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Wave propagation in strongly anisotropic elastic materials (*)
W. A. GREEN (NOTTINGHAM)

IN THIS PAPER the nature of wave propagation in a strongly transversely isotropic elastic ma-
terial is examined. For the case considered the extensional modulus in the direction of the
axis of transverse isotropy is much greater than that in any direction at right angles to this
axis. The results for both the idealized inextensible and transversely isotropic materials are
derived. The speeds of propagation and associated discontinuity vectors are obtained. Some
generalizations to non-linear elastic materials are suggested.

W pracy zbadano charakter rozprzestrzeniania si¢ fal w silnie poprzecznie izotropowym spre-
Zystym materiale. W rozwazanym przypadku modul rozciggania w kierunkach osi poprzecznej
izotropii jest znacznie wigkszy niz w jakimkolwiek innym kierunku. Uzyskano rezultaty dla
dwoch przypadkéw, mianowicie dla idealnej nierozciagliwosci i dla poprzecznie izotropowego
materiatu. Zostaly okreslone predkosci rozprzestrzeniania sie fal i zwigzane z nimi wektory
nieciaglosci. Zaproponowano pewne uogoélnienia dotyczgce nieliniowych materialow sprezystych.

B paGore mccmenoBan XapaKTep PacipOCTPaHEHHMA BONH B CWIBHO IOINEPEYHO H3OTPOIHOM,
yopyrom maTtephayie. B paccmaTpmBacMOM Clydyae MOJENIb PACT/DKEHHA B HAIPABJIEHMAX OCH
NONEPEUHOi H30TPONMHA 3HAYMTENLHO GoNbine, HWeM B KaKOM-HHOYIb APYTOM HANPAaBJICHHH.
IMonyuens! pesymeTaThI A ABYX CITyYaeB : [/ WACIEHON HEPACTAKUMOCTH H JI/IA TIONIEPEYHO
u3oTponHoro marepnana. OmpeeseHbl CKOPOCTH PacCIPOCTPAHEHUA BOJIH M CBA3AHHEIE C HAMHA
BEKTOPhI paspbiea. IIpennoxeHo HexoTopoe oGobineHne, Kacaloleecas HENMWHEHHBIX YIIPYTHX
MaTepHAaJIoB.

1. Introduction

THE THEORY of the mechanical behaviour of a transversely isotropic elastic material which
is inextensible in the direction of transverse isotropy has been developed in an attempt
to model the behaviour of an isotropic elastic matrix reinforced by a family of parallel
strong elastic fibres (see, e.g. SPENCER [1], ROGERS [2]). For such a material the extensional
modulus in the fibre direction is much greater than that in a direction at right angles
to the fibres and the constraint of inextensibility in the fibre direction is the idealization
of this property. The additional constraint of incompressibility is frequently imposed on
the idealized material since this leads to mathematically tractable boundary value problems.
This constraint is not, however, an essential ingredient of the idealized theory.

CueEN and GURTIN [3] have examined the propagation of acceleration waves in in-
extensible non-linear elastic materials. Their results show that, in general, there are two
possible speeds for the waves but that when the direction of propagation is orthogonal
to the direction of inextensibility, then three wave speeds are possible. ScorT [4] has
examined acceleration waves in non-linear elastic materials subject to one or two internal

(*) Presented at the 19th Polish Solid Mechanics Conference, September 1977.
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constraints. Taking the inextensibility condition as an example of a single constraint,
Scott remarks on the exceptional case of waves propagating at right angles to the direc-
tion of the constraint. In this paper we examine the nature of this exceptional case by
considering wave propagation in a strongly transversely isotropic elastic material for
which the extensional modulus in the direction of the axis of transverse isotropy is much
greater than that in any direction at right angles to this axis. This approach was previously
employed by EVERSTINE and PIPKIN [5] in order to interpret some of the results arising
in the solution of static boundary value problems in the idealized theory.

For simplicity we restrict attention to plane acceleration discontinuities propagating
in linear elastic materials for which the axis of transverse isotropy has the same direction
at every point. In Sect. 2 we derive the results for the idealized inextensible material,
obtaining the speeds of propagation and associated discontinuity vectors. For the general
case of two wave speeds the associated discontinuities are orthogonal to the axis of trans-
verse isotropy. In the exceptional case, two of the wave speeds and associated disconti-
nuities correspond with the solution of the general case, the third wave speed is quite
distinct and is associated with a discontinuity along the axis of transverse isotropy. The
analysis in Sect. 3 relates to all transversely isotropic materials and shows that there are,
in general, three speeds of propagation. One of these speeds is determined e¢xactly and
approximate expressions are obtained for the other two when the material is strongly
anisotropic. It is shown that one of these wave speeds is, as a rule, very large compared
with the other two but that this speed decreases rapidly and becomes comparable with
the other two as the direction of propagation becomes orthogonal to the axis of trans-
verse isotropy. The associated discontinuity is approximately in the direction of the axis
of transverse isotropy becoming exactly so in the limit as the material becomes inexten-
sible. In this limit the wave speed becomes infinite for all directions of propagation which
are not orthogonal to the fibre direction, but remains finite when these directions are
orthogonal. It is this which gives rise to the exceptional solution. Since the inextensible
material is a mathematical idealization, the physical situation is modelled more realistical-
ly by the results for the strongly anisotropic material.

The stress-strain relations for the strongly anisotropic solid involve an elastic constant
which becomes infinite in the limit as the material becomes inextensible. There is no
difficulty in dealing with this for the problem considered here but the generalization to
non-linear elastic materials is not straight-forward. An alternative approach, which may
be more readily generalized, is to regard the material behaviour as a perturbation on the
idealized inextensible material behaviour. The constitutive equations then involve a small
parameter which tends to zero as the material becomes inextensible and we refer to the
material as “almost inextensible”. This approach is equivalent to that employed by EVER-
STINE and PIPKIN [6] in developing their singular perturbation method. In Sect. 4 we
adopt a suggestion due to PARKER [7] and introduce a Legendre transformation of the
strain energy function for a strongly anisotropic material in order to derive the consti-
tutive equations for the almost inextensible material. It is shown that with an appropriate
choice of elastic constants the equations for wave propagation in this material are identical
with those for the strongly anisotropic material of Sect. 3.
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2. Inextensible materials

We consider a transversely isotropic elastic material which is inextensible in the di-
rection of transverse isotropy. Let u;(x;, t) denote the components of displacement at
time 1, relative to a Cartesian system of axes, of the material particle at the point with
coordinates x;. The components e;; of the strain tensor are then given by

1
(2.1) €ij =?(ui.j+uj_;)

and the components #;; of the Cauchy stress tensor are related to these by the expressions
(2.2) tij = Aew Oij+2ure;j+2(ur— pr) (aiarer;+a;acen) + (T— Aew) aia;.

In these expressions and throughout this paper the comma denotes partial differentiation
so that #;, ; = du;{/0x; and the summation convention is employed. The quantities 4, ur
and g, are material constants, d;; is the Kronecker delta, a; are the components of a
(constant) unit vector in the direction of transverse isotropy and T = T(x, t) is the
reaction stress associated with the constraint of inextensibility. The deformation is re-
stricted by the condition of inextensibility in the direction of the unit vector a, so that
the strain components must be compatible with the constraint equation

(2.3) ejaia; = 0.

In any deformation for which the body forces are zero, the stress components must
satisfy the equations of motion

(24) tij, j = o,

where ¢ is the density of the material and the dot denotes differentiation with respect
to time.

Consider a plane acceleration discontinuity surface with a unit normal n propagating
with speed U through the material. The discontinuities in the second derivatives of u; are
given by the expressions (see, for example, TRUESDELL and TouPIN [8])

2.5) [ = oU%;,  [ti,5) = —oUln;,  [ug, 5] = olinjny.

In Eqg. (2.5) the square brackets denote the jumps in the quantities enclosed, /; are the
compcnents of a unit vector which gives the direction of the discontinuity and o is a scalar
which measures the strength of the discontinuity. Equations (2.4) are valid on each side
of the discontinuity surface and taking the jump in these and using Egs. (2.5) gives

(2.6) (4,51 = eaU?L;.

We aswume the stress components #;;, and therefore the reaction stress T, as continuous
across the wave. In order to evaluate the left hand side of Eq. (2.6) we differentiate Egs.
(2.2) and take the jump in the resulting equation across the discontinuity surface. Using
the deinition (2.1) and Egs. (2.5) to determine the jump in the strain derivatives gives

@7 [tj.] = o{Am—aia;n) e+ pr(l+miliny)

+(ﬂz,"'ﬂr) (a;akl;.+afakn.1’jn,-+a1njaklkn;+ajnja,,n,‘l.-)}+'ra;aknk,
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where 7 is the strength of the discontinuity in the derivative of T which is given by
(2.8) [0T/ox;) = wny, [T]= —Ux.
Eliminating the jump in the stress derivative between Egs. (2.6) and (2.7) leads to the
equations
(29)  o{[prsin?p + urcos’p— UL+ [(A+ pr) lme + (U — ur) cosa i In;

— Acosplmya;+ (ur— pr) (@ lk+cosdlinj)a; }+ va;cosd = 0,
where we have put ayn, = cos¢, so that ¢ is the angle between a and n. This is a system
of three equations in the four unknowns o, T and two independent components of the

unit vector 1. An additional equation is obtained by taking the jump in the derivative
of the constraint equation (2.3) which leads to

(2.10) (ﬂlga"‘ C05¢ =0.
This is satisfied by any one of the conditions
.11) =0, al=0, cosgp=0.

The first of these conditions when substituted into Egs. (2.9) leads to the trivial result
T = 0, except for the case cos¢ = 0. In general, the direction of propagation n is not
orthogonal to a so that cos¢ # 0 and the second of the conditions (2.11) must hold,
a;l; = 0. The discontinuity is therefore orthogonal to a and Egs. (2.9) become

(212)  o{[prsin®p+ prcos’p—oU i+ (A+ pr)mlem
+ (ur, — ur— A)cosdln;a; }+ raicosp = 0.
Multiplying these equations by a; and contracting leads to
(2.13) (oprmdy+1)cosgp = 0
and for cos¢ # 0 this gives
(2.19) T = —ournk.
Using Eq. (2.14) to eliminate © from Egs. (2.12) leads to the equations
(2.15)  {[ursin’p+ u,cos*p—oU?16,;+ (A+ur)min, — (A+ pr)cosdain, }l, o = 0,

which, for o # 0, have the two non-trivial solutions

(2.16) I = % oU? = pycos?p+prsin’e,
R 2 = B UL = mcosiger (it up)sin’p,

provided sing # 0. When sing = 0 the direction of propagation m coincides with the
direction of inextensibility a and 1 is then any vector which is orthogonal to a. The speed
of propagation is given by oU? = yu, for all such vectors. This speed of propagation is
clearly the limiting value of both Egs. (2.16) and (2.17) as sin¢ — 0.
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When the direction of propagation n is orthogonal to a the third of the conditions

(2.11) hold, namely, cos¢ = 0 and Egs. (2.9) become
(2.18) {[.uT-QUZJ Oir+ (ur—pr)aia,+ (A+pr)mn, },o = 0.
These have three non-trivial solutions:

f;l) = EpgeQsly, QUf = Ur,
2.19) I =n, QU% = A+2ur,

I = a,, oU3 = py.
The first two of these solutions correspond to the solutions (2.16) and (2.17) respectively
in the limiting case as cos¢p — 0. The third solution only exists for cos¢ = 0 and we
have the exceptional case of three waves capable of propagating in any direction orthogonal
to the direction of inextensibility whereas only two waves can propagate in any other

direction. This is the result first obtained by CHEN and GURTIN [3] and remarked on by
Scorr [4].

3. Strongly anisotropic materials

The constitutive equation for a transversely isotropic material has the form (see
SPENCER [1])

(3.1) ;= Aew 815+ 2ure;+2(ur— pr) (@iarex;+a;a,ex)

+ (@ A xm 01+ €xx 31G;) + ParGmExmai Gy,
where « and f are material constants. The constitutive equation (3.1) reduces to the
form (2.2) in the limiting case as # — o0 and a;anexm — 0 in such a way that their product
is finite. In this limit the first term involving « vanishes and the second term in « may
be incorporated into the term Ta;a; of Eq. (2.2). Equation (3.1) may be employed to
model a strongly anisotropic material by introducing the parameter & <€ 1 defined by
writing
(32) B = pele.

To examine the propagation of acceleration waves we differentiate Egs. (3.1) with
respect to x; and take the jump in the resulting equation across the discontinuity surface,
Taking the jump in the derivatives of Eqs. (2.1) and using the jump conditions (2.5) then
gives
(3.3) [fa‘J.J] = U{@lrSiﬂz(ﬁ'l'PLCOSzf.é) atr+(2+#r)niﬂr

+ (ur— pr+ o) cosp(a;n, +n;a,)+ (uL — pur + fcos’d)aia },.
Eliminating the discontinuity in the stress derivative by means of Eqgs. (2.6) gives the
equations

(3-4)  o{(ursin®p+pycos’d—oU?) by, + (A+ pr)min,
+ (uL— pr+ a)cos(a;n, +n;a,) + (u.— ur +feos’d)aia } I, = 0.
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Equations (3.4) are the well-known propagation conditions. These give a determinantal
condition for the squared wave speed U? which, in general, has three roots. In the case
when sing = 0, so that the direction of propagation n coincides with the direction of
transverse isotropy a, two of these roots coincide and the solutions are pU? = pU? = ur,
and pU3 = A+4u;—2ur+2a+p. The first of these speeds corresponds to discontinuities
orthogonal to a (a;/; = 0) and the second to a discontinuity parallel to a (@l = 1).

In order to solve the propagation conditions for sin¢ # 0 it is convenient to replace
Egs. (3.4) by an equivalent system of equations. To do this we introduce the unit vector
m which lies in the plane of a and n and is orthogonal to a. The components of m are
given by

(3-5) my =

from which we have mly = mylising +a,l cos¢p. We multiply Eqs. (3.4) in turn by
e;jxajmy, m; and a; and carry out the summations over i to obtain the equations

M —a Cos¢
sing

H

(ursinZp+ pycos’p—pUenliajme = 0,
(3.6) {(A+2ur)sin®*p+ pycos?p—poU?}myly+ (A+ pr + @) singcosa i = 0,
(A+ pr+ ) sing cosdmy I+ {Acos®d + ur(1+ 3cos?¢)
—2urcos’d +2acos?p + fecos’p — pU? }ay Iy = 0.
One solution of these equations is obtained when 1 is orthogonal to a and m and, there-

fore, to the plane containing a and n. The second and third of Eqs. (3.6) are then trivially
satisfied and the first equation gives

3.7 eU} = prsin’¢+purcos’p, IV = eqam.

The two remaining solutions are obtained when 1 lies in the plane of a and m, 1 = ar+ms
where r and s are parameters which must satisfy the condition

(3.8) r’4+s? =1

since 1is a unit vector. The first of Egs. (3.6) is then trivially satisfied and the remaining
equations become

(3.9) {(A+2u7)sin?p + up cos’p— U2} s+ (A+ pr + a)sing cos¢r = 0,

. (A+pr+@)sing cosgs+ {(A+ 3, —2ur + 20+ f) cos?p +u,—eU?}r = 0.

These two homogeneous equations have non-trivial solutions for r and s provided gU?
is a root of the corresponding determinantal equation. We are particularly interested in
the case where f = u,/e and & < 1. There exists the possibility that oU? is of order f
and we accordingly assume that U, r and s have the forms

U? = a:—(°Uz+£‘U2+ez U2+ ..,

(3-10) = r'0+8r1+82r'2+ ceey

§ = So+e&s;+&%5,+ ...
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These expressions are substituted into the left hand sides of Eqgs. (3.9) and the coefficients
of each power of ¢ are then equated to zero. The terms of order 1/e give the equations

(3.11) 0%U2%, =0, (urcos’d—p°Ur, =0,
and the terms independent of ¢ give
{(A42ur)sin’p + prcos®p — o' U} 50— 0°UZsy + (A+ pp + @) singcosdr, = 0,
(3.12) (A+ pr+ a)singcosdso + {(A+3uL—2ur +2a)cos’p+ ur — ' U2 } 1
+ (upcos?p—p°UHr, = 0.
Carrying out the same procedure in Eqgs. (3.8) and taking the terms independent of &

and the terms of order & gives the equations
ri+si=1,
(3.13) o
rori+so8; = 0.
One solution of Egs. (3.11) and the first of Egs. (3.13) is
(3.19) ro=0, So=1, °W2=0,
and when these are substituted into Egs. (3.12) and the second of Eqs. (3.13), we obtain
0'U? = (A+2ur)sin’p+py cos’¢,
(3.15) o i (1+::,_+ a)tangb, ¥ wilk
L

These give a second solution of Egs. (3.6)

oU%} = (A+2ur)sin?p + pycos’p +0 (—L) ;

(3.16) B
&2) = — ii‘t%i"_d_) tanqbak +my +0(~Bl—-2-) ;

To obtain the third solution of Egs. (3.6) we return to Eqs. (3.11) and (3.13) which
have, in addition to Eqgs. (3.14) the solutions
3.17) ro=1, s50,=0, p°U?= p,cos?p.
These, when substituted into Egs. (3.12), and the second of Egs. (3.13) give
0'U? = pp+(A+3pu,—2ur +2a)cos’p,

(3.18) - (A+ﬂr,+ﬂ

ri=0, s tang,

ML
and the corresponding solution of Egs. (3.6) is
1
oU3 = (A+ 3‘u;_—2y7+2a+ﬁ)cosz¢+m,+0(?),
(3.19)

I = ap+ W tanqux-}-ﬂ(zl;;)-

In the limit as f — oo the solutions (3.7) and (3.16) become the solutions (2.16) and
(2.17) respectively for waves in the inextensible material. The solution (3.19) then gives
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an infinite wave speed, associated with a discontinuity in the direction of inextensibility
a, provided cos¢g is non-zero.

The method used to obtain the solutions (3.16) and (3.19) must be re-examined when
cosg is close to zero. The solution (3.19) shows that the transition region is given by

cos¢ = m)/e where m is a parameter of order one. We then write
U? = °02 4+ /e U2+ 20% + ...,
(3.20) F=To+T Vet+Tr6+ ...,
§ = So+5, YV e+5,8+ ...
and substitute into Eqs. (3.8) and (3.9). The terms independent of ¢ give
(A+2ur—0°U?)s, = 0,
(3.21) (uL(1+m?)—g°U¥r, = 0,
r3i+st=1,
and the terms of order ¢ give
—0'Uso+ (A+2p1— U8, + (A+pr+ 0)mro = 0,
(322) (A+pr+ a)mSo+ (ui(14+m?) —°U)r, —' U%ro = 0,
Fofy+305; = 0.
Equations (3.21) and (3.22) have the solutions
ro=0, So=1, p°U%*=Ai+2u,

3.23 . -
(3:23) - (A+pur+o)ym g Tpmilly i
A+ 2ur—p (14+m?)

and
To=1, 5 =0, @°U?=p(l+m?,
3.29)
: B mlly By m e AT 01 172 = 0.
t ? s 1+2pr—p;_(l+mz) !
The corresponding solutions of Egs. (3.6) are then
oU2% = 24 2ur+0(e),
(3.25) G+
(2) 4L+ a)cosé
If mi+ A+2,ur—p;,—ﬁcosz¢ ax+0(e),
and
oU32 = p.+pcos?p+0(e),
(3.26) _
I = (A+ pr+od)cos¢ b G 008).

A+2ur—p—fcos*dp
It is readily shown that the expressions (3.25) and (3.26) remain valid in the limit as
m — 0 with & remaining small but non-zero, corresponding to cos¢ tending to zero while
f remains large but finite.
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The solutions (3.19) and (3.26) show that the third wave speed changes from a large
value of order |/ Blo to a value comparable with the other two wave speeds as cos¢

1
changes from values of order one to values of order (u./f)?. Further, all three wave
1
speeds are finite and of comparable magnitude for values of ¢ satisfying g —m(uL/P)?

1
<¢ <12‘-+m(u;,fﬁ)= where m is of order one.

4. Almost inextensible materials

In Sect. 3 we considered the inextensible material as the limiting case of a strongly
anisotropic material. Here we take a different approach in which we regard the strongly
anisotropic material as a perturbation on the inextensible material. Let W(e;;, a;) denote
the strain energy density function of a transversely isotropic elastic material whose axis
of transverse isotropy is in the direction of the unit vector a. The stress is

1{éW oW
(4-1) fy = -2“( 6egj 69;; )

Adopting the suggestion of PARKER [7] we define the function ﬁ’(e,,-,at, T), where
T = tp,a,a,, by the Legendre transformation

4.2 Wey, ax, T) = Wley, ar) — Tt1Gmeim.
We then have on differentiating that
ow
2T = —Q10mCim,
(4.3) X X
-I—( i ——-—aW = t;yj—Ta;a
2\ e, T e, ) T T 0

Here the derivatives of W with respect to the e;; are not independent since it follows
from the definition of T that

A

oW
4.4
(4.9 By

From the first of Egs. (4.3) it may be seen that the material is inextensible in the direction

aif aﬁ’; T = 0. T is then the reaction stress associated with the constraint of inextensibil-
A -l-

ity. The material will be termed “almost inextensible” if dW/0T < (e;jei;)* for all ey

and all finite 7.

For a linear elastic material the most general form for W consistent with the con-
straint (4.4) is

= a;a;tu-—T= 0.

(4.5) W =cienles—2aaje;)+cre e+ caiajepex;
é
+(ci—c2—c3)aia;e;;a,.a,e,+yT(ex — aiaje;5) + —_2;':3 1%

6 Arch. Mech. Stos. nr 3/78
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where ¢;, ¢, and ¢; are elastic moduli and y and J dimensionless constants. Using the
expression (4.5) in Egs. (4.3) gives

4.6) ty = 2ci(es—a,a,e,5) 0;;—2c, exxa;aj+2c, €5+ cs(a;are

+arajen)+2(c; — c;—c3)a,a,er,0:0)+ y T8+ (1 - y) Tayay,
and

-

ow é
“ GOmlim = = —Zp = (@:a5ei;—ew) y— ol T.

It may be seen from Eq. (4.7) that the material is almost inextensible if y < 1 and § < 1.
We differentiate Eqs. (4.6) with respect to x;, take the jump across the discontinuity
surface, and use Egs. (2.5), (2.6) and. (2.8) to obtain the equations

@3) u{(c2+ —;_ cacos’qb—gUz) Bt (26, + ) mmy — (2c, - %ca)cosqb(a,n,

+na,)+ [% c3+2(cy —Cz—cs)c°52¢]ﬂi0r, L+v{yn+(1—p)cosga,} = 0.

Equations (4.8) form a system of three equations in the four unknowns o, 7 and 1. In
order to obtain the fourth equation we differentiate Eq. (4.7) with respect to time and
take the jump across the discontinuity surface to obtain

4.9 o'{yn,+(l—y)cos¢a,}l,+cir =0.
2
Eliminating = between Egs. (4.8) and (4.9) leads to the propagation conditions

@10 offcs+5 cscostg—ot?) 8.+ (e +es1=r2 ) min

1 .
- (201 -5 c3+cCy % (1- 7)) cos¢(am,+ma,)

— a2
+ [__;_ c3+2(c;—cy;—c3)cos?p—c, (l—g}i cos’gb]a,a,} L =0.

Equations (4.10) become identical with Egs. (3.4) if we put
€2 = pir, €3 = 2(uL—pr),
&y = Gt 7ur9),
(4.11)

AT (A+0)
é ur
1 (A+2a+4p.—2ur+p)

—3- Hr



WAVE PROPAGATION IN STRONGLY ANISOTROPIC ELASTIC MATERIALS 307

It may be seen that - 0 and y — 0 as # — oo and in this limit the material becomes
the inextensible solid of Sect. 2. For § = u./e and ¢ € 1 we have
_ (A+w e+ 0(e?)
ML

4.12) o=—FTetoer), y=
ML

and the material is almost inextensible. The solutions of Egs. (4.10) in this case have
been derived in Sect. 3. By using these solutions in Eqgs. (4.9) it is possible to obtain
some information on the strengths of the discontinuities. Introducing the vector m defined
in Sect. 3, Eq. (4.9) may be rewritten as

“4.13) t = [{(A+a)sing +0(¢)} m, .+ fcosda,l,].

The solution (3.7) for which IV = e,,a,m, gives 7, = 0, and the solution (3.16)
gives
4.19) 7, = —0y(uLsing +0()).

In the limit as ¢ — O these results agree with those derived from Eq. (2.14) for the in-
extensible material. The third solution [Egs. (3.19)] leads to

(4.15) Ty = G;ﬁc05¢
and for cos¢ # O the discontinuity 7, becomes infinite as § — co.
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