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Homogenization of Cosserat continuum
S. BYTNER and B. GAMBIN (WARSZAWA)

THE PROBLEM of the homogenization of Cosserat continuum with a periodic structure is studied
by means of the energy method. Homogenized quantities are derived and correctors are intro-
duced. An example of the determination of homogenized quantities for the one-dimensional
case is also presented.

Przeprowadzono homogenizacj¢ o$rodka Cosseratéow o strukturze periodycznej na podstawie
metody energetycznej. Otrzymano stale materialowe dla o$rodka zhomogenizowanego, ktéry
jest takze oSrodkiem Cosseratow. Wyprowadzono postaé¢ tzw. korektoréw. Podano zamknietg
posta¢ statych materialowych zhomogenizowanych dla przypadku warstwowej struktury perio-
dyczne;j.

ITpoBenena romorenusanusa cpeab! Koccepa ¢ mepuoanueckoit CTpyKTypoi OIHpasich Ha SHEpP-
reruyeckuii Meton. ITonmyueHbI MaTepuaiibHble MOCTOSIHHBIE JUIsI TOMOTE€HH30BAHHOH Cpelbl,
KoTopasd Taroke saBiserca cpemoit Koccepa. BoiBenen Buj T. Has. xopekTtopoB. IlpuBeneH
3aMKHYTBI# BHJ TOMOT€HH3WPOBAHHBIX MATE€PHANIBHBIX IOCTOSIHHBIX IS CJIyuasl CJIOMCTOM
MIEPHOAMUECKOH CTPYKTYDHI.

1. Introduction

HOMOGENIZATION is a method which consists in replacing a heterogeneous body by an
equivalent homogeneous body. The procedure of homogenization has precise mathe-
matical foundations [1, 2, 9]. For media with periodic and quasi-periodic structures it is
possible to determine effectively average quantities. There are many papers which are
related to homogenization of elastic continuum [3, 4, 5, 7].

In this paper we shall investigate Cosserat medium for which all material coefficients
are assumed to be periodic functions. Section 2 of this paper is concerned with the vari-
ational (weak) formulation of the boundary value problem for Cosserat medium. In Sect.
3 the homogenization problem is formulated and resolved by means of the energy method.
In Sect. 4 correctors are introduced and studied. An example of the calculation of the
homogenized quantities for the one-dimensional case is presented in Sect. 5.

2. Equations of Cosserat continuum

In this section we shall formulate the basic equations describing Cosserat medium [8]
in a form suitable for later homogenization. We follow [6] where the existence and
uniqueness of the weak solution of the boundary value problem for Cosserat continuum
is studied.
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We write the equations of static equilibrium
2.1 my;+eptyp+Y, =0,
2.2) Ty, + X =0,

geometrical equations

2.3) Yy = Up i~ 8k Prs

2.4 Xy = @jis

and constitutive relations for an anisotropic inhomogeneous material
2.5 Ty = EyaVia+ K,

(2.6) My = Kiiy Vi + Mija s

with

2.7 Eijkl = By, My = My,

where

L,j,k=1,2,3,
X; volume density of the body forces,
Y; volume density of the body couples,
7;; asymmetrical stress tensor,
my; couple stress tensor,
u; displacement vector,
lp; micro-rotation vector,
yi; strain tensor,
%;; curvature-twist tensor.

All the above quantities are functions of x € £ C E3, 2 posseses the Lipschitz boundary
o9. We assume that E; .y, Ky, M€ L2(2), are bounded and measurable functions
of x defined on Q = QuUaR. For the sake of simplicity in this paper we always deal
with homogeneous boundary conditions:

2.8 =0, ¢ =0 on 0.

Besides we assume that there exists ¢ > 0 such that for each x €
3

2.9 Eijayis v+ 2K vig e+ Miga % 2 ¢ 2(7121+ )
ij=1

which means that energy of deformation per unit volume is uniformly positive definite.
We denote

(210) {ul9u21u39 (rr)la <P2,¢3}5 {ui: 971}5 u,
2.11) 0,0, 05, 9,0, 93} = {o, Y} =v
and assume that

u,veV = (H{Q))".
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The bilinear form a(u,v) on ¥V xV is defined by

2.12) a(v, u) = f E jia ¥ 1) Yia () + K ji {915 () 214 (0)
Q
+}/”(‘U) Mkl(u)}‘i'MUM M,-j(‘v) ;ckt(u)]dx’
where
@.13) Vi) = = e %) = @p0,

(@) = Ui~ e, %) = ¥y
Obviously a(u, v) = a(v, u).
The weak formulation of the boundary value problem (2.1)—(2.8) reads

4 findueV,
(214 VoeV a(u,v) = F(©),
where
F@) = [ (Go+Yip)dx = [ fodx, X, Y, e LX(9),
(2.15) 4 a

f = {Xia Yi}'
We note that Cosserat continuum with different boundary conditions can be studied

by means of the same variatinal procedure provided that a space V is properly chosen
such that

(Hs))e = V = (H'(Q))".
The existence and uniqueness of the solution of the problem (2.14) was proved by I. HLA-
VACEK and M. HLAVACEK [6].

3. Homogenization

3.1. Formulation of the problem
We assume that Cosserat medium has a periodic structure defined as follows:
let Y=1[0,Y,]x[0,Y,]x[0,Y;] = R

After [1] we shall call it a basic cell.
Moreover, we assume that the functions

3.1 Euk!(}’)s Kiju(p)s Mij(y) € L2(Y)

and can be extended to the whole R* as Y — periodic functions. Next we define ¢Y —
periodic coefficients by

X

Efja(x) = Eija (?) ’
P X

(3.2) Kl'jkl(x) = Kijk[ (?) s

X X
M (x) = My, (?)’ where y = B
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For a fixed ¢ > 0 we formulate the following problem:

{findu" €V, such that

(B3] VYo eV, a*(u°, v) = F(v),

where

(3.4) @@, 0) = [ [Em(®) 7@ 006+ K () 1745(0) i @)
2

+ 15 (U°) 71 () } + Mg (%) 22,y (0) 3, (1) Jdx .

The results presented in the preceding section imply that for a fixed e > 0 a unique solution
u®e V of the problem (3.3) exists.

Th: problem of homogenization consists in investigation the limit of u° when & tends
to zero.

3.2. Homogenization procedure

To study the behaviour of u* when & tends to zero we use the energy method of homo-
genization. This method was originally proposed by L. TARTAR [2], see also Ref. [1, 3, 9].
We introduce the space

(3.5 W(Y)= {vlve (H(Y))®, v takes equal values on opposite faces of Y},
and the bilinear form defined on W(Y)x W(Y)

(3.6) ay(u,v) = f[Eum(}’)uj.tvr,n‘i'Kuu(Y) {011 91
Y

+uy, Wit M (V) @5, 090,614y -

It is clear that ay(u,v) = ay(v, u).
We introduce the vectors y** which are solution of the problem

e W(Y)
3.7 L;(Z_P, w)=0, VYwe W(Y),

where the bilinear form ay is the adjont of ay and
(3'8) (PkL)M=yk6LMs k=1=2’3> L:M: ]!""6‘

The variational problem (3.7) on the cell Y has a unique solution (up to an additive con-
stant) [3].

We shall now formulate and prove

THEOREM 1. If Eiju(3), Kiju()s Mip(y) are Y — periodic on R®, strictly positive and
satisfy the functions (3.1), and if the forces X ; and couples Y; are elements of L*(£2), then the
solution u® of the problem (3.3) converges weakly in the space V to u
3.9 u*—u in V weakly
where u is a unique solution of the problem

:uEV

(3.10) #(u,v) = F(v), VvelV.
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The bilinear form </ (u,v) is defined as

(3.11) o (u,v) = f (E s 705 ) 0 (0) + Kot {05(0) 00 (1)
Q
+ Y1) % (©) } + Muu #1;(1) %0 (0)]dx,
where
= 1 . .
Ej = m a‘f‘(lu“Pu, Z“—P“),
(.12) K = gy 7O =P, g4 = PR,
ﬂ'ﬂd - -IIT[ a:;(inM)_Pi(HS), xk(l+3)_pk(1+3))_
Proof. For the simplicity of notation we introduce the block matrix
Eljkl fOI J=j, L=l,
K, for J=j, L =1+3,
(3.13) A = | o ’

Kk“,f f()[‘ J=j+3, L= l,
MU“ fOl‘ J=j+3, L=1+3,

where i, j, k, [ =1,2,3;J,L =1, ..., 6, similarly A;;x,, A%, and a vector

3.14 n, - | tE=t ]
3.19 7 g, if L= 143
besides

(3.15) Lo (w) = 0,(up)— By(uy) = (Vu— Bu)y,
where

[u’, if L = / ] B I(‘,'klm(pm, if L=
=g, it Lote3] B o | i L=i43)

Then the bilinear forms (2.12), (3.4), (3.6) and (3.11) may be written respectively in the form
a(u,v) = [ () AT @)dx,
0

a'w, ) = [ ') AT (@)dx,

Q

ay(u,v) = [ (Vi)TA(Vo)dy,
Y

Au,v) = [ ") AT @)dx.
2

The proof will be carried out in two parts.
Part 1. Taking © = u® in the problem (3.3) we have from the existence results for the
problem (3.3) the following a priori estimate:

(3.16) lu®ll, € C, Ve>0.



294 S. BYTNER AND B. GAMBIN

We denote

Tiy, if J=j ]
(3.17) Ti; = [mb’ it J=j+3)
where

T = Efja VW) + Kiju % (u°),
miy = Ky Vi) + Mi 0 (1)
According to the notation (3.13) and (3.14),

(3.18) | Ti; = Aiya L' ).
From the assumption (3.1) and estimate (3.16) we have
(3.19) IT?J,Lz({)) < C, Ve > 0.

Therefore we can extract subsequences from the sequences #® and T%,, still denoted by u®
and T}, such that

w—u in ¥ weakly,
(3.20) 8 L2 2
TH— Ty in L2(£2) weakly.

Passing to the limit in

(3.21) [ T4yry@dx = Fo), YoeV,
Q

we obtain

(3.22) [ TuIu@dx = F@), VoeV.
Q2

Part 2. Let P(y) be the vector field on Y the components of which are a homogeneous
polynomial of degree 1 in y. Then there exists a unique solution w up to an additive con-
stant vector of the following problem:

{aﬁ(wl ‘1)) o 05 Vo e W(Y)!

.23 w—P e W(Y).

Next we define

(3.24) Wi(x) = ew (f) = P(x)+en (%)
where
7(y) € W(Y).
The vector field # (%) is bounded in (L*(£2))°.
It follows from the relation (3.24) that
(3.25) w*— P in (L*(Q))® strongly.
Besides w®(x) satisfies

d " a .\ .
(326) a—xt(AkL“‘éx—k WL) =0 m .Q
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We infer from Eq. (3.26) that w* satisfies

e 8 . 0
(3.27) f(AkL!J' —8},; Wwr E}:ﬂ])dx = O, Yo e (Hé(Q))ﬁ_

Q2

Denote by @(£2) the space of infinitely differentiable functions ¢ with compact supports
in Q.

Taking v = gw", ¢ € Z(£) in the problem (3.3) and v = ¢u® in Eq. (3.27) and then
subtracting, we obtain

€ & € & a € a g &
(3.28) a‘(u', pw)— f [Akz.u Pxx WL %, (‘Puj)] dx = F(pw).

Q

After transformations we have

(3.29) f (755 (01 p) Wi — Akwiy G wi(0i @) us — Tiy @ Bi(w))
o

— AiLis S wi B (u5))dx = J‘fL‘Pwidx-
2

. We can go to the limit in Eq. (3.29): w§, converges strongly in L?(£2) to P, and T3,
converges weakly in L*(2) to Ty,; besides
Airis WL = ArLis(y) akWL()’)\y=_x_

&

is Y periodic and converges weakly in L?(£2) to an average value on Y of the value

Arris(0) &wr(). We denote it by M,,(P). At last u5 converges strongly in L*(£) to u,.
So in the limit we get

(3.30) f [T:5(0:9) Ps— M5(P) (6i9)u; — Tiy pBi(Py)

Q2

—M,(P)pB,(u)ldx = [ fLoPydx.
0

Using Eq. (3.22) to eliminate f; from Eq. (3.30), after transformations we obtain

(.31) Qf PIMy(P)T (W) —Tiy 6, Pldx = 0, Vg e D(2).
So we get

(3.32) M, (P)Ty;(u) = Ty 0, Py.

Choosing P = P'S where

(3.33) (P™); = »+ 05y,

we obtain

(3.34) Ts= MU(P’S)FLI(“);

where

|

(3.39) eru = Mu(Prs) = Tﬂ‘fAkLu(}’) O W;.S(.V)dJ’-
v
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The vector ws is associated with P by the problem (3.23).
Taking
(336) _xrs = wrS_PrS
what follows that ™S is defined by
a3 5—PS,w) =0, VweW(Y),
(3.37) { ¥l g ¢
1 € W(Y)

'we can rewrite the relation (3.35) in the form

1 .
3.39) Ausis = 37 [ AP~ 2D 0P
Y

which is equivalent to the relations (3.12).

The uniqueness of the solution of the problem (3.10) is due to L. TARTAR [2].

REMARK 1. From the above results it follows that, in the limit, inhomogeneous Cosserat
medium behaves as homogeneous Cosserat medium with the constitutive relations

{Tu = Ejaviu+ K%,

3.39 — o
( ) my; = Kklijykl’I'Mljkl Miy-

Then the constitutive law (3.39) is a homogenized constitutive law which is evidently
independent of boundary conditions.

4. Correctors

As we have seen in the previous section, u*—u converges to zero in ¥ only weakly
and not strongly. We can, however, define a corrector @ such that
“.1) u'—u—6°—> 0 in Vstrongly.
For this purpose we first introduce cut-off functions m, having the following properties [1]:
m, € 9(9),
" {0, if dist(x, Q) < e,
c >

{4.2) 1, if dist(x, 692) > 2¢

>

VB, ! lm®(x)| < C,, where Cp depends on f but does not depend on &.
We then define the corrector @¢ as follows:

(4.3) 01 = —em M (%) Tip ().

We can now formulate
THEOREM 2. Assume that in addition to the hypotheses of Theorem I the following assum-
ptions hold:

.4 Me (Wh=(D)E, ue (HHQ)".
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Then

4.5) 2 =u'—u—0°>0 inV strongly,
where O° is defined by Eq. (4.3).
The proof of Theorem 2 is omitted because it is similar to the one given in [I, 3, 5].

5. Example: one-dimensional case

For the case of isotropic material we have
(5.1) KU“ = 0.

We assumed additionally that £,;,(»), M;;u(y) are y; — periodic functions only. They
are constant as functions of y, and y,. Then we have

Eukt = E(y3) du aﬂ'f‘Ez(J’a) Oy ajk +E3(.V3) au 6k1,
My = M(y3) Oy a;z'*‘Mz(Y:s)du6jk+M3(J’3)6u Oy

In this case we can calculate explicitly the form of homogenized coefficients.
By virtue of the relation (5.1) the ,,problem of the cell” has the following simple form:

(5.2) {

a d d
N P
(5.3) . ijkl e X 3y, ij
d ( J . ) d
5.4 My ——x" = — M-
(5.4 ay, ijkl s Xi ET i
Assuming that #/"(yi), ¥"(ys) and integrating Eq. (5.3), we have
d
(5.5) W?ﬁ"" = E(E3;3)™ " 03m 0jn+ E2(E353,) " 034 6jm
3

+ Ea(ES_fai)-l 63] amn+ (E313l)- lcjnm‘

The constant of integration ¢,,, can be calculated from the condition of the existence
of the solution of Eq. (5.5) for 4™ periodic in Y [1].
We have

(56) Cjum sn il [(16161'1 6111 +161612 5;.2 +Il-112 6}3 6!!3) 63m

+ (I3 4 01 Oy + 1514 8,2 8o+ I 7" I5 8;3 1p3) O3n+ I7 1703 Ol
here

Y Y,
1 f 1 1 [ |
I = <~ | ——dys, L=y | ey,
0 Y, g E, V3 1 Y, : E+E +E, Y3

Ys

Ys
1 f E; 1 sz
L = ————-dys, I, =— | ==dys,
2 Y3 d E1+E2+E3 y3 4 Y3 J El V3

Y

Ys
1 f E, If E,
L=— | —22 _dy,, h=—| —=2—2dp.
® Yy E +E+E; i 7 Yy Ei+E;+E; ¥s

6 Arch. Mech. Stos. nr 3/86
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The homogenized coefficients can be calculated from

d
5.7 Euu ———f[Eim(ys) E|j3hd Xh]d}’s

Using Eqgs. (5.2) and (5.5) we have

(5.8) Eukt = E, 6,,‘51,4-52 0y 6jk+(E—3—113 +17'13) 6,50
"(El—lc?l)‘sts 1 838y — (Ey—15") 0,5 2 012 O3
—(L+ I —I17'13-L17's) 6, )3 013 034
~(E2—15") 81301 041 831~ (B2~ I5'12) 813 02 12 83,
—(L—LIT'L+1,,—Is17'17) 8,5 0,3 6,y
—(E;— 115" 6y, 8j3 04y O3k — (Ea— I, 15 8,5 8,3 8,3 03
—s+1o—TI7'L1s—17"13) ;3 0,3 0,3 03
— (I = 1315") 811 03 64y 813 — (11 — 157 12) 612 013 042 015
—(Is+1,,— I 11 I~ I;17'15) 8;; 6,3 63,

where
Ys
1 f E E,
= = —- —_ d .
L f E,+E2+E3 By, Ts Y | BBt E, 2
W A [ EE 1 B,
*TY. ) EHE+E T 0T Y3 E,+E2+E3 e
v, Ys
1 E3 1 E,E,
= — _ —R— ._._—_——d 5
11, Y, ] E, dys, I, Y, . E,+E,+E; b
Y! 2 1 3
1 E3 — f ’
= — —_— = s=— E d > - 1,2, 3-
I3 Y, ) E,+E,+E; dys, E; Y, J 1dY3 i

From Eq. (5.8) we have
Euu = Ezzzz = E1 +E_'2+E_3—]131f1+1'f,
E'Hllzz = Ejp11 = Es—Iis+I17'H,
Ezzaa = Es.uz = Euss = Essu = Ey—Io+ LIT' =1+ Is17' =15+ 17'17,
Esssy = Ey + By -+ By~ =20 4 175+ S0 I s~ 25
$2L 0T =T+ IT 2 =20, + 20517 = L + 1715,
Eulz = E2121 == En
1—“:_1313 = Ezszz = E—'; ~I,+I512,
Eslu = Ey3 =I5

In the same way we can calculate Eukl-
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