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Continuum approach of physical line structures with applications 
to high polymers and to flux line lattices of superconductors(*) 

K. H. ANTHONY (STUTTGART) 

A THREE-DIMENSIONAL, nonlinear, local field theory describing ordered physical line structures 
was established. This theory allows for arbitrary configurations of the system. In particular, 
eigenstress-states associated with structure defects such as dislocations and disclinations may 
be investigated. The lecture treats the following topics: 1) fundamental ideas of the theory, 
2) defects in the ordered line bundle, 3) realization of the theory by the bundle model of high 
polymers, 4) realization of the theory by the magnetic flux line lattice of superconductors. In 
order to take into account interaction effects between the atomic lattice and the flux line lattice 
the theory has to be generalized. This generalization is associated with the model: ordered line 
bundle embedded into a point lattice. 

Sformulowano tr6jwymiarowll, nieliniowll lokalnll teori~ opisujllCCl uporZ(\dkowane struktury 
utworzone z linii fizycznych. Teoria ta dopuszcza dowolne konfiguracje ukladu. W szczeg6lnosci 
w ramach tej teorii mogll bye rozwaZa.ne stany napr~ren wlasnych stowarzyszone z takimi defek­
tami strukturalnymi, jak dyslokacje i dysklinacje. W pracy rozwazono nast~pujllce zagadnienia: 
1) gl6wne idee pracy, 2) defekty w uporZ(\dkowanej wi<lZce linii, 3) realizacja teorii przez model 
Willzki polimer6w, 4) realizacja teorii przez siec utworzonll przez linie strumienia pola magnetycz­
nego nadprzewodnik6w. Aby bylo mozliwe uwzgl~dnienie oddzialywania mi~dzy siecill ato­
mOWCl i siecill linii prlldu nalezalo teori~ uog6lnic. Uog6lnienie takie oparte jest na modelu upo­
rZ(\dkowanej willzki linii wmrozonej w siee punktowll. 

CQ:>opMyJmpoaaHa TpexMepHa.H, HemrneiiHa.H noi<a.JILHa.H TeopH.H onHChiBaiO~aH ynop.H~Ol.leH­
Hbie crpyi<Typbl o6pa30BaHHbie H3 Q:>H3Hl.leCI<HX JIHHHH. 3Ta TeOpH.H ~OrryCI<aeT npOH3BOJibHbie 

I<OHQ:>:urypaQHH CHCTeMbl. B qaCTHOCTH B paMI<ax 3TOH TeopHH MOryT paccMaTpHBaTbC.H COCTO­

.HHH.H C06CTBeHHbiX HanpH)f(eHHH acCOQHHpOBaHHbie C Tai<HMH CTpYI<TYPHbiMH ~eQ:>ei<TaMH, 
I<ai< ~Hcnoi<aQHH H ~HCI<nHHaQHH. B pa6oTe o6cy)f(~eHhi cne~yro~He aonpocbi: 1) rnaBHbie 

llOJIO)f(eHH.H pa6oTbl, 2) ~eQ:>ei<Tbl B ynop.H~Ol.leHHOM rryl.II<e JIHHHH, 3) peanH3aQH.H TeOpHH 

MO,I:{eJibiO nyl.II<a llOJIHMepOB, 4) pea.JIH3aQH.H TeOpHH CeTI<OH o6pa3oBaHHOH JIHHH.HMH llOTOI<a 

MarHHTHOrO llOJI.H CBepxnpOBO):{HHI<OB. qT06bi MO)f(HO 6biJIO yqeCTb B3aHMO):{eHCTBH.H Me)f():{y 

aTOMHOH perneTI<oii H ceTI<OH nHHHH Toi<a cne):{oaano 6bi o6o6nurrL TeopHIO. Tai<oe o6o6~eHHe 
OllHpaeTCH Ha MO,I:{eJib ynop.H):{Ol.leHHOro nyl.II<a JIHHHH BMOpO)f(eHHOrO B TO'llel.IHYIO peiiieTI<y. 

1. Introductory remarks 

THE CLASSICAL field theory as based on the methods of non-Euclidean geometries is capable 
of describing arbitrary configurations of ordered material structures. The physical elements 
of the most fundamental ordered structures are points, lines and sheets, where the lines 
and sheets exhibit no inherent physical structure at all. According to these elements we 
get point lattices, ordered line bundles and ordered layer structures (Fig. 1). 

Apart from the atomic crystals the magnetic flux line lattice of superconductors get 
another prominent realization of the point lattice, which is of current physical interest. 

(*) Manuscript of a lecture given at the Conference on "Continuum Model of Discrete Systems", 
Jodlowy Dw6r, Poland, June 1975. 

http://rcin.org.pl



136 K. H . ANTIIONY 
- ---- ----·- - ·· - ·· · - - ··- · ----- -···- - - -

Whereas the atomic lattice is three-dimensional, the flux line lattice is a two-dimensional 
lattice occurring in cross-sections of a straight flux line bundle (Fig. 2). The classical field 
theory has proved to be a powerful tool for describing deformed configurations of point 
lattices. The deformations may be due to external body and surface forces as well as to 
structure defects of the lattice [2-12] or to deformation sources summarized by the notion 

a b c 
FIG. 1. Ordered material structures : a) point lattice, b) ordered line bundle, c) ordered layer structure, 

~'quasi-plastic deformations" [13, 14](1).1t is a well-known fact that a variety of macroscopic 
as well as microscopic properties of a crystal lattice can be understood by means of structure 
defects [15] and by their mutual elastic interactions on the microscale. Let us recall here 
dislocations [16] which are closely correlated with plasticity and with work hardening [17]. 

It is quite natural to look for the same problems in the case of ordered line bundles 
and of ordered layer structures. Three-dimensional line bundles are physically realized 
for instance in the magnetic flux line lattice of superconductors [1, 18](2) and in the bundle 

FIG. 2. Two-dimensional magnetic flux line lattice of 
superconductors, undeformed configuration (Micro­

graph due to TRAUBLE and ESSMANN [1]). 

model of high polymers [19]. Layer structures are found for instance in cholesteric and 
smectic liquid crystals [20]. All these structures can be deformed; in all structures we may 
introduce structure defects, a lot of which are really observed. As in the case of point lat­
tices we ask if it is possible to understand the macroscopic as well as microscopic behaviour 

(1) For instance: thermal strains due to a temperature gradient. 
(2) The flux line bundle may be described completely by means of a two-dimensional point lattice 

<>nly if the flux lines are straight and parallel [36]. 
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CoNTINUUM APPROACH OF PHYSICAL LINE STRUCTIJRES 137 

of these systems by means of certain structure defects and by their mutual interactions 
[21, 23]. Restricting my lecture to the magnetic- flux line lattice of superconductors and 
to the bundle model of high polymers I shall try to explain these problems and their cor­
relation to the classical field theory. 

To start with a guide for the case of the ordered line bundle let us have a glance at the 
methodical relationship between a discrete point lattice and its associated field theory: 
On the one hand, structure defects are singularities in the physical system disturbing the 
regular topology of the discrete lattice and giving rise to elastic eigenstrains of the lattice. 
To give an example, Fig. 3 shows an edge-dislocation, the topology of which is character­
ized by open lattice parallelograms. The closure failure is called the Burgers vector of the 
dislocation. On the other hand a main problem of the mathematical field theory is to cal-
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FIG. 3. Edge dislocation in a cubic point lattice. Lattice parallelograms are built up by means of two pairs 
of equivalent lattice lines. The two lines of each pair exhibit the same length as measur~d by means of 

lattice spacings. Only those parallelograms are closed, which do not enclose the dislocation. 

culate sufficiently continuous fields which are associated with given singularities. Such 
singularities may be sources or vortices or more complicated ones. It is evident that this 
problem is quite analogous to the problem of physical singularities. Therefore, we try to 
fit the mathematical singularities and their corresponding fields as well as possible to the 
physical singularities and their associated lattice strains. Nevertheless, we are really dealing 
with a discrete physical system and we rather associate a continuum model with this system. 
The accuracy of the results calculated by means of the model depends on the accuracy 
of the original fitting procedure. If this procedure takes place on the microscale, i.e. if 
it takes sufficiently into account the microstructure of the system, we may expect good 
results even on the microscale. The fitting procedure has to take care of the system's topo­
logy as well as of its energy content. The outcome of the fitting procedure is a set of compati­
bility equations, referring to the topology of the system, and a set of equilibrium and consti­
tutive equations, referring to the material response of the system. 

2 Arch . Mech. Stos. nr 2ns 
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Let us look again at the dislocation of Fig. 3. It is a well-known fact that a point lattice 
is well fitted by means of a continuum model which is endowed with a parallelism [11]. 
This "lattice parallelism" is a continuous operation within the continuum model. It is 
associated with the natural displacement of a lattice vector within the discrete lattice 
(Fig. 4a), i.e. lattice vectors are parallely displaced with respect to the lattice parallelism. 
If the torsion of this parallelism does not vanish, we get a non-EucJidean parallelism which 
is characterized by open parallelograms (Fig. 4b) [24]. If we choose the torsion tensor 
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FIG. 4. a) Lattice parallelism F. b) A parallelism F with torsion produces open parallelograms. The 
parallelogram consists of two pairs of autoparallel lines. Opposite sides, being parallel with respect 

to the F-parallelism, exhibit the same length (as measured by means of an appropriate metric [11]). 
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CoNTINUUM APPROACH OF PHYSICAL LINE STRUCTURES 139 

of the lattice parallelism to be singular along the dislocation line and to vanish elsewhere 
(i.e. torsion tensor = two-dimensional Dirac's <5-function), we are able to fit the open 
lattice parallelograms of Fig. 3. Basing on this model the eigenstrains of the dislocation 
have been calculated with sufficient accuracy even on the microscale. Such calculations 
are the foundations on which calculations of the interaction of different dislocations are 
based. 

Recently I was successful in the analogous program concerning the ordered line 
bundle [25]. It is possible to associate a continuum model with this discrete system, too, 
and to fit the model to bundle defects. In order to get a well-fitted continuum model we 
have first to study the physical system in some detail. 

2. The magnetic flux line lattice in type U superconductors. Phenomena relevant to the field 
theory 

When a superconducting materiale) is cooled down below its critical temperature(4
), 

it is found in its superconducting state where its electrical conductivity gets infinite. Put­
ting a long cylindrical specimen of such a superconducting material into a homogeneous 
magnetic field H, we get a magnetization curv~ which is quite different from those of 
materials with normal conductivity (Fig. 5a)(5

) [18]. It is characterized by two critical 
fields. Below the first critical field Hc 1 there is absolutely no magnetic flux in the specimen 
(Fig. 5b ). This state in which the specimen is a perfect diamagnet is called the Meissner­
state of the superconductor. 

Raising the excitation field H we find at the first critical field a more or less sponta­
neous penetration of the magnetic flux according to a flux density B0 • But this flux is not 
homogeneously distributed. Instead, we find a periodic flux distribution and the flux 
is mainly located at the flux lines which arrange themselves in an ordered line bundle 
(Figs. 5c, d). The regular undeformed flux line lattice occurring in cross-sections of the 
bundle can be visualized on the top surface by means of the electron microscope after 
having decorated the surface with iron particles (Fig. 2). In general, we find a hexagonal 
triangle lattice with a lattice constant of the order 5000 A. 

If the exciting magnetic field is further raised, the flux density increases. This happens 
by means of additional flux lines which are produced in a thin surface layer of the specimen 
and which migrate into the interior of the specimen. This process is accompanied by an 
increasing homogeneous compression of the flux line lattice. Due to the elementary flux 

quantum c/> 0 = ~: (6
) located at each flux line, the increase of flux density is in a one­

to-one correspondence to the decrease of the lattice constant. 
At the upper critical field Hc2 the very strongly compressed flux line lattice finally 

(l) For instance Nb, V. 
(

4
) Typical values of this temperature are of the order of 10 K and smaller. 

(
5

) Type I superconductors exhibit a different behaviour. They can be transformed into type II super­
conductors by means of admixtures. 

(
6

) h - Planck's constant, e - electron charge, c - speed of light. 
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FIG. 5. a) (-- --) Magnetization curve of an ideal type Il superconducting material. Magnetic flux 
density B versus the exciting magnetic field H. (- - -) Magnetization curve of a normally conducting 
material. b) Perfect diamagnetism of the Meissner-state. c) Ordered flux line bundle in the Schubnikow­
phase. d) Flux line lattice occurring in cross-sections. e) Homogeneous flux distribution in the normal state. 

disappears. We arrive at the normal conducting state with homogeneously distributed 
magnetic flux (Fig. 5e). The region between the two critical fields is called the Schubnikow­
phaseC). As the Meissner-phase it is a superconducting phase. But the Schubnikow-phase 
is characterized by the existence of a magnetic flux line lattice and the stability of the super-

(') Sometimes the Schubnikow-phase is followed by another superconducting phase which is due to 
a surface superconductivity. This fact is not important for our problem. 
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conductivity is closely related to the stability of the flux line lattice(8
). Keeping in mind 

the great technical importance of the superconductivity, I feel that the investigation of 
the flux line lattice using the field theory is sufficiently motivated. 

The phenomena reported hitherto belong to ideal superconductors. ln reality we find 
an irreversible magnetization curve with hysterisis (Fig. 6). This behaviour is due to mechan­
ical eigenstresses in the atomic lattice of the superconducting material. The deviation 
from the ideal reversible curve depends on the density of eigenstress centres, i.e. mainly 
on the dislocation density of the atomic lattice. 

The irreversible magm tization curve is accompanied by large deformations of the 
flux line lattice. Just these deformations are of greatest technical importance with respect 

H 

FIG. 6. Irreversible magnetization curve of a real 
superconductor. 

FIG. 7. Edge dislocation in the flux line lattice, 
leaving the specimen at the top surface. (Micro­

graph due to TRAUBLE and EsSMANN (1)). 

to the "magnetic hardness" of the material. The classical field theory seems to be an appro­
priate tool to study these phenomena. 

Figure 7 shows an edge-dislocation in the flux line lattice giving rise to characteristic 
eigenstrains of this lattice. This dislocation extends from the top surface of the specimen 
into the interior of the flux line bundle (Fig. 12). Figure 8 shows another defect of the 
flux line lattice, a wedge-disclination which is characterized by a five-fold symmetry within 
the flux line lattice with a six-fold symmetry. This defect causes a very large eigenstrain 
and bending of the lattice. The screening of the disclination by means of a cloud of dislo­
cations is another remarkable effect which immediately visualizes the interaction between 
the disolination and the dislocations. This interaction is due to the overlapping of the 
respective eigenstrain fields associated with the defects. 

In addition to these eigenstrains associated with the eigendefects of the flux line bundle 
we take into account further the flux bundle strains which are due to defects in the atomic 
lattice of the material. By means of the interaction between the atomic lattice and the flux 
line bundle, the flux lines are more or less pinned at atomic lattice defects, giving rise to 

(
8

) See below the considerations of flux pinning. 
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142 K. H. AN'IHONY 

a structure as in Fig. 9. The flux lines get curved and they are hindered during their migra­
tion through the specimen; this results in the straining of the flux line lattice. As a con­
sequence it may happen that a flux front appears with a very strongly strained flux line 
lattice near the front (Fig. 10). Increasing the exciting magnetic field this front penetrates 
into the probe step by step. 

We frequently observe the structure of Fig. 11. On a short distance there occurs a large 
dilatation gradient of the flux line lattice, j.e. a flux density gradient. From left to right 

FIG. 8. Screening of a wedge discJination in the flux line lattice by means of flux line lattice dislocations. 
Illustration of the interaction of different defects. (ANTIIONY [12]. Micrograph produced by H. TRXUBLE 

and U. EssMANN). 

FIG. 9. Pinning of the flux lines at eigenstrain centres of the atomic lattice, for instance at atomic lattice 
dislocations. 
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FIG. 10. A flux front penetrating into the specimen illustrates the pinning of the flux bundle at eigenstrain 
centres of the atomic lattice. (Micrograph due to ESSMANN [26]). 

FIG. 11 . A flux density gradient of the flux line lattice illustrates the pinning of the flux bundle at eigenstrain 
centres of the atomic lattice. By means of a large dislocation density in the flux line lattice the strains in the 

bundle due to flux pinning are mainly cancelled. (Micrograph due to EssMANN and TRXUBLE [27]). 

[143] 
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144 K. H. ANTHONY 

we find an increase of the lattice constant of about 100 percent. This effect is directly 
correlated with the pinning centres of the atomic lattice. Furthermore, we find a large 
density of flux line lattice dislocations which, with respect to the lattice cell, is about a 
hundred times larger than common dislocation densities of metals. These dislocations 

I 

t I 

0 
a d 

FIG. 12. Curved dislocations in the flux line bundle, the character of which varies between pure edge (_L) 
and pure screw (8) Fig. (e) shows schematically the flux line arrangement around a screw dislocation [30]. 

reduce flux line lattice strains which are due to the pinning of the flux lines in the atomic 
lattice. Further they seem to be very important for the flux line lattice in order to overcome 
the flux pinning and to migrate into the specimen: by means of dislocation migration 
along their gliding planes the flux line bundle is deformed plastically(9

). This process is 
accompanied with flux migration in the specimen [28, 29]. 

(
9

) This process is analogous to the well-known plastic deformation of atomic crystals. 
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A final remark concerning the dislocations of Fig. 11 : because of the flux pinning we 
cannot expect that these dislocations run as straight lines from one top surface of the 
specimen to the other one. We must assume a picture as in Fig. 12: there will be curved 
dislocations running from one surface to the other (12a), severall will return (12b) and 
several will leave the specimen sidewards (12c). Finally, we must expect closed dislocation 
lines in the interior of flux line bundle (12d). 

All defects of the flux line bundle interact with each other and with pinning centres, 
i.e. with defects of the atomic lattice [23, 28]. The irreversible magnetization curve of the 
superconductor is the final result of all these interactions. Those interactions related to 
pinning are the most important ones. 

3. Some fundamentals concerning the continuum model of the flux line lattice of supercon­
ductors 

The continuum model of the flux line lattice of superconductors has to fit the discrete 
structure shown in Fig. 13. A point lattice, representing the atomic lattice, and an 
ordered line bundle, representing the magnetic flux line lattice penetrate each other. 
Both subsystems are individually deformable. Nevertheless, they interact with each 
other. 

We compare the "real configuration" (Fig. 13b) of the system with an "ideal configura­
tion" (Fig. 13a), where we have straight and parallel flux lines and where the three-dimen­
sional atomic lattice as well as the two-dimensional flux line lattice are ideal ones. Each 
deviation from the ideal configuration is assumed to give rise to an "elastic" response 
of the whole system. I emphasize that in this consideration elastic stresses are located in 
the flux line lattice as well as in the atomic lattice. 

Because of the very large deformations occurring in the flux line lattice, the field theory 
of the system has to be nonlinear from the very beginning. Nonlinearities must be taken 
into account with respect to constitutive equations as well as with respect to the deforma­
tion theory. 

The deformation theory of the point lattice is well established. As far as the deformation 
theory of the flux line lattice is concerned, I introduced some ideas [25] which are closely 
related to the fact that the flux line bundle, which so far is the most prominent example 
of an ordered line bundle, really consists of physical lines which, along the line, exhibit 
no physical structure at all. As a consequence it is impossible to define each deformation 
mode commonly used in the deformation theory of point lattices: in Fig. 14 let us first 
assume that the lines of the bundle possess a physical structure marked by dots. Because 
of a physical one to one correspondence between the ideal and each deformed configuration 
(the physical markings are substantially dragged along with the deformation), we are 
able to distinguish for instance the four deformation modes I -+ I, 11, HI, l V. In the next 
step let us disregard the point structure along the lines. We obtain Fig. 14b; where we can 
by no means distinguish between the configurations I, ll and the ideal state. Configurations 
HI and IV coincide and belong to a two-dimensional compression measured in the cross­
sections of the bundle. 
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FIG. 13. Schematic structure of the system "flux line lattice + atomic lattice". a) Ideal configuration, b) real 
(deformed) configuration. 

As a consequence neither shear-stresses acting parallel to the bundle nor tensions 
acting in bundle direction do exist in the ordered line bundle. Such stresses would by 
definition be related with strains of type I and 11 in Fig. 14a. But these strains cannot be 
defined physically. In the ordered line bundle it only makes sense to define curvature and 
strains occurring in cross-sections of the bundle. Only these deformation modes produce 
elastic response in the bundle. 
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FIG. 14. Not all of the deformation modes of a point lattice can be taken over to the ordered line bundle. 
In contrast to a) the configurations I and 11 in b) cannot be distinguished from the ideal configuration /. 
Ill and IV get identical configurations which are due to bundle compression measured in cross-sections 

of the bundle. 

4. The bundle model of molten high polymers 

Bearing in mind the preceding section, we recognize the bundle model of molten high 
polymers as another physical realization of the ordered line bundle. 

For simplicity let us consider the polyethylen CnH2n. The C-atoms arrange themselves 
in a flat zigzag-structure forming the backbone of the molecule. Each carbon binds two 
H-atoms (Fig. 15a). These molecules crystallize according to Fig. 15b: parallel molecules 
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148 K. H. ANTHONY 

arrange themselves in such a way that the C-atoms form an orthorhombic point lattice 
with a basis. Alternatively, we may interpret this structure as a molecular bundle with 
order in the bundle direction. Heating this crystal we finally arrive at the melt, for which 
Pechhold and Blasenbrey assume that the bundle structure is preserved and only the order 

b 

c 

/ 
/ 

--a 

FIG. 15. a) Polyethylen C2H 2 n. b) Crystallized polyethylen. Orthorhombic lattice (Q) with basis (0). 

along the bundle is destroyed by means of a large density of kinks [19]. They propose 
the structure shown in Fig. 16. 

A kink is a defect in the molecular chain. Because of the second minimum of the rotation 
potential (Fig. 17a), a single molecule may be transformed from the stable configuration 
of Fig. 15a into another stable configuration by rotating around the C-C-axis AB according 
to an angle of about ll2° (Fig. 17b). This configuration has a slightly higher energy com­
pared with the straight molecule. Repeating this procedure in the opposite sense at the 
C-C-axis A'B', we get the kink (Fig. 17c) which is a stable defect with very small(1°) for­
mation energy of about 0.05 e V and which is associated with the smallest lateral displace­
ment of the molecule [19, 31]. Due to the low formation energy the crystal is endowed 

(1°) "Small" compared with the formation energy of about 1 eV of vacancies in metals (Cu, AI). 
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in thermal equilibrium with a considerable kink density which increases dramatically 
at the melting point giving rise to the melting process. This large kink density is visualized 
in Fig. 16 by means of the irregular zigzag structure. 

Since the kinks are roughly fluctuating objects, we cannot define any static order 
along the molecular bundle. If we mark at a particular instant a volume element as in 
Fig. 18a, which in principle could be done, we cannot define a static shearing parallel to 
the bundle (Fig. 18b). The marked element would very rapidly dissolve by means of kink 
fluctuation which is accompanied with the molecule's migration along the bundle 
(Figs. 18c, d), i.e. we have no physical tool to measure static shear parallel to the bundle. 
In consequence there exists no static shear stress acting paraJlel to the bundle. This fact 

FIG. 16. Bundle and meander model of molten high polymers. Figure due to BLASENBREY and PECHHOLD [19]. 

corresponds to the fluidity of the polymer melt. Remembering the previous results the 
molten polymeric bundle thus behaves like an ordered line bundle and the field theory 
of this model is expected to be a good tool for describing the deformation behaviour of 
the polymeric melt. This is no trivial program because the mechanical properties of poly­
meric melts are remarkably different from those of atomic or low molecular melts(11

). 

The bundle model is extremely anisotropic. In order to find agreement with the observ­
ed isotropy on the macroscale, Pechhold and Blasenbrey assumed a meanderlike folding 
of the molecular bundle (Fig. 16). This meander structure has to be completed randomly 
into the third dimension. Replacing it by the model system. i.e. by an ordered line bundle, 
we get the structure of Fig. 19 which includes topological defects at the sites + and -
in an otherwise perfect bundle [21, 22]. These defects being disclinations of opposite signs 

(
11

) Look for the experiments concerning the shape-memory of the melt [32] or concerning layer 
structures of the melt [33]. 
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Fro. 17. The kink in a polyethylen molecule is due to the second minimum at 112° of the rotation potential. 
a) The rotation potential is associated with rotating the molecule around a C-C-axis (AB in Fig. 15a). 

The kink c) is produced by two adjacent" gauche conformations" b) of opposite sense. 

[150] 

http://rcin.org.pl



FIG. 19. In terms of the ordered line bundle the meander model is regarded as a multipol disclination 
arrangement. 

[151] 

http://rcin.org.pl



152 K. H. ANmoNY 

are characterized in Fig. 20: a field of directors is associated with the bundle. On a ciircuit 
round the disclinations the director suffers a rotation of+ 180° and -180°, respectively(1 2), 

giving rise to a closure failure L1n = n1 -ns. These topological features have to be !fitted 
by means of an appropriate geometrical structure associated with the continuum rmodel 

FIG. 20. Two wedge disclinations of opposite signs in the ordered line bundle. On a circuit they are associa­
ted with a closure failure of the director. 

of the ordered line bundle [25]. Thus the meander model (Fig. 19) may be regarded as 
a multipol arrangement of disclinations of opposite sign. It is natural to ask for the inter­
actions between these defects and for their effect on the deformation behaviour of the 
polymer melt. 

(1 2
) Sense of director rotation as compared with the sense of the circuit. 
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Figure 2la visualizes that the macroscopic deformation of the melt is associated with 
a deformation of the disclination grid. Thus, using the meander model we have to ex­
pect an elastic response originated by the interaction forces between disclinations. This 

a 

FIG. 21. a) The deformation of the melt is associated with the deformation of the disclination grid, giving 
rise to an elastic response. b) Annihilation of disclinations associated with bundle stretching. 

may be responsible for quite unusual properties of polymeric melts concerning shape 
stability [32, 33]. An increase of the deformation finally leads to stretching of the molecule 
bundles. This process is associated with the annihilation of disclinations of opposite sign 
(Fig. 21 b), giving rise to entropy effects, too. 

3 Arch. Mecb. Stos. nr 2ns 
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5. Problems concerning the field theory of the ordered line bundle 

I have established a complete field theory of the ordered line bun.dle for the static 
case [25]. Being a nonlinear theory it allows for arbitrary deformations of the system. 
The constitutive equations are formulated as local equations. They take into account the 
elastic response associated with line bending and with strain occurring in cross-sections 

FIG. 22. Some problems which may be studied by means of the field theory of the ordered line bundle. 
J) External body and surface forces, 2) dislocations, 3) disclinations, 4) line ends, 5) gauche plains, 6) twisted 

bundle. 

of the bundle. Thermal effects are excluded. The following problems may be solved by 
means of this theory (Fig. 22): 

a) bundle response with respect to external body and surface forces (1); 
b) eigenstrains produced by bundle defects such as dislocations of different types (2), 

disclinations of different types (3); 
c) line ends (4); 
d) gauche plains, associated with discontinuous bending (5); 
e) twisted bundles (6)(1 3). 

The theory allows for interactions of all these objects. In the flux line bundle of super­
conductors the dislocations are of major interest but in the case of polymers we have to 
deal mainly with disclinations. 

Furthermore I established a complete field theory of the magnetic flux line bundle 
as embedded into the atomic lattice of the superconductor. This theory takes into account 
the coupling effects due to the strain of the atomic lattice and due to the orientation of 
the flux bundle with respect to the atomic lattice. It especially allows for the flux pinning. 

( 13) The twisted bundle is closely related to the concept of the "Moebius-crystal". 
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Up till now our investigations suffer from the fact that we do not know the numerical 
values of the moduli occurring in the constitutive equations. These values must be deter­
mined either by experiment or by more fundamental theoretical investigations. Dynamical 
experiments may be an appropriate procedure. On the other hand, we may fit the moduli 
to quantum mechanical calculations in the case of superconductors or to atomic potential 
calculations in the case of high polymers. So far we have to restrict ourselves to general 
investigations keeping the moduli unspecified. 

As an example Fig. 23 shows an interaction force as calculated by means of the field 
theory(1 4

): an edge dislocation of the flux line lattice migrating on its glide plane suffers 

FIG. 23. Interaction force F between an edge dislocation of the flux line bundle ( 11 ) and an edge dislocation 
of the atomic lattice (.L ). Flux lines and both dislocations are assumed to be straight and parallel. X is the 
coordinate of the flux bundle dislocation in its glide plane. F is a vector in the glide plane acting on the. 
migrating flux bundle dislocation. Calculations are done for a hexagonal triangle flux line lattice and for 
simplicity we assumed transversal isotropy in the atomic lattice with the axis parallel to the flux lines. 

an interaction force F(x) due to an edge dislocation of the atomic lattice. The flux bundle 
and both dislocations are assumed to be parallel. The shape of the curve depends on both 
the distance d between the glide plane and the atomic lattice dislocation, and on the rela­
tive orientation rt of both Burgers vectors(1 5). The particular points E mark stable equilib­
rium configurations of the pair. 

Using these results we calculated pinning forces responsible for the irreversible 
magnetization curve. For instance, a flux bundle dislocation running towards a grain 
boundary of the atomic lattice suffers a force as shown in Fig. 24 with stable positions at 
points E. The most stable position E0 may be associated with flux pinning and the height 
FP of the adjacent oscillation is interpreted as the pinning force acting on the flux bundle 
disclocation. 

We may further ask for the flux bundle deformations which, as a consequence of the 
interaction of both subsystems, are due to the strains of the atomic lattice. This question 
especially arises in the vicinity of an atomic eigenstrain centre (Fig. 9). Such a bundle 

3* 

(1 4
) Figures 23, 24 and 25 are kindly made available by J. BRAUNER [34]. 

(1 5
) Furthermore it depends on the values of the unspecified moduli. 
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FIG. 24. Interaction force between a flux bundle dislocation(::!:!::) and a grain boundary of the atomic !attic 
( -i -i -i). Assumptions as in Fig. 23. 

-~-

~ . 

: ·~ 

' ""' [ '~ .......... ______ _ 

FIG. 25. Volume force density fin the flux line bundle due to an atomic lattice dislocation Cl). Plot of 
vector lines. Assumptions as in Fig. 23. 

deformation, being a compatible one, may be associated with a volume force density 
acting on the flux line bundle only. For the case of an edge dislocation in the atomic 
lattice, which again is assumed to be parallel to the flux lines, the field/is shown in Fig. 25. 
Ill varies as 1/r2

• 

Figure 26(1 6) shows strain curves associated with disclinations of the meander model. 
For the sake of simplicity we assumed a flat system disregarding the third dimension 
of the bundle. The bundle suffers a pressure a perpendicular to the lines, which is associated 
with variations of the distances between the lines. Furthermore we take care of the response 

(1 6
) The curves of Fig. 26 are due to F. FALK. [35]. 
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ft( = moment stress) associated with line bending. Going along a bundle line ABC and 
plotting (] and 1-l versus the arc of the line, we find a Gaussian curve for both quantities 
having its maximum at B. Increasing the distance from the disclination centre, the curve 
broadens and the peak is lowered, whereas in the disclination centre the stresses concen­
trate and get infinitely large. 

A c 
3 2 

s 
FIG. 26. Stresses in a flat bundle due to ± 180°- disclinations. The coordinateS is the arc along the lines. 

The stresses of both defects differ only in sign. 

6. Some remarks on the field theory of the ordered line bundle 

My final remarks are concerned with some fundamental mathematical ideas which 
must be brought in the field theory of the ordered line bundle in order to get a good fit 
between the discrete physical system and its associated continuum model. This continuum 
model is a three-dimensional, suffi.ciently(1 7) continuous point manifold which occupies 

(1 7 ) Continuously differentiable up to a certain order. 
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the volume of the discrete bundle and which is endowed with several sufficiently continuous 
mathematical structures. A field of triads is the most fundamental structure of the model. 
Further structure elements are based on the triad field which fits the field of "bundle triads" 
of the discrete physical system. 

Each configuration of the discrete ordered bundle is described by means of a field 
of bundle triads. A director b associated with the bundle direction and two vectors b, b 

1 2 3 

joining neighbouring lines of the ordered bundle build up the triad (Fig. 27a). From the 
external point of view it is convenient to choose right angles J{..(b, b), J{..(b, b) and a unit 

1 2 1 3 

vector b. But, as far as physics go, there is really no need for this particular choice. In 
1 

\ 
\ 

a b 

FIG. 27. Fields of bundle triads defining an equivalence class. The totality of all classes is in one-to-one 
correspondence to all bundle configurations. 

contrast to a point lattice where the lattice vectors are uniquely defined by means of the 
physical structure the lines of the bundle possess no inherent structure. Thus we may 
equally well introduce each field of triads defining the bundle direction and joining neigh­
bouring lines (Fig. 27b ). All these triads are physically equivalent. Each of them includes 
essential physical information in so far as it defines the bundle configuration. However, 
it includes furthermore unessential information because of its non-uniqueness. Thus, for 
a given configuration I define an equivalence class in the usual mathematical sense collecting 
all physically equivalent fields of triads. All possible bundle configurations are in one-to-one 
correspondence to the totality of all equivalence classes. 

In order to get appropriate physical quantities describing the bundle configuration 
we have to look for class functions of the equivalence classes. Let me clarify this point 
by means of an example. 
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It is well-known that strain tensors are defined as the difference of two metric tensors. 
This concept holds for the ordered line bundle, too. In this case one of the two metric 
tensors is defined as follows: let us take a particular field of bundle triads of a given con­
figuration and let us define a metric tensor b such that the triads are orthonormalized with 

g'(x) 

a b 
FIG. 28. Definition of regular metric tensors in the bundle. 

respect to b (Fig. 28a) [11]. In general, b is a non-Euclidean metric. Referring to an external 
coordinate system xi its components are uniquely defined by 

(6.1) bij(x) = Bf(x)Bj(x) 6~e.t, (18
) 

Bi(x) is the inverse of the matrix B~(x) which defines the components of the vectors b(x), 

x = 1, 2, 3, with respect to the system xi. The metric b(x) is a regular one, i.e. 

(6.2) detb(x) =I= 0. 

Performing the same procedure by means of another field of triads b(x) of the same 
x' 

equivalence class, i.e. of the same bundle configuration, we get another regular metric 
tensor b'(x), by means of which the triads b(x) are orthonormalized (Fig. 28b). In general, ,, 
the two metrics are different; this means that the regular metric tensors induced by the 
bundle triads do not define a class function. Nevertheless, all these metric tensors contain 

a common kernel b(x) which I call the "bundle metric" of the ordered line bundle. b(x) 
belongs to each field of triads of the equivalence class, i.e. it is a class function. It is a degen­
erated non-regular metric 

(6.3) detb(x) = 0, 

(1 8
) Summation convention implied. 
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- - ---·· ----------- ---------

defined by 

(6.4) 

(6.5) 

(6.6) 

0 ). 0 

b1j(x) = .Bj(x)Bi(x) ~HA• 

&'H). = ( ~ ~ ~ ) • 
0 0 1 

Equations (6.4) and (6.5) may be evaluated by means of an arbitrary triad b(x) of the 
H 

equivalence class and by its associated metric b (see Eq. (6.1)). b(x) defines quite unusual 
metric properties within the ordered line bundle (Fig. 29): all of the directors have the 
same zero length. The vectors b and b connecting the next neighbour lines are unit vectors. 

2 3 

FIG. 29. Strange metric properties of the non-regular bundle metric b, which is a class function. 

At point x each vector b (x) is perpendicular to each vector b(x) with respect to b(x). 
2 3 

Finally, the director b(x) is perpendicular to all of the vectors b(x) and b(x). 
1 2 3' 

Although these metric properties are strange from the point of view of our daily life, 
they nevertheless are the best fit of a mett ic structure in the case of an ordered line bundle. 
Let us imagine a bundle-being living in the bundle and having no external view of the 
system. Because there is no physical structure on the lines the bundle-being has to orientate 
itself by means of the line-forest only. It is not able to distinguish the vectors band b (Fig. 27) 

2 2' 

by physical means. Therefore it seems quite natural for the bundle-being to associate the 
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same length (say length 1) with all these vectors. Missing physical marks on the lines 
it is again reasonable to associate zero length with all directors. 

The bundle metric b(x) of a deformed bundle configuration can be associated with 
the ideal configuration of the bundle, too. In the ideal configuration the Euclidean distance 
between adjacent lines is the same every-where (say length 1). Deforming the configUtation 
of Fig. 29 into the ideal configuration and dragging along the metric properties with respect 

to b we confirm the following statement: b measures Euclidean distances occurring in 
cross-sections of the bundle after the bundle (at least locally) has been transformed into 

the ideal configuration. Thus it is obvious that b is an appropriate quantity to define strains 
of the bundle. 

Some final remarks are concerned with deformations of the bundle. Being a physical 
object each line on the whole may be identified in each configuration (Fig. 30). But because 

( 

- ----

FIG. 30. The deformation of an ordered line bundle is associated with an equivalence class of displacement 
fields. 

there is no inherent physical structure available on the lines we cannot define a unique 
physically motivated point to point relation between both configurations. As a consequence 
it is impossible to define a material coordinate system which is dragged along with the 
deformed bundle. Furthermore, we cannot define a unique displacement field u which 
carries one configuration into the other one. Consequently, we do not know which of the 
triads B, B', B" should be associated with the triad A (Fig. 30). To solve these problems 
I again introduced another set of equivalence classes. Each of these classes is associated 
with a particular pair of configurations of the same bundle. It includes all displacement 
fields belonging to the pair of configurations. 

Thus the deformation theory of the ordered line bundle is ruled by the equation 
I 11 

(6.7) {b(x)} ~~ {b(x)}. 
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I 

The equivalence class of triads {b(x)} belonging the first configuration is transformed 
11 

into the class {b(x)} of the second configuration by means of the equivalence class { u(x)} 
of displacement fields. 

The concept of equivalence classes rules the whole theory, its geometrical as well as 
its constitutional structure. 

My participation at the conference in Jodlowy Dwor, Poland, was sponsored by the 
Deutsche Forschungsgemeinschaft. I highly appreciate this support. 
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