHaJibHOH OllTHMH3aQHH. 

1. Multicriteria optimization in structural design 

1.1. Introduction 

THE RESULTS of single criterion (scalar) optimization of single and double-layer cable 
systems as well as cable nets under static loading have been presented in papers [25, 26, 27]. 
The present paper is concerned with multicriteria structural optimization of single-layer 
cable systems under static and dynamic loading. First, the multicriteria optimization 
approach in optimum structural design is discussed. Next, two-criteria optimization of 
single-layer cable systems is considered. Minimum weight and maximum of natural fre­
quency of free vibration are used as optimization criteria. The permissible stresses and 
displacements are taken as the behavioral constraints. 

The paper deals with the problem of formulating the multiobjective function and 
finding the set of compromise solutions and also with selecting a preferable solution. 

Appendix contains a few methods for selecting a preferable solution from the set 
of compromise solutions. 
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1.2. Characteristic of multicriteria optimization approach 

Optimum structural design usually involves a number of requirements that should 

be met at the same time to obtain the fully useful design. In the case of single criterion 
optimization, one of the requirements is selected as the criterion while the remaining 

ones are met by including them into the constraints set. But with such an approach, it is 
necessary to determine a priori the bounds which these requirements should fulfill. Multi­

criteria or multiobjective optimization enable us to take into account numerous criteria 
that are often mutually conflicting. It is then possible to find the compromise and pre­

ferable solutions which - although none of the criteria involved attains its extremum -

guarantee meeting of all the requirements in the best way possible [1, 9, 10, 21]. The multi­
criteria optimization approach has been already discussed in many papers devoted to 
optimum structural design (see e.g. [3, 13, 16, 37]). 

Some criteria of structural optimization, namely minimum volume or weight of a 
structure, minimum potential energy or maximum structural stiffness, minimum displace­

ment at selected points or regions of the structure, maximum critical force, maximum 
of the lowest frequency of free vibration, maximum moment of inertia and maximum 

safety or reliability, are discussed in papers [28] and [30]. Two of these criteria, namely 
minimum weight and maximum of the lowest frequency, will be considered in the follow­
ing to solve optimization problems of single-layer cable systems. In papers [11] and [12] 

EscHEN'AUER discussed the optimization problem of space structure that supports radio­

telescopes, assuming the following criteria: minimum weight and minimum displacements 
of the radiotelescope surface from its initial configuration under different loading states. 
In [44] SATTLER presented a survey of multicriteria optimization methods and their use 
for the optimization of a structure consisting of beam and truss elements. He assumed 

the minimum weight of the lattice structure and the minimum displacements of the beam 
surface under different loading states as the optimization criteria. KOSKI [33, 34, 35] formu­
lated the multicriteria optimization problem of bar structures assuming the minimum 

weight and minimum displacement of selected structural nodes as the objective functions. 
STADLER [46-49] applied two optimization criteria, namely minimum mass and minimum 

strain energy and called thus determined shapes the natural shapes. In the general state­
ment of the multicriteria optimization problems of structures given by BAIER in [4, 5], 

the structural weight and energy stored under various loading states were assumed to be 
the optimization criteria. CARMICHAEL [8] solved the multicriteria optimization problem 

by employing the method of constrained objective functions. The optimization problems 
of mechanical structures with a few objective functions are also treated by 0SYCZKA [36, 37] 

and RAo [39]. The state-of-art of multicriteria optimization approach in optimum struc­
tural design has been presented in [28, 29, 30]. In the present paper a brief formulation 

of the multicriteria optimization problem will be presented. 

1.3. Formulation of the multicriteria optimization problem 

The problem of multicriteria structural optimization is the generalization of a single­

criterion optimization and it allows to get closer to the real conditions crucial for the 
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selection of a design solution. The problem of multicriteria optimization can be formula­
ted as follows: 

minf(x), 
xeD 

where f:Q -+ Rk is a vector objective function given by 

fT(x) = {j~(x),/2 (x), ... ,_h(x)} 

and Q c Rn is a feasible domain defined by the equality and inequality constraints, i.e. 

Q = {x E Rn:h(x) = 0, g(x) ~ 0}. 

The components fi:Q-+ R, i = 1, 2, ... , k are called the criteria of optimization and x 
is the vector of design variables. Since the particular components f 1 of the objective vector 
are mutually conflicting, it is impossible to find the so-called ideal feasible solution fi = 
= minfi , i = 1, 2, ... , k. The problem of multicriteria optimization can be solved in two 

X 

stages. The first stage consists in determining the Pareto solution. In the second stage 
a preferable solution will be found. A vector ~ E Q is called Pareto optimal if and only if 

there exists no x E Q such that /i(x) ~ .fi(~) for i E K, K = {1, 2, ... , k} with _h(x) < fi(~) 
for at least one i, i E K. In other words, the above definition states that :. is a Pareto 
optimal solution if there exists no feasible vector x which would decrease some criterion 
without causing a simultaneous increase in at least one criterion. There exist a ~umber 
of methods which allow to generate the compromises set and they are discussed in numerous 
publications, e.g, [7, 10, 21, 28, 29]. They may be divided into two categories of non­
preference techniques including Pareto optimization and preference techniques. In the 
second stage, a preferable solution is determined on the basis of the compromise set. A few 
methods for selection of a preferable solution are discussed in [21, 28, 29, 44]. A global 
criterion method, method of utility functions and method of constrained objective func­
tions presented in Appendix are often used to select the preferable solution. 

2. Two criteria optimization of single-layer cable systems 

2.1. Characteristics of cable-suspended structures 

This section ·deals with an optimization problem of single-layer cable systems which 
are often used as carrying elements in mechanical structures e.g. building machines as 
well as the load-carrying elements in electric power lines or hanging rope-ways. Single­
layer cable systems are also used in large-span roofing structures as shown on Fig. 1. 

Cable-suspended structures are substantially different from other kinds of structures 
because they are capable of assuming a variety of shapes under action of different loadings. 
That is why static and dynamic analysis of cable-suspended structures are different from 
those commonly known. The first difference is that the equilibrium conditions should 
be determined with the actual shape of the structure taken into account. The principle 
of structural rigidity cannot be used here. The second difference consists in the fact thas 
the principle of superposition is inapplicable to cable-suspended structures. This follows 
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FIG. 1. Schematic diagrams of single-layer cable systems. 

from geometric nonlinearity of cables caused by large changes in cables shapes due to 
varying loadings. The elongations of the large span cables can also result in major displace­
ments and deformations of the structural shape. Then, to write the conditions of equilib­
rium and deformability, it is necessary to take into account all the loads acting on the 
structure which has no a priori determined shape. It is assumed that the cable can not 
resist bending and compression and constitutes a kinematically variable system. The dead 
weight of the cable can be neglected in compariso_n to the live loads acting on the cable. 
The physical nonlinearity of cables depends on their material behavior and construction 
of cables. However, for the sake of simplicity the stress-strain relationships can be assu­
med as linear because, within the range of working stresses, the behavior of cables obeys 
Hooke's law. 

The purpose of optimization in the design of cable systems is to find the best shape 
of cable structure according to minimum weight criterion and/or maximum of the lowest 
frequency of free vibrations. The first criterion comes from economical consideration. 
The second one is derived from the experience that the most dangerous for dynamically 
loaded structures is usually the lowest natural frequency (e.g. in the case of wind loading). 
The dynamic analysis of cable systems is closely connected with its static solution. The 
cable shape and static internal force coming from static loading have a large influence 
on the natural frequency of free vibrations and their amplitudes as well as on the dynamic 
internal force. In the classical theory of elastic vibrations of structures such phenomenon 
does not occur. 

2.2. Basic relationships of static and dynamic response 

2.2.1. Large sag inextensible cables. SAXON and CAHN [43] have considered the in-plane 
free vibrations of an inextensible cable fixed at the rigid supports which are situated at 
the same level (Fig. 2). They have shown, in form of a diagram (Fig. 3), the relationship 
between the natural frequencies of free vibrations which are- determined by means of 
parameter Anfn and the sag of the cable which can be calculated on the basis of an angle 
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FIG.2. A symmetric in-plane free vibration. FIG. 3. Diagram of the relationship between the 
parameter An/II describing the natural frequency 

and the angle !Xo (after [43]). 

a 0 between tangent line to cable shape at the supports and horizontal line. This relation­
ship is a monotonically decreasing function and maximal natural frequencies occur for 
the very small cable sags. 

On the other hand, it has been proved that the minimum weight of single-layer cable 
systems corresponds to the arge cable sags [23, 24]. This can be seen in Fig. 4 showing 
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FIG. 4. Diagram of cable weight e versus cable sag 'Y/· 

the diagram of cable weight (! with respect to cable sag 'Y} = f/1 with the optimal value 
of 'YJ = 0.258: (i.e. a rather large cable sag). From the comparison of results discussed 
above it can be observed that the objective functions, minimum weight and maximum of 
the lowest frequencies of free vibrations, are in conflict. It means that a compromise solution 
should be found. In order to get such a solution it is necessary to formulate and solve 
the multiobjective optimization problem for single-layer cable systems. 
2.2.2. Flat sag extensible cables. The in-plane free vibrations of the extensible flat sag 
cables fixed at supports situated at the same level have been considered by ANANIEV [2] 
and later by RZHANICYN [41]. HAJDUK and OSIECKI [18, 19], IVOVITCH [22], POPOV and 
RASTORGUJEV [38] have developed the dynamic analysis of single-layer cable systems. 
In [18] and [19] a nomogram (Fig. 5) for determining the values of the lowest (first) 
natural frequencies for symmetric in-plane free vibrations is presented. It can be seen 
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FIG. 5. Nomogram for determination of the lowest frequency for symmetric in-plane free vibration of the 
cable (after [18]). 

from Fig. 5 that maximal values of the lowest natural frequencies occur for the smalJ 
sag cables, i.e. rJ = 0.03-0.05 corresponds to the interval (20-200) of the parameter 
~ = q/fA, respectively. 

On the other hand, the same extensible flat sag cables were optimized according to 
minimum weight criterion in [24]. It is been shown that optimal values of cable sags 
determined according to the minimum weight criterion occur always on the boundary 
of the feasible domain (Fig. 6), which was determined by the permissible sag (f), stress 
(<1) and displacement (W) constraints. 

FIG. 6. Diagram of cross-section area A versus cable sag f and displacement w. 

A similar conclusion as for the large sag cables can be drawn also for the flat sag 
cables by comparing the results discussed above: it means that a set of compromise solu­
tions should be found by use of the multiobjective optimization approach. 

2.3. Formulation of two criteria optimization problem 

2.3.1. A general problem formulation. In general, the multiobjective optimization of 
single-layer cable systems can be formulated in the following way. Find cable sag rJ =!I I 
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and cross-sectional area A (design variables) and eventually the material properties (~.g 
modulus of elasticity E) for given cable span/, static loading q(x), dynamic loading p(x, t) 
and permissible stresses a which minimize the weight of the single-layer cable system 

s 

(2.I) minW = J A(rJ, E, q)ds1 
f)EfJ Q 

and maximize the lowest natural frequency of the in-plane free vibrations 

(2.2) maxw 1 = w 1 (rJ, A, E, q), where Q = {rJ :0.01 ~ rJ ~ 0.1} 

and satisfy the following set of constraints [18]: 
The_ static equilibrium equations 

:x [T(x)sina0 (x)]+qy:(x) = 0, 

(2.3) 
d 
dx [T(x)cosa0 (x)]+qx(x) = 0. 

The dynamic equilibrium equations 

m £72 w(x , t) _ _ !_[T x 
cos ao(x) ot 2 - ox ( ) 

ow(x' t) ( ) '( ) J OX - c X, t y X 

I ( ) 
cos a0 (x) + c x, t 

[ 

ow(x,t) '() l a ax +y x 
+ ox N(x, t) I+ s(x, t) cosa0 (x) +py(x, t)~ 

(2.4) 

m 02 u(x, t) a OX s(x, t) -
[ 

ou(x, t) ] 

=- T x - cosa x cosa0 (x) ot 2 ox ( ) I+ s(x, t) o( ) 

a + ax 
[ 

1 ou(x' t) J 
+ ox N(x, t) I+ s(x, t) cosa0 (x) +px(x, t). 

The geometric nonlinear equation 

(2.5) 
_ ou I ou 

2 . ow dy(x) I ow 2 [ ( )2] [ ( )2] s(x, t)- Tx+l Tx cos a0 (x)+ Tx---;JX+l Tx cos a0 (x). 

One of the following physical equations depending on the structural material behavior 
taken into consideration 

a) Hooke's law 

(2.6a) N(x, t) = EAs(x, t). 

b) Linear rheological laws -

II(t)N(x, t) = AF(t) s(x, t). 

II(t) and F(t) are linear differential operators with respect to time depending on the rheo­
logical model of the material: 

http://rcin.org.pl



226 S. JENDO 

For Voigt-Kelvin material: 

Il(t) = 1, F(t) = E+ij :t, 

where rj- coefficient 'of internal damping; it has been obtained 

(2.6b) 
- OE 

N(x, t) = EAe(x, t)+rJA at. 

For the standard model: 

Il(l) = 1+ ~ :
1

, T(l) = E+(l+ :.)ii :
1 

it has been found 

(2.6c) rj oN ( E)- ae 
N(x, t)+ E' at= EAe(x, t)+ 1 +£' 'f}A &· 

c) Plastic deformability 

(2.6d) I
EAe(x, t) for e ~ Ee, 

N(x, t) = A[Ee(x, t)+lj>(e-ee)] for 

where Ee is the elastic limit deformation and 4> is the post-elastic behavior function for the 
-cable (e.g. Ramberg-Osgood law for postelastic material behavior). 

d) Rigid cable 

{2.6e) e(x, t) = 0, 

.and the mechanical constraints concerning allowable stresses and displacements, e.g. 

(2.7) CTmax ~ (j, 

I 

{2.8) Wt(X, t)max ~ Wl Or W2 = J W(X, t)dx ~ W2. 
0 

The above system of nonlinear partial differential equations was derived on the basis of 
-continous model of mass distribution in dynamic analysis of single-layer cable systems. 
A solution of such a system of nonlinear equations cannot be found easily. But this system 
of equations can be linearized for the flat sag cables and elastic material behavior. In what 
follows, the system of linearized equations will be used to solve the multiobjective optimi­
zation problem for single-layer cable systems. 
2.3.2. Problem formulation for the extensible flat sag cables. The multiobjective optimization 
problem of single-layer cable systems with the assumptions of the flat sags and Hooke's 
law for material behavior can be formulated as follows. Find cable sag 'fJ = f/1 and cross­
sectional area A for the given cable span /, static loading q(x), modulus of elasticity E, 
-dynamic loading p(x, t) and permissible stress a such that the weight of a single-layer 
-cable system 

(2.9) 

http://rcin.org.pl



MULTICRITERIA OPTIMIZATION OF SINGLE-LAYER CABLE SYSTEMS 227 

is minimized. y is the bulk density of the cable material. It was assumed here that the 
catenary can be replaced by a parabolic curve of second order 

(2.10) (
x x

2
) y = 4f I- 72 ; 

because of its flatness. In this case the approximate length of cable is 

(2.11) s = I (I+~ '7 2
). 

In addition, the first natural frequency of the in-plane free vibrations 

(2.12) 

has to be maximized. 
This corresponds to the symmetric in-plane eigenmode 

(2.13) ( 
2x . 2x) 

X1 (x) = C1 1- COS CX1-
1
-- tan CXt Sin CXt -

1
- , 

where C1 is a constant and cx 1 can be determined from the following transcendental 
equation 

(2.14) 3 Hst 0 tancx 1 -cx1 +cxt = . 
16'f)2EA 

The optimal solution should satisfy the following system of inequality anct equality con-
straints: 

Side constraints 

(2.15) 0.01 ~ 'YJ ~ 0.1, A > 0. 

Static governing equation 

(2.16) 'f) = _!_ • l(!!~) 2- 24 n:r_. 
8 Jl Hst EA 

Stress constraint 

(2.17) 

where 

l 

EA J~ ow , 
Hd(t) = -- - - y (x) dx 

I ox 
0 

with 

w(x, t) = <f>(t) · X1 (x). 

Dynamic displacement constraint 

(2.18) 
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where ¢(t) is determined by the dynamic magnification factor regarding only the steady-state 
response. The last two constraints arise from the dynamic response and can be calculated 
on the basis of the dynamic loading represented e.g. by 

(2.19) p(x, t) =Po sin(wt). 

Substituting Equation (2.16) into (2.9) gives the following cable weight function 

[ ( )
2 l 1 q/ Hst 

W= yAI 1+-- - --- . 
24 Hst EA 

(2.20) 

2.4. Solution of the optimization problem 

2.4.1. Determination of the sets of the feasible and compromise solutions. In order to solve the 
multi objective optimization problem it is necessary to determine the set of feasible solutions 
in the design spaceJ (A, 'YJ) and the set of compromise solutions in the objective space 
( w 1 , fV). The sets of feasible and compromise solutions should satisfy the constraints 
(2.14)-(2.18) as given above. 

To find the sets of feasible and compromise solutions two problem formulations have 
been checked. In the first formulation we maximize the first natural frequency of free 
vibrations for a given cable weight W = const and take the constraints (2.14)-(2.18) 
into account. The second one deals with the minimization of cable weight for a given 
frequency w1 considering the same group of constraints (2.14)-(2.18). Both formulations 
give the same sets of feasible and compromise solutions as shown in Figs. 7 and 8. The 
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FIG. 7. Representation of the design 
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FIG. 8. Representation of the objective function space. 

optimization problems were solved with two different methods. The first one uses the method 
of Lagrangian multipliers [45] and require the gradients of the objective functions and the 
constraints. The gradients were evaluated numerically. 

The second algorithm is based on the evolution strategy [40] which works with random 
numbers and it can learn itself by the improvements of the objective function. This algorithm 
does not require any evaluation of gradients. 
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The two algorithms were used to compare their capability in solving the optimization 
problem described above and to increase the probability of attaining a global optimum. 
2.4.2. Choosing a preferable solution. The set of compromise solutions shown lin Figure 
8 contains a number of solutions. It has to be decided which one should be taken as the 
preferable solution. There exist a few methods of choosing a preferable solution from the 
set of compromise solutions (see Appendix). 

Using a global criterion to find a preferable solution we have k = 2 and we choose 
p = 2. The following data have been taken in numerical solutions: q = 1 kN /m, E = 200 
kN/mm2

, a= 1,2 kN/mm2
, p0 = 0.001 kN/m, w = 1 rad/s, <5 = 0.06, where <5 is the 

logarithmic decrement of damping. The objective functions are / 1 (x) = W(rJ, A) and 
f 2 (x) = w 1 (rJ, A). The ideal solution satisfying the constraints (2.14)-(2.18) was found 
numerically and shown in Fig. 8 as the point A within the coordinates: Wmin = 0.0135 kN, 
Wmax = 8.91 rad/s. It does not belong to the set of compromise solutions. The preferable 
solution was found numerically by minimization of the distance function with p = 2; 
[6] i.e. 

(2.21) minF< 2 > = [(W- Wid)2 +~.t2 (w 1 -wid)2]ll2 , 
f}ED 

where f.t = 1 kN sfrad. The preferable solution obtained by global criterion is shown 
in Figure 8 as the point B (Wpr = 1.60 kN, wpr = 6.46 rad/s) corresponding to the point 
B' in Fig. 7 (rJ = 0.0185, A = 15990 mm 2

). 

Next we determine the preferable solution using the utility function method in the 
form of (A.3) with weighting factors w1 = 0.5 and w2 = 0.5. To find the preferable solu­
tion it is necessary to minimize the utility function 

(2.22) 
2 

U(f) = 2; wd~(x) = w1 W(rJ, A)- w2 w 1 ('Y), A) 
i= 1 

subject to the constraints (2.14)-(2.18). The preferable solution found numerically is 
shown in Fig. 8 as the point C (Wpr = 0.97 kN, w~r = 5.93 rad/s) corresponding to the 
point C' on Fig. 7 ('f) = 0.023, A = 9700 mm2

). The preferable solution can also be found 
by employing the method of constrained objective functions. A first natural frequency 
of free vibrations has been chosen as objective function which should b6 maximized, i.e. 

• / Hst • jg 
(2.23) ~~xw1 = 2al V (jl V T' 

subject to (2.14)-(2.18) and additional constraints concerning the cable weight 

(2.24) _W~W(rJ,A)~W. 

The lower and upper limits of cable weight can be established on the basis of the permissible 
interval of cable sags which was taken as follows 

(2.25) 

i.e. W = W(J]) and W = W(rJ). We have taken r;_ = 0.015 and rj = 0.1. The preferable 

solution is shown in Fig. 8 as the point D -(WPr = 3.00 kN, wpr = 7.176 rad/s) correspond­
ing to the point D' in Fig. 7 ('f) = 0.015, A = 30000 mm2

). 
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3. Conclusions 

The following conclusions might be drawn on the basis of the results presented above: 
The optimal cable sags obtained separately according to minimum weight and maximum 

first frequency of free vibrations occur in different parts of the feasible domain. 
In order to satisfy the two conflicting criteria mentioned above, the multicriteria opti­

mization problem has been formulated and the sets of feasib1e and compromise solutions 
have been found. 

The advantage of multicriteria optimization approach is of getting much more infor­
mation about the optimal solution than from the single criterion optimization. 

Appendix. Methods for selecting a preferable solution 

A.l. Global criterion method 

The global criterion method can be used to solve the following problem: find the 
minimum of the vector objective function 

minjj(x), j = 1, 2, ... , k 

satisfying the constraints 

h1(x)=0, i= 1,2, ... ,s, g1 (x)~O, i= I+s, ... ,m. 

The first step consists in finding the ideal solution, that is, the vector JJ(x1d), j = I , 2, ... , k 
which satisfies the minimum condition of each objective function jj(x) considered inde­
pendently of the remaining ones. Then, the global criterion is formulated by requiring 
the distance between the optimal and ideal points 

(A .I) 
k 

F<P> = [~ !jj(x)-jj(x1d)IP] lfp, I ~ p < oo 
j= 1 

to be minimum and satisfy the constraints 

h1(x)=0, i=l,2, ... ,s, g1(x)~O, i=I+s, ... ,m. 

There exist the ·following cases: 
k 

P = 1 , p< l) = ~ lfix)-jj(x1d)l, 
j=l 

k 

(A.2) p = 2 p<2> = [? ljj(x)-jj(xid)l2f/2, 
J=l 

p--+ oo F<oo> = max ljj(x)-jj(x1d)l. 
j= 1.2, ... 'k 

The optimal vector is the one that minimizes the global criterion. The optimal solution 
depends substantially on the parameter p. For example, BoYCHUK and OvcHINNIKOV [7] 
propose to assume p = 1, while SALUKVADZE [42] suggests to putp = 2. If the particular 
functions f 1(x) involve different units, then they are multiplied by coefficients flJ = 1 
that include the corresponding units so that the expressions p,1jj(x) become dimensionless. 
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A.2. Method of utility function 

By employing this method, the problem of multicriteria optimization is formulated 
as follows: find the minimum of the function 

min U = min U(ft ,!2 , ... ,h) 

subject to the constraining conditions 

ht(x)=O , i=1 , 2 , ... ,s, gt(x)~O, i=l+s , ... , m. 

The function U{/1 ,/2 , ... ,fk) is called the utility function. It must be defined by analysing 
the intended objectives that are to be attained by making use of the solution of the opti­
mization problem. In many cases, it may be difficult to define this function. This problem 
was treated by, among others, FARQUHAR [14], FISHBURN [15], HUBER [20] and KEENEY 

and RAIFFA [31, 32]. 
The solution of the problem is the contact point between the compromise set and the 

contour lines of the function U (for; details see e.g. CHANKONG and HAIMES [9]). The utility 
function U(/1 , / 2 , ••. , fk) can take various forms. It is most frequently additive and disjunc­
tive with respect to the objective function, that is 

U(ft,/2, ... ,h)= Utft+U2f2+ . .. +U~. 

In a particular case, prioritization factors of individual objective functions can be given 
and then 

k 

(A.3) U(ft ,/2' ... ,h) = .2 WJh(X). 
j = l 

Other form of the utility function can be e.g. 

k 

U(ft,f2, . .. ,h)= IT UJfj· 
j=l 

The advantage of this method is its simplicity and the reduction of the problem of multi­
criteria optimization to the optimization with a single objective function. The principal 
difficulty lies in the determination of a utility function. 

A.3. Method of constrained objective functions 

This method is applicable provided that it . is possible to determine the maximum 
values to be attained by the particular objective function. If this is possible, the problem 
of multicriteria optimization can be formulated as follows: find 

minf,(x), 

subject to the constraints 

ht(x)=O, i=1,2, .. . ,s, gt(x)~O, r=l+s, ... ,m 

and 

jj(x) ~ u1 , j = 1, 2, .. . , k, j =I= r. 
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In a version of this method, the objective function has its lower and upper bound limits, 
that is, the additional constraints 

jj(x) ~ 11 , j = 1,2, ... ,k, j # r 
are produced. 

In using this method, the main difficulty consists in finding such constraints 11 and u1 
that would ensure the attainment of particular objectives and the existence of a non-empty 
<>bjective region. One can also vary these and perform trade-off analysis as in the surrogate 
worth trade-off method (see e.g. HAIMES and HALL [17]). M~reover, it is necessary to make 
a decision which one of the objective functions should be selected as a criterion in solving 
the problem. 
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