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Unsteady axisymmetric turbulent boundary layer
on a slender body of revolution

M. KUMARI and G. NATH (BANGALORE)

THE UNSTEADY Incompressible turbulent boundary-layer flow over a slender body of revolution
has been studied using an eddy-viscosity model for the Reynolds shear stress. The unsteadiness
in the flow field is introduced by the free stream velocity which varies with time. The nonlinear
partial differential equation with three independent variables governing the flow has been solved
numerically using a finite-difference scheme developed by Keller. The free stream velocity is
found to exert strong influence on the characteristics of the flow within the boundary layer.
The phase angle between wall shear and fluctuating free stream velocity is much smaller than the
phase angle between displacement thickness and fluctuating free stream velocity. The skin
friction coefficient decreases with the streamwise distance or transverse curvature parameter
whereas the Reynolds number increases. The transverse curvature strongly affects the
phase angle between wall shear and fluctuating free stream velocity, but its effect on the phase
angle between displacement thickness and fluctuating free stream velocity is small.

Omowiono problem turbulentnego niescisliwego przeptywu warstwy przyéciennej wokot smuk-
lego profilu obrotowego, stosujac model lepkoéci wirowej dla napr¢zenia Reynoldsa. Nieusta-
lony charakter przeptywu wprowadzono, przyjmujac zmienno$¢ czasowa strumienia swobod-
nego. Nieliniowe rownanie rozniczkowe o trzech zmiennych opisujace przeplyw rozwiazano
numerycznie za pomocg schematu roznic skonczonych wprowadzonego przez Kellera. Stwier-
dzono, ze predkos¢ strumienia swobodnego wplywa istotnie na charakter przeplywu w warstwie
przysciennej. Kat fazowy miedzy $cinaniem na $ciance a predkoscig strumienia swobodnego
jest o wiele mniejszy od kata miedzy grubo$cia odpowiadajgca stracie wydatku a predkoscia
strugi swobodnej. Wspodlczynnik tarcia powierzchniowego maleje ze wzrostem odleglosci mie-
rzonej wzdluz pradu i z parametrem krzywizny poprzecznej przy wzroscie liczby Reynoldsa.
Krzywizna poprzeczna wplywa w duzym stopniu na kat miedzy $cinaniem na $ciance a fluktu-
acjami predkosci strumienia swobodnego, natomiast jej wplyw na drugi kat fazowy jest nie-
wielki.

O6cy>kneHa mpobyiema TYPOYIEHTHOTO HECHKMMAEMOTO TEUEHMS TIOTPAHHYHOTO CJIOS BOKPYT
TOHKOTO BpAalaTeIbHOrO MPoGuisa, IPUMEHAA MOJENb BUXPEBOH BA3KOCTH IS HANPSXKEHHA
Peitnonbaca. HeycTaHOBHBIUMIICA XapaKTep TEUYECHHs BBEIECH, NPHHHMMas BPEMEHHYIO Ilepe-
MEHHOCTh CBODOJHOro moroxa. HenmnueitHoe mucdepeHInanbHoe ypaBHEHHE C TpemsA Iepe-
MEHHBIMH, OINMCHIBAIOIIEe TEUEHHE, PELICHO YMCJIEHHO IPH IIOMOLLUM CX€MbI KOHEYHBIX pas-
Hocrel BBefeHHoH Kesnepom. KoHcraTHpoBaHO, uTo CKOpOCTE CBOOOMHOIO NOTOKA BIIHMAET
CylIleCTBEHHLIM 00pas’oM Ha XapaKTep TeUeHHsA B IOrPaHMUYHOM cyioe. dPa3oBBIA yrojl Mexay
COBHUI'OM Ha CTEHKE U CKOPOCTBIO CBOGOI[HOFO TIIOTOKAa HA MHOI'0 MEHBIUE YEeM YI'OJI MEXXAY TOJI-
I{MHOH, OTBEYAIOllell IIOTEPH MMOTOKA MACChI, H CKOPOCTBIO cBoOomHoit crpyn. Koaddunuent
TIOBEPXHOCTHOrO TPeHHs1 yObIBAeT ¢ POCTOM PACCTOSIHHS M3MEPseMoro BIOJb TOKA M C Iapa-
METPOM TMoONepeuyHod KPUBH3HBLI NpH pocTe uyucna Peiguonbaca. ITomepeunas KpuBH3HA
BanseT B Oonbuioi crernenu Ha HasoBbIt Yol MEKIY CABHIOM Ha CTeHKe M (GIYKTyalMaMH
CKOPOCTH CBODOIHOTO TIOTOKA, €€ Ke BIUAHUE Ha BTopoH ¢a3oBblil yron Hebosblloe.

Notations

2%

A Van Driest damping parameter,
Ay, B, ¢, ¢; constants,
b dimensionless eddy-viscosity parameter,
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C, surface skin-friction coefficient,
A f dimensionless stream functions,
f’ dimensionless velocity in the x-direction,
w skin-friction parameter,
H shape factor,
L, L, reference length and mixing length, respectively,
p; dimensionless pressure gradient parameter,
P time period,
P, function of x and ¢,
r radial distance from the axis of revolution,
ro radius of body of revolution,
R transverse curvature parameter defined in Egs. (12);.4
Rex, Res  Reynolds numbers defined with respect to x and 6, respectively,
t,t* time and transformed time, respectively,
! transverse curvature function defined in Egs. (12)3.4,
u,v velocity components in the x and y directions, respectively,
uo value of w, at t =0,
u; friction velocity,
x, y distances along and perpendicular to the surface,
o« parameter in the outer eddy-viscosity formula,
y intermittency factor,
4*,0 displacement and momentum thicknesses, respectively, angle (see Fig. 1),
[ angle (see Fig. 1),
€, €% dimensional and dimensionless eddy-viscosities, respectively,
n, B, & transformed coordinates,
1,v viscosity and kinematic viscosity, respectively,
o density,
7w total shear stress at the wall,
Ty, T2 shear stresses due to laminar and turbulent boundary layers, respectively,
¢ phase angle between . and f,
@, phase angle between ¢* and u,,
y dimensional stream function,
w frequency parameter,
Subscripts
e, w conditions at the edge of the boundary layer and at the wall, respectively,
i, 0 inner and outer regions, respectively,
t, x,y derivatives with respect to t, x, y, respectively,
oo conditions in the free stream,
Superscript

1. Introduction

prime denotes derivatives with respect to 7).

THE sTUDY of unsteady turbulent boundary layers is of great interest from both theot-
etical and practical points of view. The effect of time dependence on the turbulent boundary
layers is found to be crucial in flows over blades in compressors and turbines, on the aero-
dynamic surfaces of vehicles in maneuvering flight, in the flow over helicopter rotor in
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translating motion etc. In recent years, there have been published several studies dealing
with unsteady turbulent boundary layers. In these studies either the eddy-viscosity mixing-
length concepts to model the Reynolds stresses [1—6] or the approach advocated by
BrADSHAW [7] have been used. As far as the authors are aware, the unsteady incompres-
sible turbulent boundary layer flow over a slender body of revolution has been studied
so far, although the analogous steady case has been considered by several authors [8—11].

In the present paper, the unsteady incompressible turbulent boundary-layer flow over
(a slender body of revolution has been studied using eddy-viscosity model valid for thick
axisymmetric turbulent boundary layers. The governing partial differential equations
with three independent variables have been solved numerically using an implicit finite-
difference scheme developed by KELLER [12]. The results have been compared with both
the theoretical and experimental results.

2. Governing equations and eddy-viscosity model

Let us consider an unsteady incompressible turbulent flow past an axisymmetric slender
body with transverse curvature effects (see Fig. 1). We assume that there is a time-depen-

uglt) . ! o

L

F1G. 1. Schematic diagram of a body and coordinate system.

dent axial flow in the free stream w.(¢). The governing boundary layer equations for the
velocity field are [5, 10, 11]

6)) () + (r0), = 0,

2 u v +ou, = (or)~1(rv),+ (u.),,

where

3) T=T,+7T; = pu,—ou'v’, r=rotycosh, 0<1.

The initial and boundary conditions are given by

4) u(xa Y, O) = ui(x’ y)s v(x, ) O) = ‘Ui(xﬁ y)s
( u(x,0,1) =v(x,0,t) =0, u(x, c0,t) = ut).

Here, we have used the eddy-viscosity concept which relates Reynolds shear stress
—pwv’) to mean velocity gradient u, by [5, 11, 13]

(%) — QU = Qeyly.
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It may be remarked that the eddy-viscosity & has the same units as the kinematic viscosity
» for laminar flows. But ¢,, is a function of the velocity field unlike » which is a property
of the fluid. Hence its variation with velocity field can be obtained empirically from
experimental data. In the above formulation, the turbulent boundary layer is treated as
a composite layer consisting of inner and outer regions with a separate eddy-viscosity
formula for each region. The expression for ¢,, in the inner region is given by [11]

(6) (emh = Li(r/ro)uy,
where
L, = 0.4r,In(r/ro) {1 —exp[— (ro/A) In(r/ry)]},
) A = 2607 (1-11.8p1) "%, u, = (v,./0)'%
Ty = plth)w, P = (/uz) (o)

In the outer region the expression for &,, is written in the form

8) (en)o = 0.0168u, 6%y,
where

y = 1.55/(1+a), o= 0.55[1—exp(—0.243z{'*—0.298z,)],
¢)] z; = (Reg/d425)—1, Rep = uol/v,

8 = [ Clro)(U—ufu)dy, 6= [ (r/ro)(ufu)(1—ufu)dy.
0 0

Here x and y are the distances along and perpendicular to the surface; x and v are the
velocity components in the x and y directions, respectively; ¢ is the time; r is the radial dis-
tance from the axis of revolution; ry is the radius of body of revolution; 6 is the angle
which the tangent to the meridian profile makes with the body axis; ¢ is the density; u is
the coefficient of viscosity; 7 is the shear stress and 7, and 7, are its contribution due to
laminar and turbulent boundary layers, respectively; u, is the free stream velocity u,
at t = 0; ¢, is the eddy-viscosity and (e,,); and (e,,), are its values in the inner and outer
regions of turbulent boundary layers. y is the intermittency factor; L, is the mixing length;
A is the Van Driest damping parameter; u, is the frictional velocity; » is the kinematic
viscosity; p;t is the dimensionless pressure gradient parameter; 6* and 6 are the displace-
ment and momentum thicknesses, respectively; Re, is the Reynolds number defined
with respect to 0; the substripts ¢, x and y denote partial derivatives with respect to ¢, x
and y, respectively; the subscript i denotes the initial conditions and the substripts e
and w denote conditions at the edge of the boundary layer and on the surface, respectively.

It may be remarked that here we have considered the unsteady incompressible turbulent
boundary layer flow over a slender body of revolution without mass transfer (v, = 0)
when the velocity at the edge of the boundary layer v, depends on time ¢ only (i.e. u, = u(t)).
This problem is different from those studied by CeBeci in Refs. [5, 11]. The Van Driest
damping parameter 4 in our equation (7) is identical to that of Ref. [3] if we put p} =
= 0(pf = w73 xu,(u,),) in Eq. (6) of Ref. [5], because (u.), = O since u, is a function
of t only. It also reduces to that of Ref. [11] if we put p;/ = 0 in our equation (7) and
also put v}, = 0(v} = vu/u,), p* = 0(p* = —(v/ou,)p,) in Eq. (4) of Ref. [11]. This
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implies that N = 1 in Eq. (4) of Ref. [11]. It may be noted that CeBECI has given the Van
Driest damping parameter 4 in Eq. (4) of Ref. [11] for steady compressible turbulent
boundary layer flow with mass transfer which is different from the problem considered
here.

Applying the following transformations
£ = ouuo(ro/L)*x, 1 = ouo(2§)™**(r/L)y,
(10) t* = ouuo(ro/L)*t, (r/L)u =1v,, —(r/L)v =y,
v = QE'VfE 1%, u=uf’,
—v = QEVA(LIY) puo(ro/L)* [f+26fe—nf"],
to Eq. (1), we find that it is identically satisfied and (2) reduces to
an A +O"T +£f"+ Py = 2x(ffx—f"fe+us'f2),

where

o
|

1+¢k, &h==¢n/r (em= (&m) OF (€n)o),
a = @xfud) (), (rlro) = 1+,
t=(vfro) = [L+Q/R*qI'2 =1,  £(6/98) = x(d]0x),
R = (Re /4)(ro/X)?, Rex = ugx/y, £&(d/0t¥) = x(d/dt).
The boundary conditions are given by
f=f=0 gt g=0,
f =uuy, a mn-o>o0, 20, xz=0.

o
[

(13)

The initial conditions at ¢ = 0 can be obtained from Eq. (11) by putting ¢t = f, = p} =
— P, = 0 in it. Similarly, the initial conditions at x = 0 can be obtained from Eq. (11)
by putting x = 0 in it and they are given by -

A+ T+ = 2x(ffx =f"'f),
[ +1)f ") +ff" = 0.
It may be noted that at 1 = 0, the flow can be either laminar or turbulent. In the latter
case the surface distance x must be greater than zero [5]. The governing Eq. (11) also
reduces to that of the flat plate case which was studied by Ceseci [5] if we put = 22 3
and f = 2-12f in it.

Using Eq. (6) to (9), the dimensionless eddy-viscosity ¢,, both in the inner and outer
regions can be expressed in the form

(14)

(et = 0162 (¢ fro) RReYf" [Inr ro) (1 = exp {— (rof ) In(r/ro) T
() == {(e,,.)a — 0.0168Q2Re) (7. —f.),

where

s rol A = (1/26)(f4)'12(8R*Re,)!*(r/ro)2(1 — 11.8p7).

The skin friction coefficient can be written as

(16) Cr = 27, /ous = (2/Re)'*f%.
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From Eq. (9),, the displacement and momentum thicknesses and shape factor are given by

8* = (2/Re)'*x[no—(fulfH)), H = 6*/6,

(17 o
6 = (2/Re)!/2x of (F L) [ = (F ().

Here £ and 7 are transformed coordinates; L is the reference length, #* is the trans-
formed time; v and f are the dimensional and dimensionless stream functions, respectively;
' is the dimensionless velocity in the boundary layer; ¢}, is the dimensionless eddy-viscosity:
b is the dimensionless eddy-viscosity parameter; P, is a function of x and ¢; # is transverse
curvature function; R is the transverse curvature parameter; Re, is the Reynolds number
with respect to x; f, and C; are the skin friction parameter and coefficient, respectively;
and H is the shape factor; and the substript co denotes the conditions at the edge of the
boundary layer. The prime denotes derivatives with respect to 7.

For fluctuating free stream velocity distribution u.(t) = uo(1+ Bcoswt)/(1+B), the
phase angle between the free stream velocity #, and the surface skin friction parameter
[ for a fixed value of x = x, can be obtained by following the analysis of CesecI [5, 13].
The phase angle ¢ is given by

fo+ P

(18) cosp(xo) = (demfw)™! f [e(®)— (1 + B)™ o] [f w(xo, 1) —f w(xo)ldl,

to

where
to+P
uo = (1+BP [ w@dr, P = 2n/o,
to
. fo‘+P
fux) = P4 [ fulxo,Ddt, 1o =P,
to
(19) u(t)—(1+B) 'uyg = Acoswt, A = uyB/(1+B),

fw(xo, )—fw(xo) = ccos[wt+@(xo)],

to+ P

47 = () [ ) -uo(1+ By Pat,

to

to+P

¢t = (@) [ [fulxo, N—Fu(xo)ldr.

Here w is the frequency parameter and B is a constant. Similarly, the phase angle ¢,
between displacement thickness 6* and external velocity (i.e. between 6* and u,) is given by

to+ P

(200  cosi(xo) = (Aeymjw)t [ [u(t)— (1 +B) o) [*(x, 1)— 6 (xo)ldt,

to
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where
to+ P

(o) = P71 [ 8%(xo, ),
@1 r
ci = (fn) | [6%(xo, 1)— *()]%d.

Following the proceciyre OfﬁCEBECI [5, 13], the in-phase and out-of-phase velocity
components denoted by 4 and B, respectively, can be written in the form

27jw

o uDcosp o (1+B) f ,

A(n) = WD 2. B y f'(n, t)coswtdt,
22) S

= uVsing w (1+B) : ;

B(n) = wn —E;—B—o f'(n, t)sinwtdt,
where
23) uof" = u(x, y)+utcospcoswt—usingsinwt,

u, = ug(l+Bcoswt)/(1+B), u')> = uyB/(1+B).

3. Results and discussion

The governing equation (11) has been solved numerically under the boundary condi-
tions (13) and initial conditions (14) with relations given in (15), using an implicit finite-
difference scheme developed by KELLER [12]. Since the detailed description of the method
for three independent variables is given in [5, 13, 14], for the sake of brevity, its descrip-
tion is omitted here. Here, we have studied the effect of step sizes An, Ax and At and 7,
(edge of the boundary layer) on the solution with a view to optimize them. Subsequently,
we have carried out the computation with 47z = 0.2 and Ax = 0.1 and 0.15 as the first
and second step size. For x > 0.25, Ax = 0.25 has been used. We have used the non-
uniform step in the n direction because the boundary layer thickness is large for turbulent
flows and the gradient of velocity at/or near the wall is quite high as compared to laminar
flows. Hence, to get a better accuracy, small step size is required while large step size can
be used away from the wall. Initially, the edge of the boundary layer 7, was taken as 6
with 4n = 0.1. During the calculation 7, was allowed to grow. The detailed description
of the variable step size is given by CeBEcI and SMITH [15]. The results presented here are
found to be independent of the step size and 7, at least up to the 4th decimal place. For
computation, two types of free stream velocity distributions have been used: (I) a fluctu-
ating flow given by v, = uy(1 +Bcoswt)/(1+ B) and (II) an accelerating flow represented
by u, = ug[1+(¢/e)?], where ¢ has a dimension ¢ (¢ is measured in sec). The present method
of solution is valid for both the laminar and turbulent flows; here it is assumed to be laminar
and turbulent flows; here it is assumed to be laminar at x = 0 and considered to be tur-
bulent at x > 0 (say x = 0.1). We also find that the method is extremely efficient and a
typical data takes about 20.75 sec CPU time on DEC-1090 computer.
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Table 1. Comparison of skin-friction for steady laminar flow.

Cr(Rey)!/?
R
Present calculation CeBect [9]

1000 0.6868 0.6867
100 0.7292 0.7305
10 0.8597 0.8600
1 1.1913 1.1910
0.1 2.0048 2.0086
0.01 3.9657 3.9699
0.001 9.1199 9.1293

In order to assess the accuracy of our method, we have compared our skin friction
results (Cy(Re,)'/?) for steady laminar flow with those of CeBeci [9]. The comparison is
given in Table 1. We have also compared our skin friction results (Cy) for steady turbulent
flow with the experimental results of RICHMOND [8], the theoretical results of WHITE [10]

“Table 2. Comparison of skin friction coefficient for steady turbulent flow for w. = wo, 4o = 5.33 m/s,
v =2.09%x10~5 m?/s.

Cyx 10°
d(= 2rg) cm Reg Presen‘t Cegect [11] RicumonD (8] WHITE [10]
calculation
0.06096 2100 8.215 8.21 4,95 7.71
0.0254 8750 3.016 3.02 2.90 3.18

“Table 3. Phase angle between wall shear and oscillating external velocity for u, = 5.33 m/s, B = 0.147,
w = 1.57 rad/s, v = 2.09x 10~5 m?/s.

P

® R = 0.001 R=1 R = 1000
u—: One Two One Two One Two

cycle cycles cycle cycles cycle cycles
0.147 1.16 1.12 : 1.88 1.86 3.69 3.66
0.295 1.22 1.21 2.49 2.53 4.99 5.00
0.589 1.45 1.42 2.52 2.56 6.45 6.56
1.178 1.76 1.70 2.68 2.67 8.51 8.52
1.767 1.77 1.74 2.61 2.72 9.50 9.51
2.356 1.79 1.80 2.89 2.64 10.30 10.25
2.946 1.79 1.76 3.16 3.15 10.91 10.62
3.240 1.75 1.79 3.10 3.15 11.04 10,72
3.535 1.77 1.74 3.19 3.16 11.12 10.76
3.829 1.71 1.75 3.19 3.25 11.20 10.74
4.124 1.74 1.72 3.25 3.29 11.25 10.73
4.418 ‘ L73 1.74 3.65 3.64 11.29 10.68




Table 4. Phase angle between displacement thickness and oscillating external velocity for u, = 5.35 m/s,
B = 0.147, w = 1.57 rad/s, v = 2.09%x 10~5 m?/s.

P1
» R = 0.001 R=1 R = 1000
f | One Two One Two One Two
! cycle cycles cycle cycles cycle cycles
0.147 169.24 169.42 170.56 169.47 133.69 133.67
0.295 169.90 169.99 169.94 169.80 143.27 142.24
0.589 169.03 168.92 160.10 160.71 141.64 141.74
1.178 166.95 168.43 167.82 168.38 140.28 140.63
1.767 167.91 169.29 165.45 165.90 140.68 141.53
2.356 169.10 169.90 163.33 163.55 141.59 142.97
2.946 169.65 170.03 162.25 162.45 141.78 144.02
3.240 170.57 170.35 161.57 161.78 142.33 144.55
3.535 169.73 170.23 160.97 161.08 142.81 145.15
3.829 170.35 170.22 160.41 160.52 143.36 146.24
4.124 170.33 170.26 160.03 160.14 143.83 147.10
4.418 170.36 170.42 160.34 160.09 144.32 147.89
23
18
o™
=5
x 13
-
(3]
8
3 | ]
0 5 10 15
X:cm
F1G. 2. Skin-friction coefficient C,x10% for u, = uo(1+ Bcoswt)/(1+B), up = 5.35 m/s, B = 0.147
o = 1.57 rad/s, v = 2,09x10~% m?*/s ——— , R = 1000; . , R=1;
— ———, R=10.001.
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and CeBecl [11]. The compasison is presented in Table 2. In both cases, the results are found
to be in excellent agreement.

For turbulent flow, the variation of the phase angle ¢ between wall shear f,, and the
external velocity u, = uy(1+ Bcoswt)/(1+ B) with reduced frequency (wx/u,) for two
cycles and for three values of transverse curvature parameter (R) is given in Table 3.
Similarly, Table 4 gives the variation of the phase angle ¢; between displacement thickness
and the external velocity u, = uo(1+ Bcoswt)/(1+ B) with reduced frequency (wxfug).
It is observed that in both cases the results differ very little from one cycle to another.
Similar trend has been observed by CeBecl [8, 13] for unsteady flat plate case. We also
observe that the phase angle ¢ between /", and u, is much smaller than the phase angle ¢,
between 6* and u,. The effect of transverse curvature R is found to be more pronounced
on ¢ than on ¢,.

10

Xx:cm

F1G. 3. Reynolds number with respect to 6%, Re;x 1073, for u, = 4o (1+ Bcoswt)/(1+ B), ug = 5.33 m/s,
B =0.147, w = 1.57 rad/s,» = 2.09%x 10" m?®/s. ———, R = 1000; ———, R = 1;
— ———, R = 0.001"

The turbulent flow results for oscillatory free stream velocity u, = u#,(1=Bcoswt)/(1 +
+ B) are given in Figs. 2—7 and for constantly accelerating free stream velocity u, =
= uy[14(t/e)?] in Fig. 8.
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X:cm

FIG. 4. Reynolds number with respect to 6, Rey; x 10~3, for u, = uo(1+ Bcosw?)/(1+ B), up = 5.33 m/s,
B=0.147, w = 1.57rad/s,» = 2.09%x10-*m?/s ———, R=1000; — - ——, R=1;
——=——, R=0.001.

Figures 2 to 5, respectively, give the variation of skin-friction coefficient (Cy), Res.,
Re, and H (where Re, and Re, are the Reynolds numbers defined, respectively, with
respect to 6* and 0, and H = 6*/6 is the shape factor) with the streamwise distance x for
several values of ¢ and R. It is observed that the skin-friction coefficient (Cy) decreases
rapidly with x in the range 0 < p < 10 (Fig. 2). However, the change is small when
x 2 10. For given x and ¢, C; also decreases as the transverse curvature parameter R
increases, but for a prescribed x and R, C; oscillates with time 7. The Reynolds numbers
Re,. and Re, increase with p and R, whereas H decreases with x, but increases with R
except when R = 0.1073. However, they all oscillate with ¢. It may be remarked that the
reduction in the skin friction coefficient C; as x and (or) R increase is due to the increase
in the boundary layer thickness. Similarly, the oscillatory behaviour of C; with time ¢
is due to its response to the free stream velocity which also oscillates with 7.

Figure 6 shows the in-phase and the out-of-phase components of velocity (4(%), B(n))
for two values of x. It is found that the in-phase component of velocity () increases
with % and tends to 1 whereas the out-of-phase component of velocity B(x) first increases
with % in the range (0 < < 2.3) and then rapidly decreases.

The velocity profile /' for different values of transverse curvature parameter R and
streamwise distance x is given in Fig. 7. The velocity profile becomes very steep as the
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1.3 ] |
0 5 10 15

x:cm

FiG. 5. Shape factor H for u. = uo(1+ Bcoswt)/(1+ B) uo = 5.33 m/s, B =0.147, w = 1.57 rad/s,
vy=209%x10"°m?)s, —— ,R=1000; — - —,R=1; ———, R = 0.001.

transverse curvature R decreases due to higher wall shear. However, the profile /' becomes
less steep as x increases.

The results (Cy, Res, Rey, H) for accelerating flow (u, = uo(1+&72¢%)) are given
in Fig. 8. The skin-friction coefficient C, is found to increase with £, whereas Re,, Re,
and H decrease. However, their behaviour with x is found to be qualitatively similar to
those of the osecillatory case.

4. Conclusions

It is observed that the boundary layer characteristics are strongly affected by the free
stream velocity. The skin-friction coefficient is found to decrease as the transverse curva-
ture parameter and streamwise distance increase. The transverse curvature strongly affects
the phase angle between wall shear and fluctuating free stream velocity, but its effect
on the phase angle between displacement thickness and fluctuating free stream velocity
is small.
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