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A useful analogy between equations of linear elasticity 
and rigid-plasticity of void-containing metals 

M. KLEIBER (W ARSZAWA) 

A FORMAL analogy between equations describing two different classes of material behaviour 
is demonstrated. The numerical usefulness of the analogy in the analysis of plastic flow problems 
is indicated. 

IT IS KNOWN that there exists a formal analogy between equations of linear incompressible 
elasticity and equations describing plastic flow. The equations which express this analogy 
can be written in a compact form as 

Plastic flow 

( I) 

Incompressible elasticity 

aiJ, 1 +ht = 0, 

in which the standard notation is employed with p being the mean normal stress and 
fl = ay/3i, ay is the uniaxial stress of the material and~ is the strain rate invariant~ = 
= y (2/3)iiJs 11 • 

The analogy has a great computational potential since it allows to treat plastic flow 
problems using computer software developed for linear elasticity, [1]. To do so one has 
to simply allow the elastic shear modulus G to be a function of the stress or strain level 
and to interpret the displacements ui as the inr:tantenous velocities ui. In this note 
we show that. a recently developed, [2, 3, 4] and widely used, [5, 6] theory describing 
plastic flow of void-containing metals can be reformulated to display the same kind of 
analogy with respect to compressible elasticity. The description we refer ourselves to is 
known in the literature as the Gurson's model. It has been worked out starting with a 
simple rigid-plastic void growth analysis and has now the formal structure of nonassocia­
ted plasticity equations with plastic dilatancy effect taken appropriately into account. The 
ductile fracture process is described as an apparent loss of active material volume with 
a corresponding decay of the average macroscopic stresses. The yield condition for a 
randomly voided material with spherical (for 3D problems) or circular cylindrical (for 
plane stress or plane strain problems) voids is assumed as 

(2) 
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where uu- macroscopic Cauchy stress, ukk = 3p, uM- microscopic tensile yield limit 
of the matrix material, f- void volume fraction. 

The summation convention is employed. The matrix material is assumed incompres­
sible. For the porosity parameter f = 0 the condition (2) reduces to the classical Huber­
Mises yield condition of the form 

(3) -1 = 0 

with Ur = uM being the current tensile yield limit. According to concepts discussed in 
[2- 6], the change of the void volume fraction during the increment of deformation may 
be taken as 

(4) j = jgrowth + /~ucleation 
where it may be, for instance, approximately assumed that 

(5) iarowth = (1-f) ekk' 

(6) · i< (. akk) 
/nucloatlon = (J'M O'M+ - 3- ' 

the material parameter K being the void volume fraction of particles converted to voids 
per unit fractional increase in stress. More complex and accurate expressions can obviously 
be used instead of Eqs. (5) and (6). 

After some routine calculations it is possible to arrive at the typical nonassociated 
flow rule, [2, 5] 

(7) 

in which 

(8) 
fs K of/> " c-f 

P=T·~t=P+6 of =P+K-3-. 

C = C (w+fEs)
2 

_ (c-f)uM [3f(l-f)s+ 2 K C w+fEs ], 
1-/ 2 O'M 1-/ 

qft - Cauchy stress deviator; C- effective hardening (or softening) modulus for voided 

material; C- classical isotropic hardening parameter for the matrix material, C = EE_E;T; 

E- Young modulus; ET- slope of the stress-strain curve, 

(9) 

3 D D 
(72 2 O'i]O'ij 

w = - 2- = ---::-- = 1-2fc + / 2 

uM ui, 
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is the square of the ratio of the macroscopic to microscopic equivalent yield stress, and we 
have used the shortened notation 

(10) '"' - (Jkk • h'"' 
"'"" s = stn "'""' - 2aM' 

c = cosh.E. 

It is easily seen that for the classical plastic material we have to put f = 0, K = 0 and 
w = 1 and then the classical associated flow rule is recovered from Eq. (7) in the form 

(II) 

After further elementary algebra the flow rule (11) may be reduced to another known 
form 

(I2) 
(] 

C= -
s 

Similar calculations carried out for the porous material lead instead of Eq. (12) to the 
flow rule of the form 

or 

(I4) 

where 

(15) * = _!__ (1_1_ sinh};) 
v 2 2 }; . 

The transition to classical plasticity is again seen clearly by comparing Eqs. (I 4) and (I 5) 
for f = 0, w = I, ,u = 0 and Eq. (12). 

Equation (14) allows to present the discussed analogy in the following form: 

Plastic flow in 
void-containing metals 

au. 1+bt = 0 

Linear 
elasticity 

eu = 2~* { atJ- 2v*p~u) ~-+ eu = 2~ (au- 2vp~u) 

. I (. . ) I ( ) 
eiJ = 2 Ut 1 +uJt ~ EtJ = 2 UiJ+UJt 

It must be emphasized that the ,material coefficients" G* and v* are in fact functions 
of the current state variables with G* depending also on their rates. Thus, an iterative 
procedure is dearly needed to full expoit existing finite element codes for linear elastic 
problems. 
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However, the computational usefulness of this analogy can hardly be overestimated. 
The reader is referred to [7] for details of the numerical approach: and illustrative 
examples from the field of axisymmetric metal sheet forming. 
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