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Mixed boundary-initial value problem for the equations
of thermodiffusion in solid body

J. GAWINECKI and K. SIERPINSKI (WARSZAWA)

THE PROOFs of the existence and uniqueness of the weak solution of the initial-boundary value
problem for the equations of linear thermodiffusion in a solid body with a mixed boundary
condition for temperature, displacement and stresses and the Dirichlet boundary condition for
chemical potential have been presented. These proofs have been obtained using the Faedo—
Galerkin method in suitable chosen Sobolev spaces.

Przedstawiono dowody istnienia i jednoznacznosci stabego rozwigzania mieszanego zagad-
nienia brzegowo-poczatkowego w termodyfuzji cial stalych z mieszanym warunkiem brzego-
wym dla temperatury, przemieszczei i naprgZefi oraz warunkiem Dirichleta dla potencjatu

chemicznego. Dowody te przeprowadzono, stosujac metode Faedo-Galerkina w odpowiednich
przestrzeniach Sobolewa.

IpencraBnensr MoKa3aTeNbCTBA CYLIECTBOBAHMA M €HHCTBEHHOCTH CNIaforo pellleHHs Kpae-
BO-HAuabHOM 3amaun B TepMoaucddysuu TBEPILIX TeJI CO CMEIAHHLIM TPAHHYHEIM YCIOBHEM
IUTA TEMIEPATYPHI, TIEPEMENIEHHIA H HATIPSXKEHnid, a Taroke ¢ yciaoBHem JupHxie A XMMH-
YeCKOro MOTEHNHaNa. JTH [JOKa3aTeNIbCTBA IPOBEJEHbI, IPUMeHss Meton Paemo-Ianepxuma
B COOTBETCTBYIOMMX mnpocrpancrBax Cobolesa.

1. Introduction

UNDER the influence exerted by the action of external loads, heating of the body and
diffusion of the matter into the solid will arise in this body a displacement field u(x, ¢)
the temperature 0,(x,7), and chemical potential 6,(x, ¢). The relations between these
fields, called the equations of thermodiffusion in a solid body, have been investigated by
W. Nowackr (cf. [18, 19, 20, 21]), J. S. PoDSTRIGAC (cf. [22, 23] and other authors. In
the paper [19] W. Nowacki derived a form of the equations of thermodiffusion other than
in [23] by taking a displacement field u(x, t), the temperature 0,(x, ), and the chemical
potential 6,(x, t) as independent functions. These fields are functions of point x = (x4, ...,
woy X)) (r=1,2,3) and time 7. The phenomenon of thermodiffusion (cf. [19, 20, 21])
is described by the coupled system of five second order partial differential equations:

(1.1 0diu = pdu+ QA+ V(V - u)—y, V0, -y, VO, +X, (1)
(1.2) 8,0, = kA0, —y, 8,V - u—dd,0,+Q,
(1.3) 78,0, = DAO,—v,8V - u—dd,0,+Q,.

In these equations by v = (u,, ..., #,) we denote the displacement vector field of the body,
by 6,(x, t) — the temperature of the body, by 0,(x, ) — the chemical potential, by

M A4=20,8,j=1,..,r, V(V-u) = graddivu, V0, = gradb,, i =1, 2.
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X = (X, ..., X,) the yector of body forces, by Q, — the intensity of the heat source,
by Q, — the intensity of the source of diffusing mass: 4, 4 — are Lamé’s constants, o —
density and y, = 3Ka,, y, = 3Ka,, where K = 1 +(2/3)u, while a,, a, stand for coeffi-
cients of linear thermal and diffusion dilatation.

Quantity k is the coefficient of thermal conductivity, while D — the coefficient of
diffusion. Quantities n, ¢, d are the coefficients of thermodiffusion. These quantities satisfy
the (cf. [21]) following relations:

14 u>0, i+Q23)u>0, k>0, D>0, ¢>0, n>0, nc>d> (3.

The concentration field 0;(x, r) is related to the displacement vector u(x, t), the tempera-
ture 6,(x, r), and chemical potential 0,(x, ) as follows:

(1.5) 05 = y,divu+df, +nb,.

The system of Egs. (1.1)—(1.3) is hyperbolic with respect to some of the unknown functions
and parabolic with respect to others. This system contains as particular case (assuming
some of the coefficients to be equal to zero) the well-known system of partial differential
equations of coupled thermoelasticity (cf. [17]). The existence problem in the case of
thermoelasticity is studied in [4, 13, 12, 17].

J. S. PopsTRIGAC (cf. [22, 25]) solved many particular, mostly one-dimensional,
problems of thermodiffusion in a solid solution. In the papers [18, 19] W. NowAck1 derived
the fundamental theorems for the dynamic problems of diffusion in a solid body such as
the theorem of virtual work of variation of displacement and rotations, fundamental
energy theorem as well as the theorem of the reciprocity of works. In the paper [21]
he reduced the system of thermodiffusion equations to wave equations of a comparatively
simple form owing to the introduction of elastic potentials and a Galerkin-type repre-
sentation.

In [27] the existence of the solution of an initial value problem for Eqs. (1.1)—(1.3)
has been proved in the class of smooth functions vanishing at infinity using the method
of successive approximations.

The existence and uniqueness of the solution of the first boundary-initial value problem
for Egs. (1.1)—(1.3) was proved by G. FicHERA (cf. [8]) in the class of functions C! {4 x
% [0, +00)}NnC? {4 x [0, + )} using the Laplace transformation (4 —a bounded
domain (open set) of the three-dimensional space with a piecewise smooth boundary).

T. V. BURCULADZE in the paper [3] using the Laplace transformation reduced the
considered initial-boundary value problems for Eqgs. (1.1)—(1.3) to the system of integral
equations and proved an existence theorem for this system of integral equations.

In this paper, using the Faedo-Galerkin method, the existence and uniqueness of a weak
solution of the initial-boundary value problem for Eqgs. (1.1)—(1.3) with a mixed boundary
condition for temperature, displacement and stresses, and the Dirichlet boundary con-
dition for chemical potential have been investigated in suitably chosen Sobolev spaces.

(?) The inequality nc > d? and other inequalities for the constitutive constants have been obtained
by W. NowAckl in [21]. The inequality nc > d? plays a very important role in the proof of the existence
and the uniqueness theorem of the weak solution of the problem considered in this paper (cf. formula
(4.16)).
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The method used in this paper should work even with more general or different bound-
ary conditions. It must also be mentioned that the method developed in this paper
applies to nonisotropic, inhomogeneous bodies as well. However, this extension will not
be discussed here.

2. Scbolev spaces

By r we denote the dimension of the Euclidean space E" in which the conﬁgufation
of a thermo-diffusive-elastic medium is embedded. The analysis will be carried out for
general r though the model is physically meaningful only for r =1, 2, 3. By x we denote
the typical point of E"and by x,, ..., x, the coordinates of x with respect to a fixed Cartes-
ian coordinate system. By a = («y, ..., «,) we denote multi-index and by |x| = o;+ ...
... +a, its length. We introduce the following notation for derivatives with respect to
the space variables ¢* = 0§1... ¢ where 0; = % for j =1, ...,r. Time derivatives

J
are denoted by

ns

s g o _d
3,—3—t5 where s =1,2 (3,—at).

Let G be an open bounded set in E* (cf [7] p. 13) with regular boundary 8G. |

LP(G) is the space of(®) (equivalence classes of) measurable functions u such that
(p being given with 1 € p € )

1/p
@1 llllurios = ( [ 10IPdx) " < 0, 1< p <,
G
(2.2) lullLo@ey = esss(gpiu(x}l, p=o

taken with the norm (2.1) or (2.2), L?(G) is a Banach space; if p = 2, L*(G) is a Hilbert
space, where the scalar product corresponding to the norm (2.1) (where p = 2) is given by

2.3) (W, Doy = | u()o(x)dx.
G

The Sobolev space Wj(G) (cf. [2] p. 29—38, [28] p. 53—64), 1 < p < o0, consists
of those functions u belonging to LP(G) with weak derivatives é*u (Ja| < m) belonging

to L?(G)

2.4) Wi (G) = {u:ue LP(G):&u e L*(G); |o| < m}.
With the norm
Yy
2.5 llullwmeay = ( 2 l!ﬁ“ul{{p(g)) ’
la|<m

it is a Banach space.
The case p = 2 is fundamental. To simplify the writing, we will put

W3(G) = H"(G)

() All functions considered here are real-valued.
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with the scalar product

2.6) @ Damer = D, (@, P)ixars

laj<m

it is a Hilbert space. The norm in this space is given by

@7 lullgmeer = { ) 18%l1E3ay) "

|| <m
C*®(G) denotes the space of infinitely differentiable real-valued functions defined on G.
C%(G) consists of those elements of C=(G) with compact support contained in G, By Hg(G)
we denote the Hilbert space obtained as the completion of CP(G) by means of the norm
[ - ||amcy given by the relation (2.7). Hg'(G) is the subspace of the space H™(G).

By L%(G), H™(G) we denote the r-fold Cartesian product of L*(G), H™(G), respec-
tively. We denote the scalar product and norms in the space L*(G), L*(G) (H™(G), H™(G))
by (» Jezs (o s (Co my (5 dam) a0d {1 1z (1 12 (1 llam, |1 - llum), respec-
tively.

In this paper we will investigate the solvability of evolution problems using the Faedo-
Galerkin method in the space L?(I, X) where I = (0,9) = R (0 < ¢ < ) — the time
interval, X — the Banach space with its norm denoted by || - |[x (cf. [6]).

By L?(I, X) we denote the space of (classes of) functions ¢ — f(t) measurable from
(0, 3) - X (for the measure dt) such that

@
1/
(238) lllgoar o = ([ 1uC3e)”,  1<p < o,
0

2.9) (U]l Loer, x)

esssup|[u(f)llx,  p= .
reX

This is a Banach space.
WX(I, X), k € N denotes the space of the measurable functions u: 1 — X, with d"u/dt" e
€ L*(I, X) for 0 < n < k (derivatives in the weak sense). The norm in W%(I, X)is given by

k o
2.10) lullea. o = D [ lldmu(e)/drmatr.

n=00

The space WX(I, X) is the Hilbert space (cf. [29] p. 168).

Let ¥ and H be two Hilbert spaces over R with norms || - ||y, || * || 4, respectively, their
scalar product in H being written (*, - )y; we assume that

V<o H, V densein H (%).

Identifying H with its dual (H = H*) (%), H is then identified with a subspace of the dual
V* of V, whence
2.11) VcHcV*

The space ¥, H, V* which have the property (2.11) form the Gelfand triples (cf. [6, 29]).

(%) Therefore there exists a constant ¢ such that
llolla < ellolly Vv eV,

(*) By V* we denote the dual space to the space V.
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In this paper we will use the following inequalities:
1. The Poincaré inequality (cf. [7] p. 347—389).

@12 lullim < € D) [10*u?dx, e HE @),

le|<m G

where C = C(G, m).
2. The second Korns inequality (cf. [6] p. 110)

(2.13) [ ey ey@ydx+ [ wmdx > Cllullys, Vue H(G),
G G

where ¢;;(1) = %(@,uﬁ d;u;) and C = C(G), C > 0.

3. Gronwall’s inequality (cf. [14] p. 298)

Let g, o be functions with properties g, o € C([0, 9¥]), g, ¢ = 0 and g is a non-decreasing
function.

If o satisfies the inequality

t
(2.14) o(t) < 8(1)+Co [ 0(0)do, 0<t<®, Co— const
0

then there exists a constant C; = C,(C,, ¥) such that
(2.15) o(t) < C,g(r) Vtrel0,9].

REMARK 2.1. The spaces used in our consideration form the Gelfand triples. In the
case of the boundary-initial value problem considered in this paper we use the spaces

VO: L2(G)’ ;: Vl ’ LZ(G)’ V: and sz LZ(G)y V:
(cf. Definition 3.1), which form the Gelfand triples.

3. Statement of the problem

For Egs. (1.1)—(1.3) we consider the mixed boundary-initial value problem in the
region Ix G with the following initial conditions:

3.0 u(+0) = 1, (@Qu)(+0) =g¢;, O(+O) =8 (=12, (O

and boundary conditions:

(3.2) Urxae, = D, 0 ks, = ¥, 61lrxa6, = P>
db, | ;
L - —0. (7
dv s q, Bz|1x&6, , (D)
where @, @5, 3, 3, P, P, p, q are given;
du, du; ]
= ™ = s g V s Y— —_ 6 .
¥ = (0 V)i=1,..r [,u e + uvy %, +(AV s u—yp, 0, =y, 02)v; it

(°) We use the notation () = f(-, t), where - denotes the nondeclared variable (cf. [6] p.32).
(7) The assumption of such a decomposition of the boundary &G as in the condition (3.2) does not
lead to the loss of generality (cf. [17] p. 66)
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G — denotes the bounded domain in r-dimensional Euclidean space E"(r = 1, 2, 3) with
smooth (cf. [1]) boundary ¢G, I = (0, T) the bounded time interval (T < o©); 3G =
= 0G,VdG,, 6G;NIG, = ¢. Ix 0G — the Cartesian product of / and G, » — the
unit external normal to 9G.

We will seek a weak solution of the boundary-initial value problem for Egs. (1.1)—(1.3)
with the conditions (3.1), (3.2). In order to do it, we start with the definition of the weak
solution of this problem.

DerFINITION 3.1. (a weak solution)

The system of functions

(u, 04, 0,) € L*(I, Vo) x L*(I, V) x L*(1, V)
will be called a weak solution of the problem (1.1)—(1.3), (3.1), (3.2) if (u, 0,, 0,) satisfies
the following identities:
e(GFu(t), w)+a; (u(t), w) = 1 (6:(1), V- @)+ 72 (02(1), V- 0)+ (2,(), )
+)/1(®2(t),Vw) V(UEVo,
(33)  ¢(0:6:(2), B)+a:(0:(1), ) = —d(8,0:(1), B)—71(8,V - u, )
+(2,(1), ) Vpev,,
n(2,0,(t),v) = D(A0,(2), v)—y,(8,V - u(r), v)—d(2,6,(1), v)
+(.Q3(t),v) Voel,,
with the initial conditions

G4 @) =1, (@O =, 6,0) =43, 6,0) =45,

where

a, (u(t), ©) = f [ (3”'(’) ‘9“’(’) )+£(V u(r))a,,] Wy e

a,(6:(1), B) = k [ V6,()VBax,
G

@), 0) = (X, 0)+ [ P@Owds—0(02P,(1), 0)—ar(®:(1), w),
G,

(Qz(t)a ﬁ) = (Ql(t)a ﬁ)—az (¢2(t), ﬂ)—c(@,diz(t), ,3)_)’1 (3:V - Dy(1), /3)
+k [ Ba(t)ds,

oGy
(2:(),2) = (2:(1), v)—=d(9,: P, (1), ©)— 72 (8:V - D1(1), ©),

—@,(0), 2= .—(2:D,)(0), P, =9 —D,(0),
®,(t) e H'(G) and satisfies the condition ~ D, (1)lye, = D(¢),
®,(t) e H'(G) and satisfies the condition  @,(f)|,6, = p(2), (%)

Vo = {w:w e H'(G)Awly, = 0}, Vi = {f:f€ H'(G)Aflzs, = 0},
V,= {v:ve Hy(G)}. (°)

(®) We use the same notations as in [6] p. 122.
(°) The spaces V,, V,, V, are separable. ([2, 14, 29)).
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Let us notice that the spaces V,, L*(G), Vg, V1, L*(G), V{ and V,, L*(G), V5 (where the
spaces V§, V7, V5 denote the dual spaces to the spaces V,, ¥, ¥, respectively cf. [29])
form the Gelfand triples. The symbol (-, -) denotes the forms of duality on (V,, V§);
V1, ¥VY) and (V,, V5) respectively, which on the Cartesian product L?(G) x L?(G) or on
the product L?(G)x L%(G) becomes the scalar product in the spaces L2(G) or L2%(G),
respectively.

4. Existence theorem

THEOREM 4.1. If the following supplementary conditions are satisfied:
XeW;(I,L3G)), Qiel*(,VY"), @ €V,
@1 P elX@, deV,, eV, §Gel*(I,L*(G)),
B, e W} (I, H2(8G)), B, e Wi(I, H'12(3G)) (),
@, e Wi(I, HY2(8G)), ¥eWi(I,L%G)) (i=1,2)
then there exists a weak solution of the problem (1.1)—(1.3), (3.1), (3.2) with the properties
(4.2) d,ue L*(I, L2(G)), @drueL*(I,Vp), &.0,eL*(I,VY), &,0,eL*(,V3).
REMARK 4.1. By g, (51, 952, ¥ we denote the extension of the functions g, @,, ¥,, ¥
to Ix ¢G (cf. [6] with the properties
1Olxsc = 40, D1(Dlixz, = D), Polroe, = PO, (W)lroe, = Y1)
Proof. We prove the theorem 4.1 using the Faedo—Galerkin method. The proof
is divided into three steps:
1. The approximation of the solution by a sequence (4™, 07, 0F)nen, i.€. the so-called
sequence of Galerkin approximations.
2. The estimations of the Galerkin approximations.
3. The convergence of the sequence (1™, 07, 07) men to the weak solution of the problem
(1.1)—(1.3), 3.1, (3.2).
Ad. 1. Let {w™}, {fn} and {v,} be linear and complete systems in V,, V', V,, res-
pectively.
We define the Galerkin approximations of the solution (u, 6, 6;) by

(4.3) wm(t) = X i’ 010 = O k(DB
j=1 j=1

50 = X ku(0e,
j= :
where the functions g7'(-), Am(* ), km;(*) are chosen in such a way that the following
system of equations is satisfied:
o (37 um(1), ' )ata, (W (), ') = y, (07 (1), V - ")
+y2(03(1), V- @' )2 +7, (D20, V- ')+ (2, (2), '),
(*°) The definition of the space H*(éG) for s € R may be found in [14].
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@4 c(a.07@), i) +a, (67(), Bi) = —d(2.05(1), i)
=71 (@Y - um(0), B)a+ (2:(0), Br),
n(0.03(1), v)2 = D(A403 (1), v,)r2—y> (8. - u™(2), v, )12
+(923(0), v,)-d(2,07(), v,).*
with the initial conditions:

. n
(0) = §1 = D afes, @ ©) = ¢ = D bra,
@.5) = e
07(0) = #7 = ,Z: cniBs, 03 (0) = 03 = jZ]‘dm,v,,
where
Fr—§ inVe, #Fop, in LG,
dr—P, inV,, o, in V,
if m—- o0.

The equations (4.4) with the initial conditions (4.5) are a system of ordinary linear
differential equations for unknowns g7, hm;, km; and can be written in the form

d*G,,
0Gim _dtT“i‘Alme =Y MimHpt+y2 M3 K+ Fim,

dH,, dkK,, AdGpn
(46) CGZM T+A2mHm = _lem T_yl Ulm T+F2m:
dKn dG,, dH,
nG, _dt— = M;uKn—y2Usp T—dDzm T;"+F3m

and the inital conditions :
Gm(o) = (87'(0));=1 ..... m = (0'6'1, agz, ..., ﬂ’(’)'m),
(2:Gn) (0) = (9:87(0))s=1,...0 = (BT1, bT2, ..., Biow),
“.7) Ha(0) = (Any(0))ya1.....m = (cB1s B2y oo s o),

Km(O) = (kmj(o))_,*:l..,..m = (d(';'l.a rd:m)o
where
Gim = ((WJ) wl)Lz)j,t=1,.,,.m;

Gn(®) = (&7'(®)i=1.....m»
Aim = (al(wj, wl))j.1=ly....m’
Ho0) = ((s()sers
Mo = (@Y W rr o
Kn®) = (kms())j=10.om»
Mom = ((v), ¥V 'wl)L’)J-I=lv----'"’
Fim= ((2:1(), 0" )+ 9, (P:(1), V- ))i-1, om»
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Gom = ((ﬁjs ﬁ!)Lz)j‘l=l..,..m1

Aom = (aZ(ﬁj’lBl))j.l=l.....m’

D,,, = ((‘UJs ﬂl)L’)J.1=1.....m

Uim = ((V Cw’, ,51)1.‘)1.1=1.....m

Fypm = ((Qz(f), ﬁl))1=1.....m,

G = ((‘Uj, vl)Lz)j.l=l.....ma

My = ((V'ij vl))j.!=1.....m:

Uz = ((V -, 'Ul)L‘)j.l=1,....m,

D,,, = ((ﬂjr WI)L‘)J.1=1,....m,

Fym = ((Qa(f), vl))l:l.....m-
Equations (4.6) with the initial conditions (4.7) have a unique solution in the interval
I=(0,T) (T < o) (cf. [15] p. 327—328). This follows from the general theory of ordi-

nary differential equations (cf. [26] p. 157—187). Thus the Galerkin approximation se-
quences (U™ men, (07)men> (07 )men are uniquely determined by the system (4.4)—(4.5).

Ad. 2. By multiplying the relations (4.4), by (2,g[")(¢), (4.4), and (4.4); by hu(t),
km(t) respectively, and taking the sum over / for (1 < / < m), we obtain

0 (92w (t), deum (1)) +ay (u"(2), B, um(t)) = p, (07(t), V - 3,um(2))yz
+72(02(1), V - d,um (1) )2+ (2,(2), (1)) +y (P:2(2), V - d,u™(1)),
4.8)  c(2,07(), 67(1))2+a. (67(2), 67(r)) = —d(3,05(2), O7(t))2
‘ =71 (8V - un(t), 07(1))2 + (22(2), 7(D)),
n(9:03(2), 63(1)): = D(A03(r), 05(6))—y2((3,V - w™(2), O3(t)) s
—d(3,67(1), 03(1)) 2+ (25(r), 65 (1)).
It is easy to see that the following identities are true:

0@ (0), 6 = -0 G,
1 d
a, (w"(t), ,um(t)) = EF (um(t), um(2)),
m m 1 d m 2
(49) c(alel (t), 01 (t))l-2 = '2'-65”61 (r)“L"
d m 2
n(d,6%(t), 05(1)).: = 2 [162()L2,

D(A0%(z), 07(1)).

Substituting the relations (4.9) into Eqs. (4.8), adding Eqs. (4.8) by sides and integrating
the obtained result over the interval (0, t), we get

—D||VOZ (DI
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(4.10) || @, um (D)l +a, (um(2), u"(2))+c| |07 (2)]|F2+nl |03 (2)] 32

+2D [ VO3Bt +2 [ a,(67(2), 07(2))dr = —2d(67(2), 02(1) ),
0 0
+2 [ (2,0, 2 (0)dr+2 [ (Qu(x), 07(x))de+2 [ (2:(2), 03(0))dr
0 0 0

1
+0ll§511E+ay (FT, §1)+clld7 ]2 +nl| 93] 3+ 24T, 99 + 29, [ (@:(2), V- d,u7(2))dr.
' 0

Using the Schwarz inequality (cf. [15], [28]) and taking into account the inequality
(4.11) 2|ab| < sa2+%b2 Ve> 0, (*Y)

we get the following estimates:

4.12) Jz | @@, @] < ey ellin @i +eses [ 1oz
‘ 0 0

t

~

+ IO+ [ 1020 @gdr+- 2 112,0) g +cs &3l (42),
&y &, : €3

where (cf. [6] p. 122)

12:(Mllve = sup  [(2,(2), v"(D))],

[um@)l| <1

2 [ @0, 00| < cves [ 1071,
0 0

ot | Q@I+ 12: D1 (IR, + 192N, + 16 L2, + 7D Erm)
0

2 [ @ux), 030)de| < cses [ N08NR a5+ [ (1020
0 0 5

+118: D, (DI, +112: P2 (D17, )d,

251 [ (@202, Vo) dr| < co e (|13, + 119200113, + [ 1en(2)]1,dx)
0 0

t
Ce ”
= (|0, + 1511, + [ 118,92, d),
6 0
1 2
(*) It is easy to see that 2|ab| = 2|e'/%ae~"12p| < (e”za)2+(sz— b) for Ve > 0.
&

(?) We take into account that (£2,,8;u™(7)) = &(£,,u™(r))—(2:82,, u"(r)) and we use the Schwarz
inequality and the inequality (4.11),
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= 24(87(2), 65 < dellOT (DI +—- IO,

- . d
2d(97, 99)| < d||97]|L: e |1 9F 1122,

a, (§7, @7 < c1ll§TII3,.

Moreover, in view of Poincaré’s inequality (cf. [7]) and Korn’s second inequality (cf. [6],
we get
IVOF@)I1E > 8,103()]13, where 8, = 8,(G),
(4.13) ay (1), w™(1)) = " (ONF, — A" (D)2,
a3 (07(1), 02(0)) > allOF()13, — 21167 (D) 2.
The constants ¢y, 3, ..., ¢; follow from Schwarz’s inequality uy, g,, 4;, 4, —from
Korn’s second inequality and &, from Poincaré’s inequality and are independent of m.

However, the constants ¢, &;, ..., & follow from the inequality (4.11) and are arbitrary
positive constants. Taking into account the above estimates and using the inequality(*?)

.1) (@122 < 2" O)|3s+2T [ 1|8,uwn(2)]|2dx
0

and the imbedding theorem (cf. [28, 29]), we have
4.15)  oll8,um(1)||22+ (1 — €1 & — co &6)| W™ (1)|[%, + (c — de)| 0T (2)] |22

t 1
d
+(n——€)H@&"(!)Hfz+(2#z—c4€4) f OT(D)I [}, d7+ (2D 3, — cs &5) f 163 ()17 d
0 0
t ! t
<2, [ laan@llide+(eaestesed) [ (@R, de+22, [ 167DIde
0 0 0
#(fresent S e UBTIR, B (o4 MBI+ ot 22O,
6
d f ,
+re iz [1oi@iiar+2 [ I0:lisae
&€ €4 3 €s 3

t . t
+(c—“+c—5)f ||8,(151(r)1|30d1:+(c—4+£5—+£6—+2T)f 118,D, (D)2, dv
€5 3 €4 & &6 5

€4 5
t £ t
Ca ) 2 Ca ~ 2 Cy ' 2
+— | (DI, dr+—- | llg(Dllrreadr+—= | 110.2,(2)|lVedz
&4 é €4 3 £y s

¢ c
+ - 12,01F + 2 12, (0)][7.
&1 &3

4
(*3) It is easy to see that Hu™()l2 < Hu™O) .+ f 10, u™(D)l| .d7. After simple transformations
0

we get the inequality (4.14)
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We take the constants ¢, ¢,, &4, €5, £ SO that the following conditions will be satisfied:
d
(4.16) c—de > 0, n—— >0, w—ce—cee5 >0,

2D8;—cses >0, 2u,—cye, > 0.

It is easy to see that the constant e = |/ ¢/n satisfies the inequality (4.16) and the inequality
cn > d?.
We denote the following constants by Cg, Cy and A4:

; d
Cg = min [g, U1 —Cy €, —C6 €6, C—de, N— e 24y —Cs€4,2D08,— 5 as],

5 ¢
4.17) Cs = max [ZAIT, Cr8,+Co 86, 205, A1+ €5 £3+E—6+c7, c+de, cee6+20,
6

d Cq4 Cs5 C4 Cs C4 Cs Ce Cc; €4 ¢C
3
np—, b, S S 8 5 8 oy, B2 0L S )
€ €4 Es &y €5 &4 Es &g &y &1 &3
G
Cs’

Using the above symbols we can write the inequality (4.15) as

A=

2 2 t
@.18) 19 (E+ @R, + X 107@IE+ Y [ 116713, de
i=1 i=19

t 2
< A [ (16 @IIE+ @I+ D 107 @) dr -+ 4 [IF713, + 177117
0 i=1
t 2
1B+ 18512+ 120E,+ [ (3 101+ 118,84 (0l 33+ 112, D221,
0 i=1

LI dr+ [ (13210 +112:21 (DI[F) dr + 112, (D) + 112, O] (4
0

It is easy to notice that the following relations are true (cf. [29])
4.19) PTIR, < Croll@ull¥y,  1IFFIIE: < CralIPallEe,
187112 < CoallBullZ,,  119311E: < CuslldalI3.,
where the constants C,,, C,,, Cy,, C;3 are positive constants and are independent of m,
t 2 2
Of ;: 10D 31dr < 21 104 22ty

[ (12: 2,13, +12,()113, ) < 1Dl
0

(**) The inequalities (4.19) follow from the relations (4.5) (cf. [29]).
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t
(4.20) [ 112:,(@)1Rd7 < 1®yllErsaves
0
t
f”‘I(")”i’(ac)d‘t < 1gllZ=a. £2@ons
o

1
2
[118:2.@)l%dr < 1213 1a.vs-
0

Substituting the inequalities (4.19) and (4.20) into the inequality (4.18) and denoting the
following constants by B,

B = A(C10||<f)1”\2¢n+Clllltisz:—i—CuH’ﬁjH%lﬁ-C13|I'092||;2/2+H¢’2(0)|I;2»1+|]91(0)|]\2:;
2
+r1:{1§1;€]|191(f)l|‘3:+ NQill T vy +1Pallia, v o + 1Dyl lwia,vh

i=1

1181, ooy + IRl avp)

we get

2 2 t
@.21) ([0 B+ @G, + D 16712+ D, [ 1072113, d

i=1 i=10

: 2
< B+ A4 f(llatum(r)”fz-l-Hum(r)||%°+2 ”6?‘(1’)“%2)(11_
‘ 0 i=1

From the inequality (4.21) we get directly

t

2
@.22)  [loan()][B+ w3, + D 16713 < B+A [ (ll6cwm(2)]1Es
i=1 0

2%
@, + O, 107 (D) [E) dr
i=1
Applying Gronwall’s inequality (cf. [14, 16]) to the relation (4.22), we have
2
(4.23) laeum N+ eI+ 3, 167OI3: < C(T, VB Vi€l
i=1

where C(T, A) = A7 (cf. [14], p. 298, [16], p. 46).

The estimates (4.23)—(4.22) imply that the sequences (U™)men> (Ft™mens (O7)men
(i =1,2) are bounded in the spaces L2(I, Vo), L*(I, L3(G)), L*(1, L*(G))nL*(L V)
(i=1,2) for any me N and r € (0, T), respectively.

Ad. 3. Consequently, there exist the weakly convergent subsequences (u™), (d,u™),
(07") of the sequences (U™)men, (F:it)mens (O7)men they will be denoted by the same
symbols as Galerkin sequences, i.e. (U ),en, (6:4")ven, (0D)en (G = 1,2). Without loss
of generality we may assume that
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v’ — z (weakly) in L?(1, V),
(4.24) d,u” — z' (weakly) in Lz(l, LZ(G))
07 — y; (weakly) in L?(I, L2(G))nL*(I, V,).

Obviously (cf. [29]) z/ = 2,z(¢) and since u*(0) — z(0) in V, if » = co we get z(0) = ¢,.
Let & € C*(I) and satisfy the condition &(T) = 0. We put &(t) = &(1)w', &(1) = E() B,
and &, = &(¢)v;. By multiplying Eqs. (4.4) by &(¢), taking m =» > | and integrating
by parts on the interval [0, T]in view of condition §(7T) = 0, we have

T T 2 _’I‘
—o [ @@, a0+ [ a0, E@O)dt = Y [ (0:1(1),V - E(0))padt
0 0 i=10
T T
+ [ (@), E®)dt+72 [ (6200, V- £))dt+0 (5, EO),
0 V]
T T :‘r
@25 —c [ 010), 8. 80)2dt+ [ ax (03(0), £(0)dt = —d [ (2,05(2), £(2))ar
0 0 0
—yy [ (@ - w(e), E@)di+ [ (220, ED)dt+c (S, E(O)s,
0 0
T T T
—nf (05(r), 8,5y(1))2dt = Df (465(), &i(1))dt—y, f (AR A ONAGI
0 0 0

T T
—d [ 0.01(0), L(@®))wedt+ [ (23(0), C(@®))dt+n (9%, £(0))r.
0 0

In view of the weak convergence (4.24), taking » — oo in Eq. (4.25), we get
T T 2 T
—o [ (@2(0), 8.8 @)dt+ [ a, (20,8 ©)d = X v [ (1), V- E @)
0 0 i=1 (V]
T b'id
+ [ (@), E@)dt+y2 [ (6200, V- E@))dt+0(2, €O,
6 o
T T ' T
(4.26) —Cj (r(0), 3;5:(1))dt+f ay (v, (1), &())dr = —df (@ey2(2), &i(2))dt
0 0 0
T T .
*?’xf (31V - z(1), 51(1))df+f (Qz(t), 5,(t))dt+c(191, 51(0))1},
6 0
T T T
—hn f (y2(1), 8,Li(1))dt = D f (AJJz(f),Ct(f))df-?zf (8:V - 2(), Cu(2))dt
V] 0 0

T T

—d [ @), L@)di+ [ (@50, Li(®))dt+n (B, £i(0)r-
0 0

In particular, Egs. (4.26) are true for any & € C&(7).
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Therefore we get
(72, 8O =0, (31,802 =0 and (9,,(0): = 0.

Taking it into account and using the simple transformation (integration by parts), we have

T T 2 T
o [ (@20, &@)dr+ [ a,(z(1), E@)dt = X v [ (), V- E@))de
0 0 i=1 0
T T
+ [ (@@, #®)dt+y: [ (@200, E®)at,
0 0
T T T
@27) ¢ [ @), §@)dt+ [ a, (), ED)dt = —d [ (@120, E(1))at
0 0 0
T T
—y1 [ @V 2@), E@)de+ [ (2,00, E@)) at,
0 0
T T T
n [ (@v2(0), L(0))dt = D [ (Ay2(0), 8u(1))de—y, Of (3 - (1), &y(2))dt
0 0

T T
—d [ @), L)dr + of (25(), &) dt.
0

Since the functions &(¢), &,(t) and {,(¢) are arbitrary, the following identities follow from
the relation (4.27):

9(‘9:22(1), wl)+ai (Z(I)s wl) =9,V 0)+y:(y2, V- o)
+( @, (1), ) +72(D2(1), V- '),
(428)  c(@yi(0), B)+a: (3:(1), B) = —d(8:y2(1), B)— 71 (8.V - 2(1), Bi)+ (22(1), B),
n(atyz(t)’ 7'Jl) = D(A,Vz(t)a vl)_yl(arv ' Z(t)’ vl)_d(a!yl(t)s ‘U;)+ (QS(t): ‘Ul)'

Thus the system of the functions (z, y,, y,) is a weak solution of Egs. (1.1)—(1.3)
in the sense of the definition (3.1). Now we show that this solution satisfies the initial
condition (3.4). In order to do it, it is sufficient to perform integration by parts in Egs.

(4.26), and to take into account the relations (4.27). After performing this operation
we get

(4.29) ((3:2)(0), ' )2£(0) = (5, @ N2£(0), (*%)
(71000, B1)2£0) = (B, B)12E(0), (¥2(0), ©,)1:6O) = (92, v)12&(0).
As the functions ', §;, v, are arbitrary, we have (8,2)(0) = ,, ¥,(0) = 8,, ,(0) = 9,.

There the system of the functions (z, y,, ,) is a weak solution of the problem (1.1)—
(1.3), (3.1), (3.2) in the meaning of the definition (3.1). From the properties of the sequence

(*3) In Egs. (4.29) £ — denotes the function which belongs to the space C®(I), with the property
&(T) = 0, so the symbol £(0) is meanigful.

4 Arch. Mech. Stos. nr 3/86
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of Galerkin approximations (cf. relation (4.24)) and in view of the definition of the weak
solution of the problem (1.1)—(1.3), (3.1), (3.2) we obtain

dze L*(I,L%(G)), d7zeL*(I,Vg), oy eLl* I, VY (i=1,2).
This completes the proof of Theorem 4.1.

5. Uniqueness theorem

THEOREM 5.1. (Uniqueness). Let X, Q;, ¥, @1, @2, 01, &5, 4, D,, D, be such that
XeWi(I,LXAG)), Q.eWi(,VY), QO)eV, ¥eWwi(, L*dG)),
(5.1) ¢ eHX(G)V,, §r€Vy, & eVinH)G), &, eHG),
g e Wi (I, L*(4G)),
@, € Wi(1, H'2(3G)), & @, e Wi(I, H-12(¢G)),
@, e Wi(l, H'2(8G)) (i=1,2).
Then the problem (1.1)—(1.3), (3.1), (3.2) has a unique weak solution with the properties
(52) Fuel*(I,L*G), aduel*(I,V3), 26, L*(I,VY (i=1,2).

Proof. First we consider the following initial-boundary value problem for the
equations

2
032 P = pAP+(A+pV(V - P)— D p VS, +0,X,

i=1
(5.3) 0, S, = kA4S, —y, 8,V - P—dd,S,+ 8,0,
nd,S, = DAS,—y,0,V-P—do, S, + 3,0,

with the initial conditions

2

7 At p 1 §' 1
P(0) = ¢, (6,P)(0) = — A, + —--V (V) —— vV +— X(0),
©) = @3, (6. P)(0) 0 P1 0 (V1) Qi:l)’t i 0 0)

(54 S,0) = -~ [1kd®, ~dDAD, + (dys —ny,) Vs +n0: (0) ~dQ: 0]

$3(0) = - [~ kD, + DAY, + (1 d— 72 Vs — dQ, O+ Q5 O),

(where « = cn—d?) and the boundary conditions

ds,
(5.5) P!IxaG, = BIQa g ”leac, = arl{l’ SlllxaG; = a"”’?? Ix3G, = B,q,
SZ’IxaG = 0.

It is easy to see that in view of Theorem 4.1 and the conditions (5.1) the system of Egs.
(5.3) with the conditions (5.4) and (5.5) has a weak solution:

(5.6) (P, 81, 8,) € L*(1, Vo) x L*(I, V) x L* (1, V)
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with the properties
5.7 &, PeL?(I,LX(G)), 9; P € L*(I, Vy), &S, el Vi (i=1,2)

Now we introduce the functions

(5.8) w(t) = g+ [ P(D)dz,  ni(t) = 8+ [ Sumdr (= 1,2).
0 0

From the functions (5.8) it follows that
aw(t) = P(t), ami(r) = Si(1), w0) = ¢;,  (d:w)(0) = @2,
) =% (=1,2).

We prove that the functions (5.8) satisfy the system of Eqs. (1.1)—(1.3) with the conditions

(3.1), (3.2). Integrating Eqs. (5.3) on the interval (0, ¢) and taking into account the con-
ditions (5.4), (5.5) and (5.9), we get

09w = pdw+ A+@)V(V - w)y—y,Vn, —y,Vn, + X,
Car’?l = kATh_‘J’l A W_daxﬂz +Q,,

(5.9)

no,my = DAy, —y, 6,V - w—dd.m, +0,,
where w(0) = ¢;, (3,w)(0) = ¢, 70) = &; (i =1,2)
Wikea, = 0, 0 V]jepe, = , Mlixag, = P»

| _
P 'uac. =4dq, ﬂz]txac = 0.

So, in view of Theorem (4.1) and the conditions (5.7), (5.8), (5.9) we have the following
relations:

weL*(I, V), meLl?*U, V), awel?*(l,V,),
(5.10) FPwel? (], LZ(G)), RwelL*I, V), dnel*, V),
meLl2d, VY (=1,2).

From the relation (5.10) we conclude that the functions (w, %,, 7,) satisfy the con-
ditions (5.2).

Now we assume that there exist two different solutions (v, 0,,0,) and w, ,, 7, of
Egs. (1.1)—(1.3) with the conditions (3.1), (3.2). The differences U = u—w, »; = 0;—n;
satisfy the homogeneous equations

edi U = pAU+(A+p)V(V - U)—y, Vi, — 72 Vs,
(5.11) coyny = kdsy—y,0,(V - U)—do, =,,

na,x; = DAJ’CZ—}’zaI(V ¢ U)—daﬂtl
with the homogeneous initial and boundary conditions

U0 =0, (@U)0) =0, Ulnw, =0, 0 ¥naw, =0 (0)=0,

(5.12) dx,

xlllxaG, =0, =0, 20)=0, x)l0c=0

av |rese,

4*
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From Egs. (5.11),in view of the definition (3.1) (a weak solution), after taking into account
the conditions (5.12), we get

e (2U(), 3, U(t))+a, (UQ), 3, UM) = 7, (6.(1), V - 8, U(2))
+72(%(1), V- 8, U)),
(5.13)  c(Brae1 (1), %, (1) )+ as (%4 (2), 11 (1)) = —d(3,%2(1), %,(£))— 4 6.V -U®), %,(1)),
n(9,x5(1), #2(£)) = D(Awx(2), 2#2(2))—y2 (9, V - U(t), %:(t))—d (0,2, (1), %,(2)).
Using the same calculations as in the proof of Theorem 4.1, we obtain the following
estimates:

2
(5.14) IR U@IB+HIUOIR,+ Y 1a®]2 < 0

i=1
from the inequality (5.14) it follows at once
6. U@t = 0, [JUDIF, =0, [%(Dli2=0, Vrel.

Therefore u =w, 6; =%, (i=1,2).
This completes the proof of Theorem 5.2.
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