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Homogenization of Cosserat continuum 

S. BYTNER and B. GAM BIN (WARSZA WA) 

THE PROBLEM of the homogenization of Cosserat continuum with a periodic structure is studied 
by means of the energy method. Homogenized quantities are derived and correctors are intro­
duced. An ex-ample of the determination of homogenized quantities for the one-dimensional 
case is also presented. 

Przeprowadzono homogenizacje( osrodka Cosserat6w o strukturze periodycznej na podstawie· 
metody energetycznej. Otrzymano stale materialowe dla osrodka zhomogenizowanego, kt6ry 
jest taki:e osrodkiem Cosserat6w. Wyprowadzono postac tzw. korektor6w. Podano zamkniC(t'l 
postac stalych materialowych zhomogenizowanych dla przypadku warstwowej struktury perio­
dycznej. 

Tipoae~eHa roMoreHH3ai(WI cpe~hi Koccepa c nepHo~qecKoii cTpyKTypoii onHpaHcb Ha 3Hep­
reTHl!eCKHH MeTo~. llonyqeHhi MaTepHaJibHbie fiOCTOHHHble WJH roMoreHH30BaHHOH cpeAhi,. 
KoTopaH TaK>Ke HBJUieTCR cpe~oii Koccepa. BhiBeAeH BH~ T. Ha3. KopeKTopoa. TipHBe~eH 
3aMKHYTbiH BH~ roMoreHH3HpoBaHHbiX MaTepHaJibHbiX fiOCTOHHHhiX ~JIH cnyqaH CJIOHCTOK 
nepHo~eCKOH CTPYKTYPhi. 

1. Introduction 

HOMOGENIZATION is a method which consists in replacing a heterogeneous body by an 
equivalent homogeneous body. The procedure of homogenization has precise mathe­
matical foundations [1, 2, 9]. For media with periodic and quasi-periodic structures it is. 
possible to determine effectively average quantities. There are many papers which are 
related to homogenization of elastic continuum [3, 4, 5, 7]. 

In this paper we shall investigate Cosserat medium for which all material coefficients 
are assumed to be periodic functions. Section 2 of this paper is concerned with the vari­
ational (weak) formulation of the boundary value problem for Cosserat medium. In Sect. 
3 the homogenization problem is formulated and resolved by means of the energy method. 
In Sect. 4 correctors are introduced and studied. An example of the calculation of the 
homogenized quantities for the one-dimensional case is presented in Sect. 5. 

2. Equations of Cosserat continuum 

In this section we shall formulate the basic equations describing Cosserat medium [8] 
in a form suitable for later homogenization. We follow [6] where the existence and 
uniqueness of the weak solution of the boundary value problem for Cosserat continuum 
is studied. 
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We write the equations of static equilibrium 

(2.1) 

(2.2) 

m11 ,j+ e11" -r1"+ Y1 = 0, 

Tjt,J+X, = 0, 

geometrical equations 

(2.3) 

(2.4) 

and constitutive relations for an anisotropic inhomogeneous material 

(2.5) 

(2.6) 

with 

(2.7) 

where 

i, j, k = 1, 2, 3, 

Tu = E,Jkl Y"' + K,J"' ""', 

m,1 = KkuJ Y"' + MtJkl ""', 

xi volume density of the body forces, 
Y1 volume density of the body couples, 

T 11 asymmetrical stress tensor, 
m11 couple stress tensor, 

ui displacement vector, 
r(/>i micro-rotation vector, 
y 11 strain tensor, 
"U curvature-twist tensor. 

All the above quantities are functions of x E Q C E 3
, Q posseses the Lipschitz boundary 

o!J. We assume that Eu"" K11"" M 11" 1 E Loo(fJ), are bounded and measurable functions 
of x defined on Q = !Juo!J. F~r the sake of simplicity in this paper we always deal 
with homogeneous boundary conditions: 

(2.8) u, = 0, (/>t = 0 on o!l. 
Besides we assume that there exists c > 0 such that for each x E Q 

(2.9) 

3 

EtJktYuYkl+2Ku"'Yu""'+MtJkt"u""' ~ c}; (YfJ+"fJ) 
i,j= 1 

which means that energy of deformation per unit volume is uniformly positive definite. 
We denote 

(2.10) 

(2.11) 

and assume that 

{ul, u2, u3, (/>1, (/>2, tp3} = {u, tp,} = u, 

{vt, V2, v3, VJ1, VJ2, lp3} = {v,, VJt} = v 
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The bilinear form a(u , v) on Vx Vis defined by 

(2.12) a(v , u) = J [E11ktl'lJ(v)yk,(u)+KlJkl {ylJ(u)"kt(v) 
n 

where 

Ytiu) = u1.t- EtJkfPk, "il(u) = qJ1," 

Yil(v) = vit 1- elJk 1Jlk, "u(v) = 1p1, t. 
(2.13) 

Obviously a(u, v) = a(v, u). 
The weak formulation of the boundary value problem (2.1)-(2.8) reads 

{
findu E V, 

(2.1
4
) Vv E V a(u, v) = F(v), 

where 

F(v) = f (X1Vt + Yt1Jlt)dx = f fvdx, XiJ Y1 E L 2{!J), 
(2.15) n n 

f= {X"Yt}. 

We note that Cosserat continuum with different boundary conditions can be studied 
by means of the same variatinal procedure provided that a space V is properly chosen 
such that 

(H&(Q))6 c V c {H1 (!J))6
• 

The existence and uniqueness of the solution of the problem (2.14) was proved by I. HLA­

VACEK and M. HLAVACEK (6]. 

3. Homogenization 

3.1. Formulation of the problem 

We assume that Cosserat medium has a periodic structure defined as follows: 

let Y = [0, Yd x [0, Y2 ] x [0, Y3] c R3
. 

After [1] we shall call it a basic cell. 
Moreover, we assume that the functions 

(3.1) ElJkl(y), Kilkl(y), MtJkt(Y) E Lco(Y) 

and can be extended to the whole R 3 as Y- periodic functions. Next we define eY­
periodic coefficients by 

(3 .2) 

Ef1u(x) = EIJ" (;), 

Kt1 .. (x} = KiJ" (:) , 

Mj1.,(x} = M,1" (:) , where 
X 

y= - . 
e 
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For a fixed e > 0 we formulate the fo11owing problem: 

(3.3) 

where 

{
findus E V, such that 

Vv E v, a6 (U6
, v) = F(v), 

S. BYTNER AND B. GAMBIN 

(3.4) as(ue, v) = J [Ef1k1(x)yiJ(v)"kt(u6
) + KfJkl(x) {y,iv)"kt(ue) 

D 

+ylJ(ue)"kt(v) }+ Mf1k,(x)"lJ(v)"k'(ue)]dx r 

The results presented in the preceqing section imply that for a fixed e > 0 a unique solution 

us E V of the problem (3.3) exists. 
Th.: problem of homogenization consists in investigation the limit of ue when e tends 

to zero. 

3.2. Homogenization procedure 

To study the behaviour of ue when e tends to zero we use the energy method of homo­

genization. This method was originaJly proposed by L. TARTAR [2], see also Ref. [1, 3, 9]. 

We introduce the space 

(3.5) W(Y) = {vlv E (H 1(Y))6 , v takes equal values on opposite faces of Y}, 

and the bilinear form defined on W(Y) x W(Y) 

(3.6) ay(u, v) = J [E,1k,(y)u1,,v,,k + KlJkl(y) {v1,t cp,,k 
y 

It is clear that ar(u, v) = ar(v, u). 
We introduce the vectors xkL which are solution of the problem 

(3.7) 
JxkL E W(Y) 

\a~(x-P, w) = 0, Vw E W(Y), 

where the bilinear form a~ is the adjont of ar and 

(3.8) 

The variational problem (3.7) on the cell Y has a unique solution (up to an additive con­

stant) [3]. 
We shall now formulate and prove 

THEOREM I. If EiJkl(y), KiJkz(y), Mi1k1(y) are Y- periodic on R 3
, strictly positive and 

satisfy the functions (3.1), and if the forces Xi and couples Yi are elements of L 2 (D), then the 

solution U
6 of the problem (3.3) converges weakly in the space V to u 

(3.9) ue -4 u in V weakly 

where u is a unique solution of the problem 

(3.10) 
Ju E V 

\st(u, v) = F(v), Vv E V. 
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The bilinear form .91 (u, v) is defined as 

(3.11) d(u,v) = J [EtJktYiJ(u)"kz(v)+i;1k,{yiJ(v)"kz(u) 
n 

where 

E- 1 *( ij pil kl pkl) tJkl = IYf ay X - ' X - , 

(3.12) K = _ 1_ a*(xij _ pil xk<'+3> _ pk<'+3>) 
i}kl IYI y ' ' 

M = _1_ a*(xtU+3> _ pi<J+3> xk<l+3> _ pk<l+3>) 
i}kl IYI y ' . 

Proof. For the simplicity of notation we introduce the block matrix 

[EiJ., for J=j, 
L =I l KtJkt for J=j, L = 1~3, 

(3.13) AutL = ~ for J = }+3, L =I, klij 

MtJkt for J = }+3, L = 1+3, 

where i,j, k, I= 1, 2, 3; J, L = 1, ... , 6 , similarly AiJkL, AiJkL' and a vector 

(3.14) [
Ykt. if L = I ] 

rkL = . "kl ' If L = I+ 3 
besides 

(3.15) 

where 

UL = lu,, if L = I ] Bk(uL) = [eklmq;m, if L = I ] 
cp, , if L = I+ 3 ? 0 , if L = I+ 3 . 

Then the bilinear forms (2.12), (3.4), (3.6) and (3.11) may be written respectively in the form 

a(u, v) = J rr(u)AF(v)dx, 
n 

a'(u8
, v) = f rr(u6)A8F(v)dx, 

n 

ar(u, v) = J (Vu)TA(Vv)dy, 
y 

.9/(u, v) = f rr(u) AF(v)dx. 
n 

The proof will be carried out in two parts. 
Part 1. Taking v = U 6 in the problem (3.3) we have from the existence results for the 

problem (3.3) the following a priori estimate: 

(3.16) 
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We denote 

(3.17) 

where 

if 

if 
l=j ] 
J = j+3 ' 

TiJ = E;Jkl Ykz(U8
) + K[1kz xkl(U6

), 

miJ = KkuJYkz(u)+MiJkl"kz(U6
) . 

According to the notation (3.13) and (3.14), 

(3.18) 

From the assumption (3.1) and estimate (3.16) we have 

(3.19) !TiJIL2(D> ~ C, Ve > 0. 

S. BYTNER AND B. 0AMBIN 

Therefore we can extract subsequences from the sequences U 8 and TiJJ still denoted by U8 

and TfJ such that 

(3.20) 
in V weakly, 

in L 2 (!J) weakly. 

Passing to the limit in 

(3.21) f TfJFtJ(v)dx = F(v), Vv E V, 
D 

we obtain 

(3.22) J TtJFiJ(v)dx = F(v), Vv E V. 
Q 

Part 2. Let P(y) be the vector field on Y the components of which are a homogeneous 
polynomial of degree 1 in y. Then there exists a unique solution w up to an additive con­
stant vector of the following problem: 

(3.23) 

Next we define 

(3.24) 

where 

{
aHw, v) = 0, 

w-P E W(Y). 

Vv E W(Y), 

w'(x) = ew (;) = P(x)+•n(:) 

n(y) E W(Y). 

The vector field " (:) is bounded in (L2(!J))6 • 

It fo1lows from the relation (3.24) that 

(3.25) W
6

--. P in (L2 (!J) ) 6 strongly. 

Besides w6(x) satisfies 

(3.26) 
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We infer from Eq. (3.26) that W 8 satisfies 

(3.27) J (Ah,1 ~a w£ ~a v1 )dx = 0, Vv E (HJ(Q))6 • 
n uxk ux1 

Denote by ~(Q) the space of infinitely differentiable functions cp with compact supports 

in Q. 

Taking v = cpW 6
, cp E ~(Q) in the problem (3.3) and v = cpu8 in Eq. (3.27) and then 

subtracting, we obtain 

(3.28) a'(u8
, cpw8

)- J [AkLtJ ~a wi. ~a (cpuj)] dx = F(cpw8
). 

n uxk ux1 

After transformations we have 

(3.29) J [TfJ(a,cp)wJ-AkLiJakwHatcp)uJ-TfJcpBt(wJ) 
D 

-Ahuakwi.cpBt(uj)]dx = J fLcpwi.dx. 
n 

. We can go to the limit in Eq. (3.29): w£ converges strongly in L 2 (Q) to PL and Tf1 

converges weakly in L 2 (Q) to Tu; besides 

AhiJ ak w£ = AkLIJ(y) ak wL(Y)i X 
Y= ­

e 

is t:Y periodic and converges weakly in L 2 (Q) to an average value on Y of the value 

Auu(y)okwL(y). We denote it by Mu(P). At last uj converges strongly in L2 (D) to uJ. 

So in the limit we get 

(3.30) f [T,;(atcp)PJ-Mu(P)(a1cp)uJ-TucpBt(P1 ) 

n 

-Mu(P)cpB1(uJ)]dx = J fLcpPLdx. 
n 

Using Eq. (3.22) to eliminate fL from Eq. (3.30), after transformations we obtain 

(3.31) J cp[Mu(P)Fu(u)- T,1 o1P1 ]dx = 0, Vcp E ~(Q). 
n 

So we get 

(3.32) 

Choosing P = prs where 

(3.33) 

we obtain 

(3.34) 

where 

(3.35) ArstJ = Mu(Pr5
) = i~T J AkLtJ(y)akwi5 (y)dy. 

y 
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The vector w'5 is associated with P'5 by the problem (3.23). 
Taking 

{3.36) 

what follows that x'5 is defined by 

{3.37) {
a;(x's_prs, w) = 0, 

x'5 
E W(Y) 

we can rewrite the relation (3.35) in the form 

Vw E W(Y), 

S. BYTNER AND B. GAMBIN 

A,stJ = l~l J AkLmNok(P£5
- x'l)om(P:/)dy 

y 

(3.38) 

which is equivalent to the relations (3.12). 
The uniqueness ofthe solution of the problem (3.10) is due to L. TARTAR [2]. 
REMARK 1. From the above results it follows that, in the limit, inhomogeneous Cosserat 

medium behaves as homogeneous Cosserat medium with the constitutive relations 

(3.39) { 
r u = ~Jkl 'Ykl + Kukl Xkz , 

mu = KkltJ 'Ykz + MtJkl Xu • 

Then the constitutive law (3.39) is a homogenized constitutive law which is evidently 
independent of boundary conditions. 

4. Correctors 

As we have seen in the previous section, ue- u converges to zero in V only weakly 
.and not strongly. We can, however, define a corrector ee such that 

{4.1) ue-u-ee--+ 0 in Vstrongly. 

For this purpose we first introduce cut-off functions me having the following properties [1]: 

me E !l)(Q), 

{4.2) me= {
0

' 
I' 

if dist(x, oil)~ e, 

if dist(x, oil)~ 2e, 

·vp, ePim~P>(x)l ~ Cp, where Cp depends on fJ but does not depend on e. 
We then define the corrector ee as follows: 

{4.3) @[. = - Eme xiM ( ~) rkM(u) · 
I E 

We. can now formulate 
THEOREM 2. Assume that in addition to the hypotheses of Theorem 1 the following assum­

ytions hold: 

.( 4.4) 
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Then 

(4.5) ze = U6 -u-es--+ 0 in V strongly, 

where ge is defined by Eq. (4.3). 
The proof of Theorem 2 is omitted because it is similar to the one given in [1, 3, 5]. 

5. Example: one-dimensional case 

For the case of isotropic material we have 

(5.1) KtJkl = 0. 

We assumed additionally that E 11k1(y), Mlikl(Y) are y 3 - periodic functions only. They 
are constant as functions of y 1 and y 2 • Then we have · 

(5.2) { 
EtJkl = Et(Y3) ~ik dJ, +Ez(Y3) du d1k+E3(y3) d,J dk,, 

MiJkl = Mt {y3) d,k dJ, + Mz(Y3) du dJk +M3(y3) d,J dkl. 

In this case we can calculate explicitly the form of homogenized coefficients. 
By virtue of the relation (5.1) the ,problem of the cell" has the following simple form: 

(5.3) ':Jo ( EtJkl ':Jo xi") = ':Jo EtJmn, uy1 uyk uy1 

(5.4) 0 (M 0 -mn) 0 M -~ ljkl ~ Xl = ~ l}mll' uy1 uyk uy1 

Assuming that xi"(y3), xi"{y3) and integrating Eq. (5.3), we have 

d 
(5.5) -d xi" = Et (E3J3t)- 1 d3m d1n + Ez(E313,)- 1 d3n d1m 

YJ 

+ E3{E3J3l)-l d3J dm,. + {E3J3l)- 1CJnm · 

The constant of integration c1,.m can be calculated from the condition of the existence 
of the solution of Eq. (5.5) for xin periodic in Y [1]. 

We have 

(5.6) c1nm = - [(/o 1 dJ1 d,.t +lo 1 d12 d,.2 +11 1/z dJ3 dn3)d3m 

here 

6 Arch. Mech. Stos. nr 3/86 

+ (lo 1/4 dJ 1 dml + lo 1/4 d12 dm2 + 11. 1 Is d13 dm3) d3n + 11 1
/1 dJ3 ~mn1' 

y3 

/1 = :3 I Et +~z+E3 dyJ, 
0 
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The homogenized coefficients can be calculated from 

(5.7) - 1 fy
3

[ · d kl] Eilkl = y Eilkl(y3)- EtJ3h d Xh dy3 . 
3 0 Y3 

Using Eqs. (5.2) and (5.5) we have 

(5.8) ~jkl = £1 ~~k~l' + ~ ~tl ~jk + <£3- 113 + 11 1 1n ~ij ~k, 

- (E1 -1c; 1) ~~3 ~11 ~3k ~u- (El -1c; 1) ~~3 ~12 ~~2 ~3k 
- (/3 +Is -11 1/i -12 ll. 1ls) ~t3 ~13 ~l3 ~3k 

- (£; -1o 1) ~~3 ~11 ~kl ~3,- (E2- lo1 h) ~~3 ~12 ~k2 ~31 
- (/9- /2/1 1/7 + 112 -lsl1 111) ~13 ~13 ~kl 

- (E2- 141o 1) ~u ~13 ~u ~3k- (£2- h1o 1) ~~2 ~13 ~~2 ~3k 
-(Is+ 11o -11 1 l2ls -11 11n ~~3 ~13 ~~3 ~3k 

- Utl- Ii lo 1) ~u ~13 ~kl ~~3- Utt -1c; 
1 
Ii) ~~2 ~13 ~k2 ~~3 

- (Ig+ 112-/711 1/2 -/711 1/s) ~lJ ~t3 ~3k' 

where 

i=l,2,3. 

E1122 = £2211 = £3-113+11. 1/f, 
- - - - - -1 -1 -1 2 
E2233 = E3322 = £1133 = £3311 = E3-l9+12!1 /7-/12+/s/1 /7-/13+J1 /7,. 

E3333 = E1 +E2+~-13 -2la+11. 1Ii+212 11. 1ls-219 
+212 11 1 /1-110 +11 1 Il- 2112 + 2lsl1 1 /1-/13 + 11 11~ , 

E1212 = £2121 = Et, 

~313 = £2323 = £1-111 +1o 1Il, 

£3131 = £3232 = To 1 • 

In the same way we can calculate MtJkl· 
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