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Mixed boundary-initial value problem for the equations 
of thermodiffusion in solid body 

J. GA WINECKI and K. SJERPINSKI (WARSZAWA) 

THE PROOFS of the existence and uniqueness of the weak solution of the initial-boundary value 
problem for the equations of linear thermodiffusion in a soJid body with a mixed boundary 
condition for temperature, displacement and stresses and the Dirichlet boundary condition for 
chemical potential have been presented. These proofs have been obtained using the Faedo
Galerkin method in suitable chosen Sobolev spaces. 

Przedstawiono dowody istnienia i jednoznacznosci sJabego rozwi'lzania rnieszanego zagad
nienia brzegowo-pocZCltkowego w termodyfuzji cial staJych z mieszanym warunkit;m brzego
wym dla temperatury, przemieszczen i napr~:len oraz warunkiem Dirichleta dla potencjaJu 
chemicznego. Dowody te przeprowadzono, stosuj'lc metod~ Faedo-Galerkina w odpowiednich 
przestrzeniach Sobolewa. 

llpe,ACTaBJICHbl ,AOI<Il3aTeJibCTBa cy~eCTBOBaHHH H C,AlfHCTBeHHOCTH CJia6oro pemeHHH I<pae
BO-Hat.IaJibHOH 3a,Aat.IH B TepMO.AH$$y3HH TBep,AbiX TeJI CO CMelliaHHbiM rpaHHt.IHbiM YCJIOBHeM 
.AJIH TeMnepaTypbi, nepeMe~eHH:H: H HanpnmeHH:H:, a Tai<>Ke c ycnoa:HeM ,llHpmme .AJIH XHMH
qeci<oro noTeHI.UiaJia. 3rn ,Aoi<a3aTCJ1bCTBa npoBe,AeHhi, npHMeHHH MeTo.A <t>ae,Ao-ranepruma 
B COOTBeTCTByro~ npoCTpaHCTBaX ~OJICBa. 

1. Introduction 

UNDER the influence exerted by the action of external loads, heating of the body and 
diffusion of the matter into the solid will arise in this body a displacement field u(x, t) 
the temperature e1 (x, t), and chemical potential e2 (x, t). The relations between these 
fields, called the equations of thermodiffusion in a solid body, have been investigated by 
W. NowACKI (cf. [18, 19, 20, 21]), J. S. PoosTRIGAC (cf. [22, 23] and other authors. In 
the paper [19] W. Nowacki derived a form of the equations of thermodiffusion other than 
in [23] by taking a displacement field u(x, t), the temperature e1 (x, t), and the chemical 
potential e 2 (.X, t) as independent functions. These fields are functions of point x = (x 1 , ••• , 

... , x,) (r = 1, 2, 3) and time t. The phenomenon of thermodiffusion (cf. [19, 20, 21]) 
is described by the coupled system of five second order partial differential equations: 

(1.1) 

(1.2) 

(1.3) 

eo;u = ,t.u1u+ (A.+ p}V(V · u)-y1 Ve1 -y2 Ve2 +X, (1) 

cote!= k.de1-Y1 otV · u-dote2+Q1, 

nore2 = DL1e2-y2otV · u-dote1 +Q2. 

In these equations by u = (u1 , ••• , u,) we denote the displacement vector field of the body, 
by e1(x, t)- the temperature of the body, by e2 (x, t) - the chemical potential, by 

(1) L1 = OJ OJ, j = 1, ... , r, V(V · u) = graddivu, VfJ. = gradfJ., i = 1, 2. 

3* 
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252 J. GAWINECKI AND K. SIERPU~SKI 

X= (X1 , ••• , Xr) the yector of body forces, by Q 1 -the intensity of the heat source, 
by Q2 -the intensity of the source of diffusing mass: A, p, - are Lame's constants, e -
density and y1 = 3Kal, Y2 = 3Ka2, where K = A + (2/3)p,, while a1 , a2 stand for coeffi
cients of linear thermal and diffusion dilatation. 

Quantity k is the coefficient of thermal conductivity, while D - the coefficient of 
diffusion. Quantities n, c, dare the coefficients of thermodiffusion. These quantities satisfy 
the (cf. [21]) following relations: 

(1.4) p, > 0, A+(2/3)p, > 0, k > 0, D > 0, c > 0, n > 0, nc > d2 (2). 

The concentration field 83 (x, t) is related to the displacement vector u(x, t), the tempera
t1J!e 81(x, t), and chemical potential 82 (x, t) as follows: 

(1.5) 

The system of Eqs. (1.1 )-(1. 3) is hyperbolic with respect to some of the unknown functions 
and parabolic with respect to others. This system contains as particular case (assuming 
some of the coefficients to be equal to zero) the well-known system of partial differential 
equations of coupled thermoelasticity ( cf. [17]). The existence problem in the case of 
thermoelasticity is studied in [4, 13, 12, 17]. 

J. S. PoDSTRIGAC (cf. [22, 25]) solved many particular, mostly one-dimensional, 
problems of thermodiffusion in a solid solution. In the papers [18, 19] W. NowACKI derived 
the fundamental theorems for the dynamic problems of diffusion in a solid body such as 
the theorem of virtual work of variation of displacement and rotations, fundamental 
energy theorem as well as the theorem of the reciprocity of works. In the paper [21] 
he reduced the system of thermodiffusion equations to wave equations of a comparatively 
simple form owing to the introduction of elastic potentials and a Galerkin-type repre
sentation. 

In [27] the existence of the solution of an initial value problem for Eqs. (1.1)-(1.3) 
has been proved in the class of smooth functions vanishing at infinity using the method 
of successive approximations. 

The existence and uniqueness of the solution of the first boundary-initial value problem 
for Eqs. (1.1)-(1.3) was proved by G. FICHERA (cf. [8]) in the class of functions C 1 {Ax 
x [0, + oo) }n C2 {A x [0, + oo)} using the Laplace transformation (A - a bounded 

domain (open set) of the three-dimensional space with a piecewise smooth boundary). 
T.V. BURCULADZE in the paper [3] using the Laplace transformation reduced the 

considered initial-boundary value problems for Eqs. (1.1 )-(1.3) to the system of integral 
equations and proved an existence theorem for this system of integral equations. 
In this paper, using the Faedo-Galerkin method, the existence and uniqueness of a weak 
solution of the initial-boundary value problem for Eqs. (1.1)- (1.3) with a mixed boundary 
condition for temperature, displacement and stresses, and the Dirichlet boundary con
dition for chemical potential have been investigated in suitably chosen Sobolev spaces. 

(2) The inequality nc > d 2 and other inequalities for the constitutive constants have been obtained 
by W. NowACKI in [21]. The inequality nc > d 2 plays a very important role in the proof of the existence 
and the uniqueness theorem of the weak solution of the problem considered in this paper (cf. formula 
(4.16)). 
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The method used in this paper should work even with more general or different bound
ary conditions. It must also be mentioned that the method developed in this pap~r 
applies to nonisotropic, inhomogeneous bodies as well. However, this extension wilf not 

be discussed here. 

2. Sobolev spaces 

By r we denote the dimension of the Euclidean space E' in which the configu-ration 
of a thermo-diffusive-elastic medium is embedded. The analysis will be carried out for 
general r though the model is physically meaningful only for r = I, 2, 3. By x we denote 

the typical point of E' and by x 1 , ... , x, the coordinates of x with respect to a fixed Cartes
ian coordinate system. By IX = (1X1, ... , IX,) we denote multi-index and by I ~XI = IX;,+ ... 
.. . +IX, its length. We introduce the following notation for derivatives with respect to 

the space variables aa. = 8~1 ... a~· where 81 = ':1° for j = 1, ... , r. Time derivatives 
UXj 

are denoted by 

a:= ::. where s = 1,2 (a,= :t ). 
Let G be an open bounded set in E' (cf [7] p. 13) with regular boundary oG. 

L'(G) is the space of(3) (equivalence classes of) measurable functions u such that 
(p being given with 1 ::::; p ::::; oo) 

(2.1) lluiiLP<G> = ( J lu(x)l'dxf'P < oo, 1 ~ p < oo, 
G 

(2.2) lluiiLoo<G> = esssup lu(x)l, p = oo 
XEG 

taken with the norm (2.1) or (2.2), L'(G) is a Banach space; if p = 2, L 2 (G) is a Hilbert 
space, where the scalar product corresponding to the norm (2.1) (where p = 2) is given by 

(2.3) (u, v)L2<G> = J u(x)v(x)dx. 
G 

The Sobolev space W;'(G) (cf. [2] p. 29-38, [28] p. 53-64), 1 ~ p ::::; oo, consists 
of those functions u belonging to L'(G) with weak derivatives aa.u (ltXI ~ m) belonging 

to L'(G) 

(2.4) W;'(G) = {u:uEL'(G):oa.uEL'(G); jaj::::; m}. 

With the norm 

(2.5) 

it is a Banach space. 
The case p = 2 is fundamental. To simplify the writing, we will put 

Wf(G) = H"'(G) 

( 3 ) All functions considered here are real-valued. 
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with the scalar product 

(2.6) (u, v)8 "'<G> = .2; (o«u, ?v)L2(Gh 
l«l~m 

it is a Hilbert space. The norm in this space is given by 

(2.7) ( 
\, ex 2 )1/2 

/lu/IH'"(G) = L.J llo UIIL1(G) , 

I«! :!Om 

C 00(G) denotes the space of infinitely differentiable real-valued functions defined on G. 

Cg>(G) consists of those elements of C 00(G) with compact support contained in G. By H(f(G) 

we denote the Hilbert space obtained as the completion of Cg>(G) by means of the norm 

II· IIH"'<G> given by the relation (2.7). H?;(G) is the subspace of the space H"'(G). 

By L2 (G), H"'(G) we denote the r-fold Cartesian product of L 2 (G), H"'(G), respec

tively. We denote the scalar product and nor~s in the space L 2 (G), L2 (G) {H"'(G), H"'(G)) 

by ( ·, · )L2, ( ·, · )L2, (( ·, · )8 ... , ( ·, · )H' .. ) and II· IIL1, II· IIL2 (II· IIH'"' II· IIHm), respec
tively. 

In this paper we will investigate the solvability of evolution problem,s using the Faedo

Galerkin method in the space L 2 (/, X) where I= (0, D) c R (0 < D < oo) - the time 

interval, X- the Banach S\)ace with its norm denoted by II· llx (cf. [6]). 
By LP(J, X) we denote the space of (classes of) functions t-+ f(t) measurable from 

(0, {}) --.X (tor the measure dt) such that 

(2.8) 

(2.9) 

(J 

llullo•u.x> = (J llu(t)ll~dtf 1P, l ~ p < oo, 
0 

lluiiLoou.x> = esssup /lu(t)llx, p = oo. 
teX 

This is a Banach space. 
W~(I, X), keN denotes the space of the measurable functions u:I--. X, with d"ufdt" e 

E L 2 (/, X) for 0 ~ n ~ k (derivati~es in the weak sense). The norm in W~(I, X) is given by 

k (J 

(2.10) llullfv~u.x> = .2; J lld"u(t)fdt"llidt. 
n=OO 

The space W~(l, X) is the Hilbert space (cf. [29] p. 168). 
Let V and H be two Hilbert spaces over R with .norms II · !lv, II · II 8 , respectively, their 

scalar product in H ·being written ( · , · ) 8 ; we assume that 

V c H, V dense in H (4
). 

Identifying H with its dual (H = H*) (5), His then identified with a subspace of the dual 

V* of V, whence 

(2.11) Vc He V*. 

The space V, H, V* which have the property (2.11) form the Gelfand triples (cf. [6, 29]). 

(
4

) Therefore there exists a constant c such that 

llviiH ~ cllvllv Vv E V. 

(
5

) By V* we denote the dual space to the space V. 
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In this paper we will use the following inequalities: 
1. The Poincare inequality (cf. [7] p. 347-389). 

(2.12) llull~m ~ C }; J lo<Xul 2dx, u E H~(G), 
I<XI~mG 

where C = C(G, m). 
2. The second Korns inequality (cf. [6] p. 110) 

(2.13) J e,iu)elJ(u)dx+ J u1u1dx ~ Cllulli•, VuE H 1(G), 
G G 

1 
where EiJ(u) = 2 (OJUt+ a,uj) and c = C(G), c > 0. 

3. Gronwall's inequality (cf. [14] p. 298) 

25S 

Let g, e be functions with properties g, e E C([O, t?]), g, e ~ 0 and g is a non-decreasing· 
function. 

If e satisfies the inequality 
t 

(2.14) e(t) ~ g(t) + C0 f e(a)da, 0 ~ t ~ t?, C0 - const 
0 

then there exists a constant C 1 = C 1 ( C0 , t?) such that 

(2.15) e(t) ~ C1g(t) Vt E [0, t?]. 

REMARK 2.1. The spaces used in our consideration form the Gelfand triples. In the 
case of the boundary-initial value problem considered in this paper we use the spaces 

V0 , L2 (G), V~; V1 , L2(G), v: and V2 , L2(G), v: 
( cf. Definition 3.1), which form the Gelfand triples. 

3. Statement of the problem 

For Eqs. (1.1)-(1.3) we consider the mixed boundary-initial value problem in the 
region I x G with the following initial conditions: 

(3.1) u(+0)=cp1 , (oru)(+0)=cp2 , O,(+O)=t?, (/=1,2), (6
) 

and boundary conditions: 

(3.2) UlrxaGl = (/)' (J. viixaGl = 'P, 011rxaG2 = p' 

dd()1 I = q, 02lrxaG2 = 0, (') 
V IxaG, 

where cp 1 , cp2 , t?1 , {}2 , (/), 'P, p, q are given; 

. [ du1 ou1 () 0 ) ] av = (a1,vJ)t=1 ..... r = ft d+~-tv1 -
0
-+(A.V · u-yt 1-1'2 2 v, , 

'J.I X, l=1 ... .. r 

(
6

) We use the notation/(t) =/( ·, t), where ·denotes the nondeclared variable (cf. [6] p.32). 
C) The assumption of such a decomposition of the boundary oG as in the condition (3.2) does not 

lead to the loss of generality (cf. [17] p. 66) 
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G- denotes the bounded domain in r-dimensional Euclidean space F(r = 1, 2, 3) with 
smooth (cf. [1]) boundary oG, I= (0, T) the bounded time interval ·(T < oo); 8G = 
= 8G1 u8G2 , 8G1 n8G2 = l/J. Ix aG- the Cartesian product of I and 8G, v- the 
unit external normal to aG. 

We will seek a weak solution of the boundary-initial value problem for Eqs. "(1.1)-(1.3) 
with the conditions (3.1), (3.2). In order to do it, we start with the definition of the weak 
solution of this problem. ' · 

-DEFINITION 3.1. (a weak solution) 
The system of functions 

(u, 01 , 02) E L 2(/, V0 ) x L 2(1, V1) x L 2(1, V2) 

will be called a weak solution of the problem (1.1)-(1.3), (3.1), (3.2) if (u, 01 , 02) satisfies 
the following identities: 

e (o:u(t), w) +at (u(t), w) = Y1 (81 (t), V · w )+r2 (02(t), V · w )+ (.Q1 (t), w) 

+Yt (<P2(t); V · w) Vro E Y0 , 

(3.3) c(o,01(t), f3)+a2(01(t), /3) = -d(o,02(t), /3)-y1 (o,V · u, /3) 
+ (.Q2(t), /3) v f3 E vl, 

n(o,02(t), v) = D(L102(t), v)-y2(o,V · u(t), v)-d(o,01(t), v) 

+ (.Q3(t), v) Vv E v2' 

with the initial conditions 

(3.4) u(O) = rp1, (o,u)(O) = ip2, 01(0) = D1, 02(0) = {}2, 

where 

J [ ( au,(t) ouit) ) ] awt 
a1(u(t),w)= G p, oxJ + ox, +A(V·u(t))biJ oxJ dx, 

a2(01(t), /3) = k J V01(t)Vf3dx, 
G 

(.Q1(t), w) = (X(t), w )+ J "P(t)wds- e (a;<P1 (t), w )-a1( f/>1(t), w ), 
oG2 

(.Q2(t), /3) = (Q1(t), f3)-a2(<P2(t), f3)-c(o,<P2(t), f3)-r1 (o,V · <P1(t), /3) 

+k J f3q(t)ds, 
oG1 

(D3(t), v) = (Q2(t), v )-d(a,<P2(t), v )-r2 (a,v · <1>1 (t), v ), 

fP1 = f/J1- <1>1 (O), fP2 = f/J2- <a, f/>1) (O), -&1 = {}1- f/>2 (O), 

f/>1 (t) E H1(G) and satisfies the condition <1>1 (t)laG
1 

= <P(t), 

<P2 (t) E H 1(G) and satisfies the condition <P2 (t) laG
2 

= p(t), (8
) 

Vo = {ro:ro E H1 (G)J\rolaG1 = 0}, vl = {{J:f3 E H 1(G)/\f31aG1 = 0}, 

v2 = {v:v E HJ(G)}. (9
) 

( 8
) We use the same notations as in [6] p. 122. 

( 9 ) The spaces V0 , V1 , V2 are separable. ([2, 14, 29]). 
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Let us notice that the spaces Y0 , L2(G), Y6, V1 , L 2(G), Vi and V2, L 2(G), Vi (where the 
spaces Y6, Vi, Vi denote the dual spaces to the spaces Y0 , V1 , V2 respectively cf. [29]) 
form the Gelfand triples. The symbol ( · , · ) denotes the forms of duality on (Y0 , Y~); 
(V1' vn and (V2, Vi) respectively, which on the Cartesian product L2 (G) X L2(G) or on 
the product L 2 (G) x L 2 (G) becomes the scalar product in the spaces L2 (G) or L2 (G),. 
respectively. 

4. Existence theorem 

THEOREM 4.1. If the following supplementary conditions are satisfied: 

X E Wi (I, L2(G)), Qi E L2(I, vi*), iP1 E Yo, 

(4.1) ifo2EL2(G), D1EV1, D-2EV2, qEL2(I,L2(oG)), 
rP1 E Wi (!, H112 (oG)), a;~1 E Wi (!, H- 112(oG)) (1°), 

i>2 E Wi (I, H1
'
2(oG) ), if' E Wi (I, L2(G)) (i = 1, 2) 

then there exists a weak solution of the problem (1.1)-(1.3), (3.1), (3.2) with the properties 

(4.2) a,u E L 2(I, L2(G)), a;u E L2(1, Y6), orfh E L2(I, vi), ato2 E L2(I, vi). 

REMARK 4.1. By q, tP1 , cP2 , if! we denote the extension of the functions q, (/> 1 , (/>2 , ¥ 
to Ix oG (cf. [6] with the properties 

q(t)IIxoG~ = q(t), ~1(t)IIxoG 1 = tP(t), 4>2(t)IIxoG2 = p(t), ~(t)iixoG 2 = P(t). 

Proof. We prove the theorem 4.1 using the Faedo-Galerkin method. The proof 
is divided into three steps: 

l. The approximation of the solution by a sequence (um, OT, O'i)meN' i.e. the so-called 
sequence of Galerkin approximations. 

2. The estimations of the Galerkin approximations. 
3. The convergence of the sequence (um, OT, O'i)meN to the weak solution of the problem 

(1.1)-(1.3), (3.1), (3.2). 
Ad. 1. Let {wm}, {f3m} and {vm} be linear and complete systems in Y0 , V1 , V2 , res

pectively. 
We define the Galerkin approximations of the solution (u, 01 , 02 ) by 

(4.3) 

m 

u"'(t) = }; gj(t)w1, 

)=1 

m 

O'i(t) = }; km1(t)v1 , 

i=1 

m 

OT(t) = }; hmit){3J, 
)=1 

where the functions gj( · ) , hmi · ) , kmi · ) are chosen in such a way that the following 
system of equations is satisfied: 

e(ai"u"'(t), w1)L2+a1 (u"'(t), w') = y1 (Oi(t), V · w1
)L2 

+y2 (0'i(t), V · w1)L2+y1 ((/>2 (1), V · w')+ (.Q1 (t), w'),. 

(1°) The definition of the space H•(oG) for s e R may be found in [14]. 
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(4.4) c(or8T(t), fJ,)L2+a2 (OT(t), fJ,) = -d(or8':(t), fJ,)L2 

-y~ (atv · u"'(t), p,)Ll+ (D2(t), p,), 

n(or.O':(t), v1)L2 = D(LIO';(t), v,)L2-y2 (orV · u"'(t), v1)L2 

+ (D3(t), v,)-d(or8T(t), v,)L2 

with the initial conditions: 

m m 

u'"(O) = <PT = l; ajw1, (oru"')(O) = i;'; = l; bjw1, 

(4.5) 
J ... t 

m 

)=l 

m 

lJT(O) = DT = 2: CmJfJj, 8'; (0) = {}'£ = 2: dmJVJ, 
)al )=l 

where 

in 

In 

if m-+ oo. 
The equations (4.4) with the initial conditions (4.5) are a system of ordinary linear 

differential equations for unknowns gj~ hmb km1 and can be written in the form 

d2 G 
eGtm dtt +AtmGm = YtMtmHm+Y2M2mKm+F1m' 

dHm dKm dG. 
cG2.-d-+A2mHm = -dDtm-d--ytUtm-d-+F2,,., t t ' t 

(4.6) 

G dKm dGm d dHm 
n 3m~= M2mKm-y2U2m~- 'D2m~+F3m 

and the inital conditions 

(4.7) 

where 

Gm(O) = (gj(O) )J= 1 .... . m = (a1>'t, a02, · · ·, aOm), 

(orGm)(O) = (orgj(0))1=t ..... m = (hTt, hT2, ... , b:!:m), 

Hm(O) = (hmi0))1=t ..... m = (c~~, c~2, ... , c:!:m), 

Km(O) = (kmiO))J=t .. .. ,m = (d~l' ... ,d:::m), 

Glm = ((w1, w')L2 )j.l=t. . ..• m, 

Gm(t) = (gj(t))J=l, ... ,m, 

Atm = (at(W1
, w'))J.l=t ..... m, 

Hm(t) = ((hmit))J=l, .... m, 

M 1 = ((f3 · V · w1)L2) m J' j,l=I •... ,m, 

Km(t) = (kmit) )J=l. ... ,m, 

M 2 m = ((vb V · w1)Ll)J,I=t. .. .. m, 

Flm = ((Ql(t), w')+Yt ((])2(1), V · w1))t=t. .... m, 
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G2m = ((fJJ,.fJI)L 2 )j,l=l. ... , m• 

A2m = (a2({3J, fJ,))J.l=t ..... m• 

Dtm ·= ((vb f3t)L 2 )J.I=t. ... . ,., 

Ulm = ((V. o/, f3,)L 2 )J.I=t. ... ,,., 

F2m = ({.Q2(t), fJ,))t=t .... ,,.; 

G3m = ((vi>vi)L 2 )J.l=t •.. . ,,., 

M2m = ((Vvh v,))J,l=t .... ,,., 

U2m = ((V · w1, Vt)L 2 )J.l=t. ··· •'"' 
D2m = ((fJJ, v,)L1 )J,l=l. .... m. 

F3,. = ((.QJ(t), v,)),=t ..... m· 

Equations (4.6) with the initial conditions (4.7) have a unique solution in the interval 
I= (0, T) (T < oo) (cf. [15] p. 327-328). This follows from the general theory of ordi
nary differential equations (cf. [26] p. 157-187). Thus the Galerkin approximation se
quences (um)meN• (O'f)meN• (Oi)meN are uniquely determined by the system (4.4)-(4.5). 

Ad. 2. By multiplying the relations (4.4)1 by (orgl")(t), (4.4h and (4.4h by hm~(t), 
k,.,(t) respectively, and taking the sum over I for (1 ~ I~ m), we obtain 

e(a:u"'(t), oru"'(t))L:a+at (u"'(t), oru"'(t)) = y1 (OT(t), V · oru"'(t))L:a 

+ Yl Oi(t), V ·Or u"'(t) )L:a + (Dt (t), or u"'(t) )+ Yt ( (J>2(t), V · or u'"(t) ), 

(4.8) c(orO'f(t), 0T(t))Lz+a2 (0'f(t), O'f(t)) = -d(orO':(t), OT(t))La 

-yt (orV · u"'(t), OT(t))L:a+ (D2(t), Oi'(t)), 

n(orOi(t), Oi(t))Lz = D(L10';:(t), Oi(t))-y2((orV · u"'(t), Oi'(t))L:a 

- d(ar OT(t), Oi(t) )L:a + (.Q3(t), 0~ (t) ). 

It is easy to see that the following identities are true: 

) 
_ l d m 

a 1 (u'"(t), Oru'"(t) - Tdia1 (u (t), u'"(t)), 

(4.9) c (or Oi(t), Oi(t) )L2 = ~ c ~ IIOT(t)lli.:a, 

n (at Oi ( t) ' Oi' ( t)) L 2 = + n ~ II or;: ( t) IIi 1 ' 

D (L10i(t), Oi'(t) )L2 = - DIIV0i(t)lli.2. 

Substituting the relations (4.9) into Eqs. (4.8), adding Eqs. (4.8) by sides and integrating 
the obtained result over the interval (0, t ), we get 
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t . t 

+ 2D j ii VO~( r)l/c2dr + 2 j a2 (OT( r) , OT( r) )dr = - 2d(OT(t), O~(t))L2 
0 0 

t t t 

+2 f (.Qt(T), oTu'"(r))dr+2 f (.Q2(T), OT(r))dr+2 f (.Q3(r), O~(r))dT 
0 0 0 

t 

+ ellciJ~ II [l +at (ciJT, cpT) + cii -&T II i.2 +n ll -&~ ll i. 2 +2d(#T , -&T) + 2yt f ($2( r), V · oTu'"( r) )dr. 
0 

Using the Schwarz inequality (cf. [15], [28]) and taking into account the inequality 

(4.11) 

we get the following estimates: 

t t 

(4.12) 1 ~ f (.Qt(T), OTt/"(T))drl ~ Ct Etllu'"(t)ll~o+c2 c2 J llu'"(r)ll~odT 
0 0 

t 

+~ II.Qt(t)ll~~+~ J lloT.Qt(r)ll~~dr+~ IID1 (0)1/~~+c3e311tP'i'll~o (1 2
) , 

el e2 0 .· e3 

where :(cf. [6] p . 122) 

t I 

j j.Ql{t)l ~ v~ = s~p f(.Ql(t), u'"(t))l, 12 f (.Q2(r), O'i'(T))drl ~ C4c4 r II OT(r)ll~ 1 dT 
l!u"'(t)l loetl 

0 0 

I , 

+ c ... , J (IIQt ( T)ll~i + lloT([>t ( T)ll:o + ll$2( r)ll:1 + 1/oT$2( r)ll ~ 1 + 1/q( T)lli.2<aG>) dr , 
e4 o 

t t t 

12 J (.Q3(T), O~(r))drl ~ Cs es J IIO~(T)ll~2 dT+ :s J (IIQ2(r)ll:: 
0 0 s 0 

+ lloT$1 (T)jj~o + lloT$2(T)ll~Jdr , 
t t 

j2/'1 f ($2( T), V OTt/"( T) )drl ~ C6 C6 ( jjt/"(t)ll~o + 11$2(0)11~ 1 +flit/"( r)ll~odr) 
0 0 

t 

+~ ( 11 $2(r)ll~ 1 + ll tPTII~o + J lloT$2(-r)ll:l dr) , 
C6 0 

(
11

) It is easy to see that 2iab i = 2ie1
'

2ae- 1
'

2bl ~ (e 1
'

2a)2 + (-
1
- b)2 

for Ve > 0. 
e1J2 

(1 2) We take into account that (.O~toTu"'(r)) = ClT(.Q1,u"'(r))-(ol'.Q1, u"'(T)) and we use the Schwarz 
inequality and the inequality (4.11). 

http://rcin.org.pl



MixED BOUNDARY-INITIAL VALUE PROBLEM FOR THE EQUATIONS OF THERMODIFFUSION 261 

at (ip'I', ipT) ~ c711cpT I I~o · 

Moreover, in view of Poincare's inequality (cf. [7]) and Korn's second inequality (cf. [6], 

we get 

II VOi(t) ll [l ~ bt ll 8i(t) ll ~2 where b1 = bt(G) , 

(4.13) a1 (tr(t), um(t)) ~ .Utllum(t)ll~o- Atllum(t)ll[2, 

a2 (OT(t), OT(t)) ~ .U2i18T(t)l1~ 1 - ).2118T(t)lli.2 • 

The constants c1 , c2 , •.. , c7 follow from Schwarz's inequality ,u 1 , ,u2 , A1 , A2 - from 
Korn's second inequality and <5 1 from Poincare's inequality and are independent of m. 
However, the constants s, s 1 , ... , s6 follow from the inequality (4.11) and are arbitrary 

positive constants. Taking into account the above estimates and using the inequality(1 3
} 

t 

(4.14) lltr(t)llc2 ~ 211tr(O)IIc2+2T J 118-rum(-r)ll[2d-r 
0 

and the imbedding theorem (cf. [28, 29]), we have 

( 4.15) ell at tr(t) II C2 + C.ut- Ct Ct- C6 C6) 11 um(t) ll ~o + (c- dc) ll OT(t)l li.2 

. ( t 

+ ( n- :) [[ 02(t) il b + (2p2 - c. e.) J [[ OT( r) f l~,dr+ (2DJ,- cs es) J [[ OT(r)lf~,dr 
0 0 

t t t 

~ 2A1 T J ll o-rtr(r) ll i.2dr+(c2s2+c6s6) J ll tr(-r) ll ~od-r+2A2 J ll 8T(-r) ll i.2dT 
0 0 0 

t 

(1 3) It is easy to see that // u"'(t) // L2 ~ 1/ um(O) // Ll+ J 1/o-rum(r) // Ll dr. After simple transformations 
0 

we get the inequality (4.14) 
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We take the constants e, e1 , e4 , e5 , e6 so that the following conditions will be satisfied: 

(4.16) c-de > 0, 

2Df51 -CsEs > 0, 2p2 -c4 e4 > 0. 

It is easy to see that the constant e = V c /n satisfies the inequality ( 4.16) and the inequality 
en> d 2

• 

We denote the following constants by C8 , C9 and A: 

C8 = min[e.p1 -c1 e1 -c•••·c-de,n- ~ ,2p2 -c4 e4 ,2D<l1 -c5 es]. 

(4.17} 

A= c9. 
Cs 

Using the above symbols we can write the inequality (4.15} as 

2 2 , . 

(4.18) Jlotu"'(t)JIC2 +IIu"'(t)ll~o+ ,2ii0i(t)lli2 + _2 J IIOi"(T)II~,dT 
1=1 1=1 ') 

t 2 

~ A j (11oTu"'(T)IIC2 + llu"'(r)ll~o + 2;11Q7'(T)IIil)dT+A (ilfjiill~o + II~TII~2 
0 1=1 

t 2 

+ IJ;?illi2 + IIDTIIi2 + 114>2(0)11~ 1 + f (.J: IIQ,(T)II~t+ lloT4>1(r)ll~~+ lloT4>2(r}ll~. 
0 i=1 

t 

+ 114>2(T)II~.)dr+ J (llq(t)IIZ2 <aG> + lloT!Jt(r}ll~~)dT+ II!Jt (r)ll~~+ II!Jt (0)11~~]. (1 4) 
0 

It is easy to notice that the following relations are true ( cf. [29]) 

(4.19) ll~ill~o ~ Ctoll~tll~o' llq)TIItl ~ CulltP2IIt2
, 

11Dilli2 ~ Ct211Dtll~,, IIDTIIil ~ C13IID2II~2' 
where the constants C 10 , C 11 , C 12 , C 1 3 are positive constants and are independent of m, 

t 

f (lloT4>2(T)IJ~ 1 + 114>2(T)II~.)dr ~ 114>211~~(1.V1h 
0 

(1 4
) The inequalities (4.19) follow from the relations (4.5) (cf. [29)). 
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(4.20) 

t 

J 118\"4'>1(-r)ll~odT ~ 114'>tllfv~(I.V0h 
0 

t 

f llq(T)IIi2(BG)dT ~ llqlli2(I,L2(BG)), 
0 

t 

J 118r.Ql(-r)ll~~dT ~ II.!Jtllfv!(I,V~)· 
0 

263 

Substituting the inequalities (4.19) and (4.20) into the inequality (4.18) and denoting the 
following constants by B, 

B = A ( Ctollq>tll~o + Cullq>2ll~2 + C12IIO: 11~ 1 + C13IID2II~2 + 114'>2(0)11~ 1 + II.Qt(O)II~~ 
2 

+ max II.Qt (t)ll~~ + 2 11Qtlli2u,v~>+ WP2IIfv!u. v 1 > + 114'>tllfv!u.v:> 
te[O,T] i=1 

we get 
2 2 t 

(4.21) 118ru"'(t)ll~l+ llu"'(t)ll~o + 2110i(t)lli2 + 2 f IIOT(-r)ll~,dT 
i=1 i=10 

t 2 

~ B+A J (llo~u"'(-r)ll~l+ llu"'(-r)ll~o + 2110i"(-r)lli2)d-r. 
0 1=1 

From the inequality (4.21) we get directly 

2 t 

(4.22) ll8ru"'(t)ll~2 + llu"'(t)ll~o + 2 IIOi{t)llil ~ B+A f (11o~u"'(-r)llt2 
1=1 0 

2 

+ llu"'(T)II~o + 2110i(-r)lli2)dT • 
1=1 

Applying Gronwall's inequality (cf. [14, 16]) to the relation (4.22), we have 

2 

(4.23) Jl8ru"'(t)IIC2+ llu"'(t)ll~o + 2110i(t)lli2 ~ C(T, A)B Vt E /, 
1=1 

where C(T, A) = eAr (cf. [14], p. 298, [16], p. 46). 
The estimates (4.23)-(4.22) imply that the sequences (um)meN, (81um)meN, (OT)meN 

(i = 1, 2) are bounded in the spaces L2
(/, V0), L2 (1, L2 {G)), L2 (1, L2 (G))nL2 (1, Vi) 

(i = 1, 2) for any mE N and t E (0, T), respectively. 
Ad. 3. Consequently, there exist the weakly convergent subsequences (um"), (o,um•), 

(0'{'") of the sequences (um)meN, {8ru)!:eN, {OT)meN they will be denoted by the same 
symbols as Galerkin sequences, i.e. (u"),eN, (oru")veN, (Oi)veN (i = 1, 2). Without loss 
of generality we may assume that 
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u"-+ z (weakly) in L 2 (1, Y0), 

{4.24) oru"-+ z' (weakly) in L2(l, L2 (G)) 

Oi -+ Yt (weakly) in L2 (I, L2(G) )nL2(1, V1). 

Obviously (cf. [29]) z' = otz(l) and since zl(O) -+ z(O) in Y0 if v-+ oo we get z(O) = cp1 • 

Let~ E Cex>(J) and satisfy the condition ~(T) = 0. We put ~1(1) = ~(l)w1, ~1(t) = ~(1){31 
and C1 = ~(1)v 1 • By multiplying Eqs. (4.4) by ~(1), taking m = v > I and integrating 

by parts on the interval [0, T] in view of condition ~(T) = 0, we have 

T T 2 T 

- e f (ot u"(t)' Ot ~'(t) )Lzdl + f al (u"(l), ~1 (1) )dl = }; J (Oi(t), v . ~'(t) )Lzdl 
0 0 1=1 0 

T T 

+ f (.Ql(l), e(t))dt+y2J (</>2(1), V · ~1 (t))dt+e(ip2, ~1 (0))Lz, 
0 0 

T T T 

(4.25) - c f (01(1)' Ot ~,(1) )L2dl+ f a2 (O'i(t), ~,(1) )dl = - d I (at Oi(t)' ~,(t) )dt 
0 0 0 

T T 

-y1 J (otV · u"(t), ~,(l))dl+ J (.Q2(i) , ~1 (t))dt+c(-il, ~1 (0))Lz, 
0 0 

T T T 

-n f (Oi(t), otC,(t))Lzdl = D f (L102(t), C,(t))dt-y2 f (otV. u"(t), C,(l))dl 
0 0 0 

T T 

-d J (ot01(1), C1(1))L 2 dl+ J (.QJ(I), C,(t))dt+n(D2, C1(0))Lz· 
0 0 

In view of the weak convergence (4.24), taking v-+ oo in Eq. (4.25), we get 

T T 2 T 

- e f (otz(l), ot ~1 (t) )dt+ f a 1 (z(1),~1 (t) )dl = }; Yt j (Yt(t), V · ~1 (1))dl 
0 0 i=l 0 

T T 

+I (.Ql(l), ~1(1))d1+r2 J (4>2(1), v · ~'(t))dl+e(ip2, ~'(O))Ll, 
0 0 

T T T 

(4.26) - c J CY1 (t), ot~,(1) )dt+ J a2 (Yl (1), ~,(1) )d1 = -d J (oty2(t), ~;(t) )dt 
0 0 0 

T T 

- Y1 J (orV · z(t), ~1 (1) )dl+ J (.Q2(1), ~1 (t) )dt+c(fi;_, ~,(0) )Lz, 
0 0 

T T T 

-n f (y2(1), orC,(t))dl = D f (L1y2(1), C,(t))dl-y2 f (orV · z(t), C,(t))dl 
0 0 0 

T T 

-d _{ (orYI(I), C,(t))dl+ J (.QJ(I), C,(l))dt+n(D2, C,(O))Lz· 
0 0 

In particular, Eqs. (4.26) are true for any ~ E C6{T). 
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Therefore we get 

(cp2 , ~1 (0))L2 = 0, (D1 , ~1 (0))L2 = 0 and (fJ2 , C,(O))L:~ = 0. 

Taking it into account and using the simple transformation (integration by parts), we have 

T T 2 T 

e J (of' z(t), ~1 (t) )dt+ J a 1 (z(t), ~1 (t) )dt = 2; Yt J (Yt(t), V · ~'(t) )dt 
0 0 i=l 0 

T T 

+ j (Dt(t), ~1(t))dt+y2 j (4> 2(t), V · ~1 (t))dt, 
0 0 

T T T 

(4.27) c j (otYt (t), ~,(t) )dt+ j a2 (y1 (t), ~,(t) )dt = - d f (otY2(t), ~,(t))dt 
0 0 0 

T T 

-yt j (otV · z(t), ~1 (t))dt+ j (D2(t), ~1 (t))dt, 
0 0 

T T T 

n f (oty2(t), C,(t))dt = D f (Liy2(t), C1(t))dt-y2 f (otV · z(t), C,(t))dt 
0 0 0 

T T 

-d f (otyt(t), C,(t))dt+ f (!J3(t), C,(t))dt. 
0 0 

Since the functions ~1(t), ~1(t) and C1(t) are arbitrary, the following identities follow from 
the relation ( 4.27): 

e(oi'z(t), w')+a1 (z(t), w') = Yt(Yt, V · w1)+y2CY2, V · w') 

+ (!Jt(t), w1)+y2 (4>2(t), V ·w'), 

(4.28) c(oty1 (t), {J1)+a2 (y1 (t), /31) = -d(oty2(t), {3,)- Yt (otV · z(t), f3r)+ (!J2(t), f3z), 

n (oty2(t), v,) = .D (Liy2(t), v,)- Y2 (a tv· z(t), v,)- d(otYt (t), v,)+ (!J3(t), v,). 

Thus the system of the functions (z, y 1 , y 2 ) is a weak solution of Eqs. (1.1)-(1.3) 
·in the sense of the definition (3.1). Now we show that this solution satisfies the initial 
condition (3._4). In order to do it, it is sufficient to perform integration by parts in Eqs. 
(4.26), and to take into account the relations (4.27). After performing this operation 
we get 

(4.29) ((otz)(O), w')Lz~(O) = (cp2, w1)L2~(0), (1 5
) 

(Yt(O), f3t)L2 ~(0) = (J.1 , {31)L2~(0), (y2 (0), v1 )L2~(0) = (1}2, v,)L2 ~(0). 

As the functions w', {31, v 1 are arbitrary, we have ( a,z)(O) = ip2, y1 (0) = D1 , Y2 (0) = fJ2. 

There the system of the functions (z, y 1 , y 2) is a weak solution of the problem (1.1)
(1.3), (3.1), (3.2) in the meaning of the definition (3.1). From the properties of the sequence 

(1 5) In Eqs. (4.29) ; -denotes the function which belongs to the space C00(/), with the property 
;(T) = 0, so the symbol ;(O) is meanigful. 

4 Arch. Mecb. Stos. nr 3/86 
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of Galerkin approximations (cf. relation (4.24)) and in view of the definition of the weak 
solution of the problem (1.1)-(1.3), (3.1); '(3.2) we obtain 

OrZEL2(1, L2 (G)), a;zEL2(1, V~), OrYt EL2(1, vi*) (i = 1,2). 

This completes the proof . of Theorem 4.1. 

5. Uniqueness theorem 

THEOREM 5.1. (Uniqueness). Let X, Qj, P, cp 1 , ip2, .01 , D2, q, iP1, i>2 be such that 

(5.1) 

XE Wi(I, L2 (G)), 

ip1 E H2 (G)nV0 , 

Qi E Wi(I, vi*), Qi(O) E vj, 

ip2 E Yo, 01 E V1nH3(G), 

ifi E Wi(I, L2 (oG)), 

{}2 E H 3 (G), 

q E W] (I, L 2 (oG)), 

(1>1 E Wi(I, H112 (oG)), a:(/>1 E W4(I, H- 112 (oG)), 

(p2 E Wi (I, H112 (oG)) (i = 1, 2). 

Then the problem (1.1)-(1.3), (3.1), (3.2) has a unique weak solution with the properties 

(5.2) a;uEL2(I, L2 (G)), a~uEL2 (I, V6), a;oi EL2 (I, vi*) (i = 1,2). 

P r o o f. First we consider the following initial-boundary value problem for the 
equations 

2 

eo: P = ,uLIP+(A+,u)V(V · P)- )' YtVSt+orX, 
;7;t / 

(5.3) cars1 = kLIS1 -y1 arv · P-dars2 + otQ1, 

norS2 = DLIS2 -y2o,V · P-dorS1 +orQ2 

with the initial conditions 

(5.4) 

(where oc = en- d2
) and the boundary conditions 

(5.5) 

S2lrxao = 0. 

It is easy to see that in view of Theorem 4.1 and the conditions (5.1) the system of Eqs. 
(5.3) with the conditions (5.4) and (5.5) has a weak solution: 

(5.6) (P, S1 , S2) EL2(1, V0)xL2 (/, V1)xL2{l, V2) 
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with the properties 

(5.7) o,PEL2 (I,L2 (G)),oiPEL2 (I,V6), o,StEL2(I,Vt) (i=l,2) 

Now we introduce the functions 

(5.8) 

I 

w(t) = fPt+ J P(r)dr, 
0 

I 

'YJt(t) = Dt + J S1( r)dr 
0 

From the functions (5.8) it follows that 

(i = I, 2). 

(5.9) 
o, w(t) = P(t), o,'YJi(t) = Si(t), w(O) = fP1, (o, w)(O) = fP2, 

'YJt(O) = D1 (i = 1, 2). 

267 

We prove that the functions (5.8) satisfy the system of Eqs. (1.1)-(1.3) with the conditions 
(3.1), (3.2). Integrating Eqs. (5.3) on the interval (0, t) and taking into account the con
ditions (5.4), (5.5) and (5.9), we get 

eotw = fU1w+(J.+,u)V(V · w)-y1 V'Y) 1 -y2 V'Y) 2 +X, 

COr'YJl = kiJ'Y}t-Yt a,v. w-dOt'Yf2 +Qt' 

no,'YJ2 = DiJ'Y) 2 -y2(),V · w-da,'YJ 1 +Q2 , 

where w(O) = q; 1 , (o,w)(O) = C{J2, 'Yft(O) = Dt (i =I, 2) 

Wlrx()G 1 = 0, (]. viixoG2 = 'Jf, 'YJ1lrxoG2 = p, 

d'Yf1 1 - = q 'YJ2I1x()G = 0. 
dv Ix()G, ' 

So, in view of Theorem (4.1) and the conditions (5.7), (5.8), (5.9) we have the following 
relations: 

wE L 2(1, Vo), 'Yft E L 2(I, V,), a, wE L 2(1, Vo), 

(5.10) a;w E L 2(1, L2 (G)), a~w E L 2 (I, V6), at'Yft E L 2
(/, V,), 

at'YJt E L2(/, Vt) (i = 1, 2). 

From the relation (5.10) we conclude that the functions (w, 'YJ 1 , 'YJ 2 ) satisfy the con
ditions (5.2). 

Now we assume that there exist two different solutions (u, 01 , 82 ) and w, 'Y) 1 , 'Y) 2 of 
Eqs. (1.1)-(1.3) with the conditions (3.1), (3.2). The differences U = u-w, xi = 01-'Y)1 

satisfy the homogeneous equations 

ea; U = ,uL1U+(.I.+,u)V(V · U)-y1 Vx1-y2 Vx2 , 

(5.11) ca,x1 = kL1x1 -y1 a,(V · U)-do,x2 , 

na, x2 = DiJx2 - y 2 a,(V · U)- d(), x1 

with the homogeneous initial and boundary conditions 

(5.12) 
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From Eqs. (5.11), in view of the definition (3.1) (a weak solution), after taking into account 
the conditions (5.12), we get 

(!(of U(t), ot U(t) )+at (U(t), ot U(t)) = Yt ("1 (t), V · ot U(t)) 

+r2 ("2(t) , v · at U(t) ), 

(5.13) c(ot"1(t),"1(t))-cl-a2("t(t), "1(t)) = -d(ot"2(t), "t(t))-Yt(otV · U(t), "1(t)), 

n (ot " 2(t), "2(t)) = D (L1"2(t), "2(t) )- Y2 (ot V · U(t), "2(t) )-d(ot " 1 (t), " 2 (t) ). 

Using the same calculations as in the proof of Theorem 4.1, we obtain the following 
estimates: 

2 

(5.14) l!otU(t)llt2 +11U(t)ll~o+}; ll"t(t)lli.z ~ 0 

from the inequality (5.14) it follows at once 

!lot U(t)ll[z = 0, II U(t)ll~o = 0, 

Therefore u = w, 01 = 'YJt (i = 1, 2). 
This completes the proof of Theorem 5.2. 
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