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On errors inherent in commonly accepted rate forms 
of the elastic constitutive law 

M. KLEIBER (WARSZAWA) 

THE OBJECTIVE of this note is to critically discuss the applicability of a simple hypoelastic con
stitutive equation in order to describe energy-preserving hyper-elastic systems. The danger of 
a significant accuracy loss in using the hypo-elastic material model to the analysis of cyclic 
processes is demonstrated. 

W pracy przedyskutowano stosowalnosc prostego, cz~sto wykorzystywanego w literaturze, 
r6wnania konstytutywnego hypospr~:lystoSci do opisu material6w hyper-spr~:lystych. Wska
zano na niebezpieczenstwo bl~d6w powstaj(lcych przy stosowaniu tego r6wnania w analizie 
proces6w cyklicznych. 

B pa6oTe o6cym~eHa npHMeHHeMOCTb npoCToro ~ t.IaCTo HCllOJih3yeMoro B JIHTepazype ~ onpe
~emnoi.I.lero ypaaHeHHH rHnoynpyroCTH WIH onHcaHHH rHnepynpyrmc MaTepuanoa. YI<a3aHO 
Ha onaCHOCTb OIIIH60I<, B03HHI<a.IOI1UIX npH npHMeHeHHH 3TOro ypaBHeHHH B aHaJIH3e I..UU<JIH
t.IeCI<HX npoQeCCOB. 

l. Introduction 

IT IS VERY common both in the theoretical work on foundations of elasto-plasticity as 
well as in the existing finite element codes, cf. [1-3], for instance, that the rate form of the 
constitutive law of elasticity is employed as the hypo-elastic relation 

* -(t.t) alJ = Cuk,dk,, i,j, ... = 1, 2, 3, 

where ~ 11 is a Cauchy stress flux, du is the strain rate equal to the symmetric part of the 
spatial velocity gradient Vj,j and Cukl is a tensor of elastic moduli assumed constant. This 
effectively implies that C;1k 1 is usually taken equal to the moduli C11k 1 of the linear Hooke's 
elasticity 

(1.2) (Jij = cijkl skl' ci)kl = cklij. 

Only the Cartesian components of tensors with respect to a fixed coordinate system are 
considered in Eqs. (1.1) and (1.2) and throughout the rest of the paper. 

Even if most of the authors are clearly a ware of the theoretical inconsistency intrpduced 
by postulating Eq. (1.1) with Cilkt = const. to describe classical hyper-elastic solid 
behaviour(!), the popularity of this approximation has prompted the author to evaluate 
on the basis of a simple example the error inherent in such an approach. It is believed 
that the results obtained are instructive enough to be presented in some detail. The objective 

(1) The reader is referred to the so-called Bernstein's theorem as described in [8], for instance, which 
yields the sufficient conditions for a hypo-elastic solid to be hyper-elastic. 
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of this note is thus to critically discuss the applicability of Eq. (1.1) with CtJkl = const 
to simple elastic processes. However, since the elastic range is assumed to exist in almost 
all theories of inelasticity, the conclusions will have a much more general character. 

2. Analysis 

For the given initial stress distribution 

(2.1) 

we consider a linear in time T field of the infinitesimal displacement gradient 

(2.2) U1,i-r)=a11 T, TE[t0,t). 

The constant in time fields of the velocity gradient, strain rate tensor and spin tensor 
are given by 

(2.3) 

(2.4) 

(2.5) 

vlJ = alJ, 

dlJ = sym ali = ac tJ>, 

wtJ = antisymatJ = awJ. 

By moving the corotational terms over to the right-hand side, Eq. (1.1) can gel!erally be 
presented for any stress flux as 

(2.6) atJ(-r) = AtJkt(vm.n)ak,(-r)+6,1k,dk, 

or, in a convenient matrix notation, as 

(2.7) a(-r) = Ao(-r)+F, G, FE R6 

with the initial condition 

(2.8) 

and the definitions of particular ' terms in Eq. (2. 7) following directly by comparing Eqs. 
(2.6) and (2.7). The solution to Eq. (2. 7) with the initial condition (2.8) has the form 

T 

(2.9) o(-r) = eA<-r-to>a0 + J eA('r:-s)F(s)ds, 
to 

where 

(2.10) 

which converges for all T. There are several classes of matrices A for which the infinite 
series (2.10) can be summed exactly. In general, though, it is not possible to express eA-r 
in closed form. Yet, the remarkable fact is, cf. [4], that if X( -r) is a fundamental matrix 
solution of the differential equation 

(2.11) o(-r) = Ao(-r), 

i.e. columns of X( -r) form a set of 6 linearly independent solutions of Eq. (2.11 ), then 

(2.12) eAT= X(-r)X- 1(0). 
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In other words, the product of any fundamental matrix solution of Eq. (2.11) with its. 

inverse at -r = 0 must yield eAT. Thus, for a given initial-value problem (2.7) and (2.8),. 

we can find the solution a( -r) given by Eqs. (2.9) and (2.12) provided we can find 6linearly 

independent solutions of Eq. (2.11). 

The most common choices of the objective stress rate ~iJ in Eq. (1.1) are the Jaumann 

derivative of the Cauchy stress, Truesdell derivative of the Cauchy stress (which corresponds. 

naturally to the Green strain on the current configuration, [5, 6]) or the Jaumann de

rivative of the Kirchhoff stress (which corresponds naturally to the logarithmic strain, 

[5, 6]). To be specific we shall now consider in Eq. (2.1) the stress flux in the form of the 

Jaumann rate of the Cauchy stress; other rates can be treated similarly. We have 

(2.13) 

so that 

(2.14) 

Qr 

(2.15) (Ji} = (wlk t}jl-wkj t5il) (Jkl + cijklvk,l = 

1 -= 2 ( t}lk (Jl}- t5l}alk + t}jk (Jll- t}ll (Jkj)vk.l + cl}klVk.z = Ai}kl(vm.n)akl + Fij. 

3. Example 

For the plane strain case the only nonvanishing strain-rate and spin components are 

d11 , d22 , d12 , w 12 = w so that Eq. (2.15) becomes 

r
all] l 0 0 2] r(Jll] rcll c12 0 ] l du] 

(3.1) ~22 = w o o -2 a22 + C12 C22 o d22 • 

a12 -1 o a12 o o c33 d12 --.....--.---
A (J F 

First, we find eAT where 

(3.2) [ 
0 0 2] 

A= w 0 0 -2 . 
-1 1 0 

To this end compute 

[

-A 
(3.3) det(A- AI) = det -~ 

Thus the eigenvalues of A are A = 0 and A = ± 2wi. 
(i) .:t = 0: we seek a nonzero vector v such that 

(3.4) [ 0 0 2w] lv1

] [OJ (A- 0 · l)v = 0 0 - 2w v 2 = 0 . 
-w w 0 v 3 _0 
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Hence the solution of Eq. (2.19) can be adopted in the form 

(3.5) v = [~] 
and, consequently, 

(3.6) 

is a solution of the homogeneous equation is = Aa. 
(ii) A. = 2wi: we seek a nonzero vector v such that 

[A-(2wi)I]v = r-~i -~i -~.] r::] = [~]. 
-w w -2wz v3 0 

(3.7) 

Hence the following solution of Eq. (2.22) can be obtained: 

(3.8) v = [ -:] 

and 

(3.9) 

is a compl~x-valued solution of o = Aa. Now 

M. KLEmER 

r 
cos2wTJ [ sin2wl'] 

= -C~S2wT +i -Sin2wT 
-sm2wT cos2wT 

and, consequently, 

(3.11) I 
sin2wT 1 

a 3 (T) = -sin2wT 
COS2wT 

are real-valued solutions of a = Aa. The solutions a 1 , a 2 and a 3 are linearly independent 
since their values at T = 0 are clearly linearly independent vectors of R3

• Therefore 

r
l cos2wT sin2wT] 

X(T) = 1 -cos2wT -sin2wT 
0 - sin2wT cos2wT 

(3.12) 

is a fundamental matrix solution of a = Aa. 
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Computing 

x-•(o) = [ ~ (3.13) -1 

0 

we see that 

eAT= fi cos2wr sin2wT] 
(3.14) -cos2wr -sin2wr 

-sin2wr cos2wr 

1 1 
0 

~r 
2 2 

1 1 
0 

2 2 

0 0 

1 
0 

2 2 

1 1 
2 2 

0 

0 0 

1 1 
2 (1 +cos2wr) 2 (l-cos2wr) sin2wr 

1 1 

2 (l-cos2wr) 2 (l +cos2wr) -sin2wr 

1 . 
--sm2wr 

2 
1 . 
2 sm2wr cos2wr 

Using Eq. (2.9) we arrive at 

1 1 
2 U+cos2w(r-t0 )] 2 [1-cos2w(r-t0 )] sin2w(r-t0 ) 

[
O'u(r)] 1 1 

(3.15) 0'22(r) = 2 [1-cos2w(r-t0 )] 2 [1+cos2w(r-t0)] -sin2w(r-t0 ) 

0'12(T) 
1 . 1 -2 sm2w(r- t0 ) 2 sin2w(r- t0 ) cos2w(r- t0 ) 

~ (r-10)+ ~ sin2w(r-t0) ~ (r-10)-~ sin2w(r-t0) 

~ (r-10)-~ sin2w(r-t0 ) ~ (r-10)+ ~ sin2w(r-t0 ) 

1 1 
- 4w [l-cos2w(r-t0)] 4w [1-cos2w(r-t0)] 

1 
2
w [1-cos2w(r-t0 )] 

1 - 2w [1-cos2w(r- t0)] 

1 [ . 
2
w sm2w(r-t0 )] 
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In the limiting case of the ,zero-order" theory (terms up to zero order in w are retained) 
we correctly have from Eq. (3.15) 

[
O"u(T)] [a?t] [F1] 
0"22( T) = 0"~2 + ('r- t0 ) F2 • 

O"t2(T) O"t2 F3 
(3.16) 

For the first order theory we have 

where 

(3.17) B = [ ~ ~ -~J. 
-1 0 

T 

The internal energy from t0 toT is given by W<to,T> = J O"iJ(s)ailds and can be computed 
to 

T 

by not~ng that the integral J O"iJ(s)ds can be specified to yield 
~ to 

(3.18) 

~ (T-to)+ ~ Sin2ro(T-to) 

_!_(T- t0)- -
1
- sin2w(T- t0 ) 

2 4w 

1 
- - [1- cos2w( T- t0 )] 

4w 

~ (T-t0)-~ sin2w(T-t0) 

~ (T-t0)+ ~ sin2w(T-t0 ) 

I 
4w [1-cos2ro(T-t0 )] 

I 
2w [I- cos2w( T- t0 )] _!_( T- t0 ) 2 --

1
- [cos2w(T- t0)-1] 

4 8w2 

I 
-

2
w [1 - cos2w( T- t0 )] 

2~ sin2w(T-t0 ) 

! (T-t0)
2 + 8~2 [cos2w(T-t0)-l] 

I I 
4(T-to)- Sw2 [cos2w(T- t0)-I] 

_I_ ( T- t
0

) 2 ___ !____ sin2w( T- to) 
4w 8w2 

! (T- t0 )
2 + 8~2 [cos2w(T- t0)-I] 

-_I_ ( T- t0)+-~- sin2w( T- t0 ) 
4w 8w2 

__!- ( T- t0 )-_I_ sin2w( T- t0 ) 
2w 4w2 

- 2~ (T-t0)+ ~2 sin2w(T-t0) 
I 

- 4w2 [cos2w(T-t0)-I] 

r~:l 
The ,zero-order" approximation to the energy expression is 

(3.I9) 
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whereas the "first order" approximation can be shown to be 

(3.20) w<'{;,T) =dT[ I+ +llw(T-fo)]a•(T-fo) + +dT [I++ Jlw(T- lo)] Cd(T-fo)2 • 

It can easily be proved that the work gi~n by Eq. (3.20) vanishes for the displacement 

gradient path 0-a- 0, Fig. 1, as it should for any closed path in the classical elastic ma

terial. For we have 

(3.21) w,<~~ ,, = dr[l+ +Bw}•"+ +dr[l+ +Bw ]cd 

T:1 
a 

a 

~----------------------.. 
0 u i,j 

FIG. 1. FIG. 2. 

and 

(3.22) 

Let us see now whether the same can be said of the closed path 0-a-b-0 shown in 

Fig. 2. We parametrize the deformation gradient as 

(3.23) 

so that 

(3.24) 

U1.i-r) = alJT, T E [0, 1], 

T E (2, 3] 

v 1•1 = ali, T E [0, 1], 

vi.J = -alJ+blJ, T E [1, 2], 

TE[2,3]. 

and with the additional notation for the plane strain case 

(3.25) 
WQ = a(12], Wb = -a(12J+b(12], (JQ = (J'T=l' (JC = (J'T=Jt 

we arrive at 
j 

daT = [a00 a< 22 >a< 12>], ... , ab = aiT=2' 

a• = [l+llw']a0 + [I++ Jlw•] Cd•, 
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(3.26) 

a' ~ [I-Bco•ja•- [I- ~ Bco•] Cd• ~ a 0 + ~ B( co•Cd• -co•Cd•) ; 

w.<l> = daT [I+__!___ Bwa] ao+ _!_ daT [I+__!__ Bcoa] Cda 
(O, 1 ) 2 2 3 ' 

, (3.27) W.'f~ 2 , ~ ( -d•+d•)r [I+ ~ · B( -co•+co•)] a"+ ~ ( -d• +d•) [I+ + B( -co' 

+co•)] C( -d• + d•), 

W8~ 3 , ~ -d•r (1- ~ Bco•) a•+ + d•r[1-+ Bco•l Cd•, 

which finally yields 

(3.28) .EW<l> = W0 > = __!___ (dbT co0
- dar cob)Ba0 + __!___ (dbTBco°Cdb- daTBcobCd0 ) 

(0,1,2,3) 2 3 

+ + [ dbTB( C0°- cob) Cda + daTB( C0°- cob) Cdb]. 

We see that in accordance with what we have predicted the total strain energy does 
not generally sum up to zero in the deformation cycle considered. For the special case 
of the rotationless straining we have C0° = cob = 0 and 

(3.29) W(l) 0 
(_0. 1, 2 , 3) = 

e.g. the energy balance is correctly fulfilled. 
Let us further specify Eq. (3.28) to the case in which da = db = d (no strain rate 

increase from a to b), G
0 = 0 (no initial stress) and cob = 0 (no spin from a to b). Denoting 

for the comparison E = ~ dT Cd we arrive at 

(3.40) W <l> 
2 dTBC-d a 

(0, 1, 2, 3) = 3 co 

which means that energy is produced as 

(3.41) .EWM~t . 2 , 3 > "'Exyx (number of cycles), 

where 'Y is, say, the maximum value of rotation at any cycle . .EWM~ 1 , 2 , 3 > can clearly be 
a significant figure- for rotations of the order 0.01 (which are not uncommon) the solu
tion can in several cycles lead to the energy error comparable with the maximum energy 
attained during the cycle thus rendering the results totally useless. 

In view of the result (3 .41) it is also doubtful that the use of the constitutive law 
in the form (1.1) with cijkl = ci}kl (which is common in many finite element programs) 
may yield more accurate results than those corresponding to the simple (i.e. non
objective) stress rate on the right-hand side of Eq. (1.1) . 
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4. Conclusions 

It has been noted in this paper that the hypo-elastic law (1.1) has often been taken 
in the literature as the basis for the derivation of the elastic-plastic constitutive law and then 
applied to the analysis of cyclic processes. The danger of a significant accuracy loss in such 
an analysis has been demonstrated. The way out is obviously to take the objective rate 
form of the hyper-elasticity law in a correct, energy-preserving form. This is not a triviar 
task, though [7]. 
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