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Disclination dynamics 

E. KOSSECKA (WARSZAWA) and R. DEWIT (WASHINGTON) 

A MATHEMATICAL theory of moving discJinations in a linearly elastic, infinitely extended, ho­
mogeneous body is developed. The theory is a generalization of disclination statics to dynamics 
on the one hand, and of the dynamics of dislocations to disclinations on the other hand. As 
expected, many quantities in the simpler theories correspond to pairs of quantities in the present 
theory, revealing a completeness which is Jacking in the simpler theories. The boundary value 
problem for the infinite medium is completely solved. The state quantities, i.e. the elastic strain, 
bend-twist and velocities, are expressed as dosed integrals in terms of the defects in the body, 
that is as volume integrals for a continuous distribution, and as line integrals for discrete lines. 
These integrals are given in terms of Green's tensor and an integral of.Green's tensor which 
we have termed Green's potential tensor. The relation between disclination dynamics and the 
incompatibility theory is given. 

Przedstawiona jest matematyczna teoria ruchomych dysklinacji w ciele liniowo-spr~zystym, 
nieskonczonym i jednorodnym. Teoria ta jest z jednej strony uog6lnieniem statyki dysklinacji na 
dynamik~, z drugiej strony dynamiki dyslokacji na dynamik~ dysklinacji; w tym sensie jest 
teori~t kompletn~t w por6wnaniu z wymienionymi teoriami prostszymi. Odpowiednim wielko8ciom 
z teorii prostszych odpowiadajll w obecnej teorii pary wielko8ci. Podane SCl rozwiCllaflia dla 
osrodka nieskonczonego. Zmienne stanu, jak odksztalcenie, skr~enie i pr~dkosci, dane &Cl w po­
staci calek po defektach; dla rozkladu ci'lglego &Cl to calki obj~to8ciowe, dla dyskretnych de­
fekt6w calki po liniach defekt6w. Calki SCl splotami z tensorem Greena i tzw. potencjalem 
Green'a. Rozwaza si~ zwiClzki dynamiki dysklinacji z teoriCl niezgodno8ci. 

IJpe~CTaBneHa MaTeMaT.HqeCKaH TeOpHH llO~B~HbiX ~HCKITHH~ B 6eCKOHe~OM H 0~0-
pO~OM, RHHeifHo-ynpyroM Tene. 3Ta TeopHH HBnHeTCH C O~OH CTOpOHbl o6o6meHHeM CTaTHKH 

~CKJIHHal.(Hii Ha ~aMHKY, C ~yroii :H<e CTOpOHbl ~HHaMHKH ~cnoKalUiii Ha rontaMHKY 

~CKJIHH8QHH; B 3TOM CMbiCRe OHa HBRHeTCH llOJIHOH TeOpHeH no cp8BHeHHIO C ynOMHHyTbiMH 

6onee npoCTbiMH TeopHHMH. CooTBeTCTBYJOmHM aenHqHHaM H3 6onee npoCTbiX TeopHii oTae­

"tJaiOT B HacronmeH: TeopHH napbi aen~. llpHBe~eHbi perneHHH ~JIH 6eCKoHe~oH: cpe~I. 
IlepeMeHHbie COCTOHHHH, Tai<He 1<81< ~e$opM8QHH, KpyqeHHe H CKOpOCTH, ~8Hbl B B~e HH­

TerpaJIOB no ~e<t>eKTaM; ~JIH HenpepbiBHoro pacnpe~eJieHHH 3TO o6neMHbie HHTerpaJibi, ~RH 
~ci<peTHbiX ~e<t>eKToB HHTerpanbi no JIHHHHM ~e<t>eKToB. HHTerpanbi HBJIHIOTCH caepTKBMH 

c TeH30pOM rpHHa HT. H83. nOTeHQH8JIOM rpHHa. PaccMaTpHB8IOTCH CBH3H romaMHI<H ~HCKJIH­
H8QHH C TeOpHeH HeCOBMeCT.llOCTH. 

1. Introduction 

1.1. Background 

THis ARTICLE develops a general theory of moving disclinations and dislocations in a linearly 
elastic, infinitely extended, homogeneous body. 

This theory, together with Disclination Kinematics [31], may be regarded as the cuJmi­
nation of three different lines of work. First, it is an extension of dislocation dynamics, 
[1, 2, 3, 4, 5, 6, 7, 8, 29], to include disclinations. Second, it is an extension of the general 
theory of stationary disclinations [9, 10, 11, 12, 13, 14, 15] to include dynamics. Third, 
it is an extension of the dynamic theory of incompatibility [16] by identifying the defects 
that give rise to the incompatibility as dislocations and disclinations. 
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750 E. KossECKA AND R. oEWIT 

Some general work in disclination dynamics has already been done by other workers. 
ScHAEFER [17] has formulated a theory in the framework of the Cosserat-continuum and 
we closely follow his kinematical development. GuNTHER [18, 19] has developed a four­
dimensional non-Riemannian formalism and we shall note points of correspondence 
at the appropriate places in the present paper. The above two authors extend some earlier 
work by KLUGE [20, 21] who considered his theory to apply to foreign atoms instead 
of disclinations. 

The results of [31] will be used throughout. 

1.1. Outline of paper 

In Sect. 2 we derive a general solution of the dynamic plastic strain problem which 
can be posed without specifying the nature of the defects involved. This problem is a gener­
alization of Eshelby's "transformation problem" [22]. We express the equation of motion 
in terms of the total displacement and the basic plastic fields by using Hooke's law. The 
resulting partial differential equation is then solved for the displacement as a closed volume­
time integral by using the dynamic Greens tensor function. This solution forms the basis 
of all subsequent applications to dynamics. 

Sect 3 reviews classical dislocation dynamics to set the stage for the following sections. 
It shows the basic approach that will be generalized to disclinations and will also serve 
as a basis for comparison with the later sections. 

In Sect. 4 we derive the fields for a continuous distribution of moving defects. By 
"defects" we shall mean the combination of dislocations and disclinations. The constitutive 
equations relate the stress only to the basic elastic fields which do not necessarily satisfy 
the compatibility conditions. The difference between the total and elastic fields gives the 
plastic or stress-free fields. We derive c~sed volume-time integrals for the basic elastic 
fields in terms of the defect densities and their currents. For the strain formula it is necessary 
to introduce an integral of Green's tensor which we have termed Green's potential tensor. 

Sect. 5 treats the moving discrete defect line. We find the displacement as a close 
surface-time integral. Then the basic elastic fields are derived as closed line-time integrals 
along the defect line. For the strain it is again necessary to use Green's potential. 

In Sect. 6 we show the relations between the incompatibility theory and disclination 
dynamics. 

Throughout the development of this paper we find that many concepts or quantities 
from dislocation dynamics generalize into pairs in disclination dynamics. The distortion 
and velocity of dislocation dynamics generalize to the basic fields of disclination dynamics. 
In a similar way we also find that many terms from disclination statics generalize into 
pairs in disclination dynamics. The basic fields are enlarged from two to four quantities 
by the addition of the velocities. The nomenclature that has developed in this field is 
summarized here: 

b, Burgers vector, 
B, total Burgers vector, 

Cu"' elastic constants, 
e"' strain, 

F"'" incompatibility current, 
G1, Green's tensor function, 
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H./rl Green's potential tensor function, 

J"' dislocation current, 
K1p contortion, 

L(t) defect line, 
P plastic (superscript), 
r radius vector, 

R relative radius vector, 
Stt disclination current, 

S(t) defect surface, 
t time, 
T relative time, total (superscript), 

ur total displacement, 
v 1 linear velocity, 
vt dislocation loop current, 
w4 rotational velocity, 

otp1 dislocation density, 

{J"' distortion, 
tJ:1 dislocation loop density, 
~... Kronecker delta, 

t:5(r) Dirac delta function, 

e"'• permutation symbol, 
'TJH incompatibility tensor, 
8,. disclination density, 
"-" bend-twist, 
i.(t) Burgers circuit, 

e mass density 1 

q"J stress, 
q(t) Burgers surface, 
•%. disctination loop density, v:. discllilation loop current, 
cu4 rotation, 
D, Frank vector. 

751 

This paper basically addresses itself to solving boundary value problems. The important 
subject of the forces on and the energy of the defects is not treated here. The solution 
in the static case seems tractable; the dynamic solution is, however, still open. Moreo~er, 
we shall not treat applications to special problems or geometries in the present paper. 
These would be quite straightforward and could be useful in analyzing experimental data. 

2. The dynamic plastic strain problem 

2.1. The constitutive equation 

In this section we state the dynamic plastic strain problem which can be posed without 
specifying the nature of the defects involved. 

Given an infinitely extended homogeneous anisotropic body with the plastic strain 
ef, and the plastic velocity vr prescribed as functions of space and time, we are to find the 
resulting total displacement u~ as a function of space and time. 

This problem is a generalization of EsHELBY's [22] "transformation problem" to an 
anisotropic medium with a dynamic and inhomogeneous stress-free strain and velocity. 
We remark here that for our purpose the concept of "stress-free" is identical with "plastic". 
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752 E. KOSSBCKA AND R. DBWIT 

To formulate the problem mathematically, we shall also need the constitutive equations, 
i.e. Hooke's law and the equation of motion. Hooke's law relates the stress a11 to the 
elastic strain e," as follows: 

(2.1) (Jij = cijld ekl' 

where the Cu11 are the anisotropic elastic constants. We use the Einstein summation 
convention over repeated indices. Since both a11 and e11 are symmetric, the elastic constants 
satisfy the symmetry conditions 

(2.2) cijkl = cJitr = cijlk. 

Note that Hooke's law does not involve the plastic or stress free strain ef1• This is because 
the plastic strain is not a state quantity, whereas constitutive equations must relate state 
quantities. In terms of the discrete dislocation line discussed in Sect. 2.1 of [31 ], it means 
that the stress in Hooke's law does not depend on the location of the defect surface S(t). 

We now assume that the equation of motion relates the stress divergence to the elastic 
acceleration 

(2.3) 

where e is the mass density. Note that this equation does not involve the plastic velocity 
vr. This is because we wish to regard the plastic velocity as not being a state quantity. 
Hence it should not appear in a constitutive equation. In terms of the discrete dislocation 
line discussed in Sect. 2.1 of [31], this means that the stress divergence in the equation 
of motion does not depend on the location of the defect surface S(t). In other words, 
the stress and elastic strain are not affected by the position and motion of the defect surface. 
The defect surface is simply regarded as an artificial device that is useful for the development 
of the theory. In the case of continuous distributions, it means that the elastic fields are 
completely determined by the dislocation density and current. 

We wish to point out, however, that another approach is also possible, namely that 
the equation of motion relates the stress divergence to the total acceleration, (Jij,l = evJ' 
as would be suggested by Newton's law of motion. In this case it would be possible to 
have elastic fields without dislocation density and current, due to the plastic velocity. We 
have not investigated this approach. 

Next it is convenient to combine the relations (2.2)-(2.6) of [31] and (2.l)-(2.3)into 
the following expression: 

(2.4) Ci1tzulk~-euJ =Cijtlefz.~-evj. 
This is the set of partial dift"erential equations we wish to solve for uf when the plastic 
fields er, and vj are given. 

2.2. Deftaltion and application of Green's tensor 

To solve Eq. (2.4) for uT it is useful to introduce the dynamic Green's tensor function 
G1,.(r, t), which represents the displacement in the x1 direction at the field point r and 
time t arising from a unit impulse in the x,. direction applied at the origin of space and time. 
Thus G1,. is defined for an infinitely extended body by 

(2.5) CutrG1,., 1~;(r, t)+~1,.t5(r)t5(t) = eG,,.(r, t) 

http://rcin.org.pl



DISCLINATION DYNAMICS 7S3 

together with the boundary condition that G1,. vanish at infinity in space and time. Here 
~'" is the Kronecker delta, while ~(r) and ~(t) are Dirac delta functions. For convenience 
we further define the relative radius vector and time: 

(2.6) 

(2.7) 

R = r-r', 

T = t-t'. 

Then we can conveniently derive the solution of Eq. (2.4) as follows: 

(2.8) u~(r, t) = J ~, .. ~(R)~(T)uf(r', t')dV'dt' 

= - J (Cut,GJ,.,it(R, T)-eG,,.(R, T)]uf(r', t')dV'dt' 

= - f [CutrG1,.(R,T)u[k't'(r', t')-eG,,.(R, T)uf(r', t')]dV'dt' 

= - f [CiJkiGJn(R, T)ef,,,,(r', t')-(]G,"(R, T)vf{r', t')]dV' dt' 

= - J [Ci1t,G1,.,,(R, T)ef,(r', t')-eG,,.(R~ T)vr(r', t')]dV'dt'. 

In these expressions the integrations are taken over all space and time. The first equality 
in the derivation follows from the well-known properties of the Kronecker delta and the 
Dirac delta function, the second equality from Eq. (2.5), the third by partial integrations 
with respect to space and time where we assume that the integrated parts vanish at infinity, 
the fourth from Eq. (2.4), and the fifth by additional partial integrations. 

We remark that the plastic fields must satisfy certain conditions for the integral in 
Eq. (2.8) to be finite: it is clear that it is sufficient for ef, and vr to be finite in space and 
time, though these restrictions may not be necessary. 

Whether the results listed under kinematics (31] hold regardless of the behavior of the 
fields at infinity, those under dynamics have to satisfy some restrictions as the above in 
order to keep the integrals finite and to be able to perform the necessary partial integra­
tions in the various derivations. 

Equation (2.8) gives the total displacement as a function of space and time in terms 
of a volume-time integral and applies to any defect which can be described by the given 
plastic strain and velocity. It forms the basis for all subsequent applications to dynamics. 
A similar result was derived by MURA [4] but without the term containing the plastic 
velocity vr. 
2.3. Compatible elastic strain and velocity 

When no defects are present the plastic fields are compatible, i.e. they can be derived 
from a plastic displacement: 

(2.9) er, = uf,,k)J 

(2.10) vr = ur. 

We then find for the total displacement 

(2.11) u:(r, t) = - [Ci1t 1G111 ,1(R, T)ur,t, (r', t')-eG1,.(R, T)ur(r', t')]dV'dt' 

= - f [C,1t,G1,.,,t(R, T)-eG,,.(R, T)]uf(r', t')dV'dt' 

= J ~'" ~(R) ~(T)uf{r', t')dV' dt' = u~ (r, t). 
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ijere t.he first equality follows from Eq~. (2.8) to (2.10), the second by pa,rtial integrations, 
and the third by Eq. (2.5). It follows therefore that for a compatible plastic deformation 
the elastic displacement vanishes: 

(2.12) u,. = u~ -U: = 0. 

Hence, in this case all elastic fields vanish. 

3. Review of dislocation dynamics 

3.1. ContinUQUS distribution of dislocations 

In this section we derive the basic elastic fields for continuous dislocation dynamics. 
namely the distortion and velocity, as volume-time integrals over the dislocation density 
and its current. · 

From Eqs. (2.8), (2.2) and (3.20), of [311 we find that the total displacement for a 
moving dislocation distribution can be written as 

(3.1) u:(r, t) = - j [C,1t,G1,., 1(R, T){Jf1(r', t')-eG,,.(R, nvf<r', t')]dV'dt'. 

From this relation and Eq. (3.1) of [31] we find the total distortion as follows: 

(3.2) {J!,.(r, t) = - f [C11t,G1,..1,.(R, T){Jf1(r', t')-eG,,.,,.(R, T)V,(r', t')]dV'dt' 

= - J [C,1t,G1,.,1«t, T){J~,,.,(r', t')-eG,,.(R, T)vf.,.,(r', t')]dV'dt' 

= J {C,1",G1,.,1(R, T) [e,.~:cx,,(r', t')-{J~'·"'(r', t')]-eG,,.(R, T)[Jml(r',t') 

-P!1(r', t')}dV'dt' == J [CIJ"'G1,.,1(R, T)e,m~:cx,,(r',t') 
-eG,,.(R, T)Jflll(r', t')]dV'dt' +P~ .. (r, t). 

Here the first equality follows simply by differentiating Eq. (3.1) under the integral sign 
where Green's tensor G1,. is the only function depending on r, the second equality follows 
by partial integrations, the third from (3.7) and (3.8) of [31], and the fourth by partial 
integration and Eq. (2.5). From Eq. (3.5) of [31] we then find the elastic distortion for 
a moving dislocation distribution to be 

(3.3) {J,.,.(r, t) = j£e,,."C11uG1,.,1(R, T)cx,,(r', t')-eG,,.(R, T)J,.,(r', t')]dV'dt'. 

This relation is also given by Eq. (2.30) of Ref. [7]. It was first obtained by Mu RA [4] with 
the replacement (3.9) for J,.1• It is interesting to note that Eq. (3.3) can also be derived 
unchanged when the plastic velocity terms in from (i8) and (3.8) of [31] are suppressed. 
This shows that vf is not essential for the development of the theory, but we feel that its 
introduction helps the interpretation. 

We next find the total velocity from Eqs. (3.2) of [31] and (3.1) 

(3.4) v~(r, t) = - j£Cu"1G1,.,1(R, T){Jf,(r', t')-eG,,.(R, T)vf(r', t')]dV'dt' 

= - J {C,1",G1,.,1(R, T)[J"' (r', t')+vr.aAr', t')]-eG,,.(R, T)vr(r', t')}dV'dt' 

=- Jc;1",G1,., 1(R, T)J",(r',t')dV'dt'+V:(r, t). 
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Here the first equality follows because the Green's tensor is the only function which depends 
on t l.lnder th~ integral sign, the second equality by a parti~ iJJtegra.tion and Eq. (3.8) 
of [31], and the third by a partial integration and Eq. (2.5) From Eq. (3.6) of[31] we then 
find the elastic velocity for a moving dislocation distribution to be 

(3.5) v,(r, t) = - f C,ittGi,,,(R, T)J"1(r', t')dV'dt'. 

This relation corresponds to Eq. (3.6) in Ref. [7]. It was first obtained by MuRA [4) with 
the replacement (3.9) for 111• Since Mura assumed v: = 0, he made no distinction between 
V 11 and it~, c. f. Eqs. (3.2) and (3.6) of [31]. 

We note here that the dislocation density rxp1 and current 111 are state quantities because 
they can be measured in the present state of the body. Therefore, Eqs. (3.3) and (3.5) 
show that the el8.$tic distortion P""' and velocity v, are also state quantities because they 
can be expressed entirely as volume-time integrals in terms of other stat~ quantities, rx.,, 
and J"'. On the other hand, the plastic distortion p:,. and velocity v: may not be state 
quantities because we may have to know the prior history of the body to measure them. 

3.1. The disa'ete disloca.tioll liae 

In this section we find the basic elastic fields for discrete dislocation dynamics as line­
time integrals over the dislocation line. First we substitute Eqs. (3.25) and (3.26) of [31J 
into Eq. (3.1) to find the displacement for a discrete moving dislocation line, 

(3.6) u~(r, t) = f f [C,i"1G1,.,1(R, T)+eG1,.(R, T)vi(r', t')]b,dSi:dt', 
S(t') 

where we have performed the integration over all space. In this expression the first integral 
sign refers to the integration over the complete range of time t ' (- oo, oo ), and the second 
to the integration over the surface S(t) defined in Sect. 3.2 of [31]. A similar relation has 
been given by MuRA [4], but without the term involving the surface velocity vi. In other 
words, Mura assumed that the surface S(t') changes in time only by the motion of its 
boundary, an alternative we discussed in Sect. 3.2 of [31]. The relation (3.6) corresponds 
to Eq. (5.13) in Ref. [7] and Eq. (3.5) in Ref. [28]. 

Next we find the total distortion from Eqs. (3.1) of [31] and (3.6}, 

(3.7) P~, = f j [C,it,GJ,,im + eG,,,mviJb,dS~dt'. 
S(t') 

Now from Eq. (A2) of the Appendix in [31] it follows that 

(3.8) 0~, J G1,dS:, = f e,m1 G111vidL~- J (G1,dS:,+G1,.,,.vidSi:), 
sQ~ LQ~ sv~ 

where we have used the relations 

iJ • .. 
iJt' G1,.(R, T) = - G1,(R, T), 

(3.9) 
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which follow from Eq. (2.6) and (2. 7). The result (3.8) can be used to do a partial integration 
with respect tot' on the second term in Eq. (3.7), while Stokes' theorem can be applied 
to the first term. Hence 

(3.10) {3~, = J f EpmtCijldGjn,ibldL~dt' + J J cijldGj,,ikbldS:,.dt' 
~~ ~~ 

+ J f Epmtf!G,,.v~b,dL~dt'- J J (!G,,.b,dS:,.dt' 
L(t') S(t') 

= J f Epmt[CiJictGJn,i+eG,,v:c_]b,dL~dt'+f3~,, 
L(t') 

where the last expression follows from Eqs. (2.5) and (3.25) of [31]. From Eq. (3.5) of [31) 
we then obtain the elastic distortion for a moving discrete dislocation line 

(3.11) {J.(r, t) = Jf EpmtlCiJtiGJ,,i{R, T)+eG1,.(R, T)vi(r', t')]b1 dL~dt', 
L(t') 

where now vi is the velocity of the dislocation line L(t'). This relation could of course also 
be obtained more directly by a volume integration from Eq. (3.3), (3.28) and (3.29) of [31). 
It was first obtained by MuRA [4], and it corresponds to Eq. (2.27) in Ref. [7]. 

Finally we find the total velocity from Eqs. (3.2) of [31) and (3.6), 

(3.12) v! = j f [C,j..,,GJ,.,i+eG,,vi)b,dS1dt'. 
S(t') 

This time we have by Eq. (A2) of [31]: 

(3.13) a~ f Gj,,ldS~ = - f EprnkGj,.,iv:,.dL~- f (Gjn,ldSi+Gj,,lkv~ds;). 
S(t') L(t') S(t') 

Thus by partial integration over t', Eq. (3.12) becomes 

(3.14) v! = - J f EpmkCiJkiGJ,,ib,v;,.dL~dt- J J [CIJtiGJ,.,Ik-(!G~,.]b,v~dS;dt. 
~~ ~~ 

The second line in this expression equals v! by Eqs. (2.5) and (3.26) of [31]. Therefore 
we find from Eq. (3.6) of [31] the elastic velocity for a moving discrete dislocation line to be 

(3.15) v,.(r, t) = - J J Epmt CIJtiGJ,,I(R, T)b,v;,.(r, t)dL~dt. 
L(t') 

This relation could of course also have been obtained directly from Eqs. (3.5) and (3.29) 
of [31]. It was also first obtained by Mura [4] and corresponds to Eq. (3.5) in Ref. [7]. 

We see that the state quantities Pnm and v,. can be written as line integrals along the 
discrete moving dislocation, i.e. they are expressed entirely in terms of integrals over the 
only regions of the body where the defect is localized, and the position of the surface S(t) 
is immaterial. The defect is localized on the line L(t), and therefore any state quantity 
associated with the dislocation must be a line integral along the dislocation line. 
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4. Coatinuous distribution of moving defects 

This section contains the main results of the present paper for a continuous distribution 
of defects, namely closed volume-time integrals of the basic elastic fields in terms of the 
defect densities and currents. 

First, we find a useful expression for the total distortion: 

(4.1) u'!,,. = - J (C;i'"Gi,.,;,.ef,-eG,,,,.vf}dV'dt' = - J (C;i'"Gi,,ieft,m'-eG~,vr,,.,)dV'dt' 
= f [Cijkl Gj,,i( epmk CXpl- e~l.k'- epmk ":;,)- eG,,.(J,.,- e::.,- epml W,)]dV' dt' 

= j (epmk C;i"'Gi,.,icxp1-eG1,J,.1)dV'dt'-f ep,.1(C;i"'Gi,.,i"rP-eG""w,}dV'dt' +~,.. 
Here the first equality follows by differentiating Eq. (2.8), the second by partial integrations, 
the third from Eqs. (4.13) and (4.15), and the fourth by partial integration and Eq. (2.5). 
From this relation we shall proceed to derive some of the basic elastic fields. However, 
it is convenient first to introduce a new quantity, the Green's potential tensor, which is 
defined in the next section. 

4.1. Green's potential tensor 

To find the desired expression for the elastic strain it is useful to introduce the dynamic 
Green's potential tensor function ~". It is defined in terms of Green's tensor G1, as follows: 

(4.2) ~,(r, t) = j(4nR)- 1Gi,(r', t)dV'. 

An e~plicit expression for Green's potential in the isotropic case has been given by Kos­
SECKA [16]. The motivation for the name comes from the fact that Green's potential satisfies 
Poisson's equation 

(4.3) ~n,ss = -Gin• 

with Green's tensor as the source function. From Eq. (2.5) we deduce that the Green's 
potential also satisfies the equation 

(4.4) cijktll.in.ik(r, t)+(4nr)-l ~,,.~(t) = eii,,.(r, t). 

Green's potential is closely related to the incompatibility source tensor introduced by 
SIMMONS and BuLLOUGH [27] to solve the so-called incompatibility problem, i.e. to find 
the elastic strain as a closed volume integral over the incompatibility tensor. The incompati­
bility source tensor was also found useful to express the elastic strain in terms of the defect 
densities in the static case [14]. However, we could not find a generalization of the incom­
patibility source tensor to dynamics. For that reason we have introduced· the Green's 
potential as an alternative method. 

4.2. The elastic strain 

The elastic strain is obtained from Eqs. (4.9), (4.1) of [31], and (4.1) as follows: 

(4.5) 

e,., = j (epmk C;1"1G1,.,;cxp;-eG1,.J,.1)dV'dt;,.,.>-f epm~t(C;1"1 G1,,;,q',-eG"" W,)dV'dt~mn>, 
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where the symbol (mn) implies symmetrization. We now wish to express this equation 
also in terms of the disclination density and current by using Green's potential. By Eq. 
(4.34) of [31] we rewrite the second line in Eq. (4.5) as follows: 

J s,""'(C;jttii.Jn,iuxr,-elik,.,ss w;)dV' dt;mn> = J e,m~:(Ciiktii.J,,;sxr,.s' 
-eHk,.,sw;,s,)dV'dt;mn> =- Jepmk[Cijklll.;n,is(Bqsl(}qp-X~p.l') 

- eliu,s(Ss,-ie:,)]dV'dt;mn) = - J Bpmlc(eqsl cijklHjn,isOqp- eiiA:tt,sSsp)dV'dt;mll) 

Here the first equality follows by partial integrations, the second from Eq. (4.14) and 
(4.16), of [31], and the third by partial integration. By Eq. (4.4) the second line in the 
last expression above vanishes. Hence we find for Eq. ( 4.5) 

(4.6) em,.(r, t) = j {[e,""'CiiliG1,.,i(R, T)a,,(r', t')-eG,,.(R, T)Jm,(r', t')] 

-e,""'[e,s~C111c~Hj,, 1,(R, T)O.,(r', t')-eH~c,.,s(R, T)S,,(r', t')]}dV'dt;,.,.>. 

This is the elastic strain due to a continuous distribution of moving defects and their 
currents. 

To find the elastic bend-twist we start with the derivative of the total distortion from 
Eq. {4.1): 

{4.7) u~,., = J (e,rnlCiJkiG1,.,;..a,-eG1,.,,Jm1)dV'dt'-

-J e,-(CiittG1,., 11 xf,-eG~~n .• W,)dV'dt' +e~,. .•• 

By partial integrations the second line in this expression becomes 

-J e..-( c,jkl Gj,.,. xr,,,, - f!Gtn w;,,,) dV' dt I 

= j e,""'[Ci1~:rGj,.,;(eq,,Oq,-x:,.,,)-eG"" {S,,- ,e:,)JtlV'dt' 

= J Bpmt(e,,,CiiklGJn,iO,,-eG~~:~~S,,)dV'dt' +s, .. K!",. 

Here tbc lirst equality follows from Eqs. (4.14) and (4.16) of [31], and the secom by 
partial integration and Eq. (2.5). Hence, 

(4.8) U~m~ = J (eJHIIlCijkiGj,.,i,a,,-(!Gltt,s1m1)dV'dt' 

+ J s,mk(e,,,c,iklGi,..iO,,-(!Gtrt.S,,)dV'dt' +e. •. s+e,.~.P· 

Now from Eqs. (4.2) and (4.10) of [31] we have 
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Thus the elastic bend-twist for a continuous distribution of defects and their currents is 

(4.10) "st = 1/2 J Etmn[(epmk cijkl Gin.~ ex,,- eG,,.,SJ,.,) 

+ Epmk(Eqsl cijkl Gjn,/)qp- eGt,.Ssp)]dV' dt'. 

4.4. Tbe elastic velocities 

We next wish to find expressions for the elastic velocities. From Eq. (2.8) we find the 
total linear velocity 

(4.11) u~ = - J (C;i'"Gj,.,ier,- eG,,.vDdV'dt' 

=- j[C;i"'Gi,.,;(J~c,+vr,",)-eG,,.vf]dV'dt' =- f Cii"'Gi,.,iJ",dV'dt'+v~. 

Here the second equality follows by a partial integration and Eq. (4.15) of [31], and the 
third by partial integration and Eq. (2.5). From Eqs. (4.3) and (4.11) of [31] we then 
find the linear elastic velocity for a moving distribution of defects to be 

(4.12) 

which is identical with the corresponding equation for dislocations only, Eq. (3.5). 
To find the elastic rotational velocity, we first take the time derivative of Eq. (4.1) 

(4.13) u~.m = j(tpmkCii"'Gi,.,la.,,-rJ;~,.J,.,)dV'dt' 

- f Epmk ( cijkl Gjn. i "r,- (!Glen w~ dV' dt' + e~,.. 

Now the second line in this expression can be rewritten by partial integration 

- fe,,~c(C;i"'Gi,.,,ief',-eG~c,.w:)dV'dt' =- fe,,.~c[C;i~crGj,.,i(S,,+W,.r,)-eG",.W,]dV'dt' 

= - J EpmA:CijklGjn,iSr,dV'dt' + e,,,.w,. 

Here the first equality follows from Eq. (4.16) of [31], and the second from partial inte­
gration and Eq. (2.5). Hence we have for Eq. (4.13) 

T J • •• (4. 14) u,.,m = (tpmkCiiklGj,.,irxp,-QG,,.J,..,)dV'dt' 

-J Cpmk cijkl Gjn,i s,pdV' dt' + e~,. + Epmn w:. 
Now ftom Eqs. (4.4) and (4.12) of [31] we have 

(4.15) Wr = If2ermnU~.m-wr. 

Therefore we find the rotational velocity for a distribution of moving defects to be 

(4.16) 
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It is possible to reduce this expression to a somewhat simpler form by partial integrations 
and Eq. (4.19) of [31], 

(4.17) w, = 1/2 f Ermn£CijldGj,.,i(Jml,k'- '"'·m')- eG,,.lmrldV'dt' 

= - lf2e,m,.[f CijttGjn,imludV'dt' +Jm,.J, 
where we have used Eq. (2.5). This expression could alternatively have been obtained 
directly from the linear elastic velocity, Eq. (4.12), since by Eq. (4.23) of [31] 

(4.18) w, = l/2etmn(v,.,m-Jmn). 

In conclusion, Sect. 4 has extended the results of dislocation dynamics of Sect. 3. J to 
the more general disc/ination dynamics, whereas on the other hand it has extended the 
results of disclination statics (Sect. 4 of Ref. [14]) to the more general disclination dynamics. 
The central results obtained are closed integral expressions for the basic elastic fields, the 
strain (4.6), bend-twist (4.10), linear velocity (4.12), and rotational velocity (4.16) and 
( 4.17). The basic elastic fields are state quantities because they are given entirely as integrals 
over the defect densities and currents. These expressions can form the basis for applications 
to particular cases. For example, the case of the moving discrete defect line will be discussed 
in Sect. 5. 

5. The moving discrete defect line 

This section contains the main results of the present paper for a moving discrete defect 
line, namely closed line-time integrals for the basic elastic fields. 

First we find an expression for the total displacement due to a moving finite defect 
loop from Eqs. (2.8) of [31], (5.11), (5.13), (5.7), and (5.9) of [31): 

(5.1) u~(r, t) = J j[CtJklGi,.,t(R, T)+eG1,.(R, T)vk(r', t)]{b,+etqr.Qq(x;-x~)}dS~dt', 
S(t') 

where we have done the integration over all space. In this expression the first integral 
sign refers to the integration over the complete range of time t'( -oo, oo), the second 
to the integration over the surface S(t) defined in Sect. 5 of [31] and v~ is the velocity 
of the surface S(t'). 

Next we find the total distortion by differentiating: 

(5.2) U~m = f f [CijklGjn,im + eG,,.,mv~]{b,+erqr.Qq(x;-x~)}dSkdt'. 
S(t') 

Now by Eq. (A2) of [31) we have 

(5.3) a~' J eG,,. { b, + Etqr .Qq(x;- x~)} dS:,. 
S(l') 

= f EpmkeGtn {b, + Etqr .Qq(x;- x~) }v~dL~- .r eG,,. {b, + Etqr.Qq(x;- x~)} dS:,. 
~~ ~~ 

- f eGtn,m{b,+e,q,.Qq(x;-x~)}v~dS,:+ f eG,,.e,qmQqv~dSk, 
S(t 1 ) S(t') 
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where we have used Eqs. (3.9). This result can be used to do partial integration with 
respect to t' in Eq. (5.2). Applying also Stokes' theorem we find 

(5.4) U~m = J f EpmltCiJkiGJ,,db,+e,qrDq(x;-x~)}dL~dt' 
L(t') 

+ j j CiJktGJn,i~t{h,+e,q,Dq(x;-x~)}dS;,.dt'+ f f C;1",GJ,,te,qmDqdS~dt' 
~0 ~~ 

+ J f EpmkeG,,{b,+erqrDq(x;-x~)}v~dL~dt'- J J eG,,{b,+e,q,Dq(x;-x~)}dS;,.dt' 
~~ ~0 

+ J J eG,,B,qmDqv/cdSk,dt' = J f Cpmk(CijklGj,,i+eG,,v~){b,+e,qrDq(x;-x~)}dL~dt' 
S(t') L(t') 

+ J J epmk(C;1k,G1,,;+eGtnvl)!JpdSI dt' +fJ!,, 
S(t') 

where the last equality follows from Eqs. (2.5) and (5.7) of [31]. From this relation we 
shall proceed to derive some of the basic elastic fields. 

5.1. The elastic strain 

The elastic strain is obtained from (4.9), (4.1), (5.11) of [31], and (5.4) as follows: 

(5.5) em,= J f Epmk(CiJklGJn,i+eGr,v/c){b,+etqr.Qq(x;-x~)}dL~dt(lflll> 
L(t') 

+ J J Epmk(CiJklGJ,,I+eGk,vi)QpdS; dt~mn>· 
S(t') 

We now wish to convert the surface integral also to a line integral, and for this we shall 
use Green's potential. Furthermore we note that by Eq. (A2) of [31] 

(5.6) -8~, J Ads;= f eqs,Av~dL~- .f (AdS;+A,sv;as;) 
S(t') L(t') S(t') 

for any tensor A that depends on R and T. Thus by Eq. (4.3) the surface integral in Eq. 
(5.5) becomes 

- J J Bpmk(Ci}ktJI.in,iss + eHk,•,ssVz)QpdS; dt~mn> = - J f EpmkEqsl CiJktlf.in,is[)pdL~dt(mn> 
~~ ~~ 

- J J EpmkCijktlf.in,ils[)pdS;dt~mn>- J f BpmkBqslQHkn,sDpvldL~dt(mn> 
~0 L(~ 

+ J J EpmkQHkn,sDpdS; dt;mn> = - J f EpmkEqst(CiJkiHJn,is 
S(t') L(t') 

+ eifk,,sv;)DpdL~dt;mll)- J f Bpmk(CijklHj,.,il- eiik,.),sDpds;at;mn). 
S(t') 

Here the first equality follows by Stokes' theorem and Eq. (5.6) with A = H1m,s, and the 
second by a rearrangement of terms. By Eq. (4.4) the second line in the last expression 
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vanishes. Hence we find from Eq. (5.5) the elastic strain due to a moving discrete 
defect line 

(5.7) emn = J f Bpma;(C;jldGjn,i+QGtnV/J{h,+e,qrDq(x;-x~)]dL~dt;mn> 
L(t') 

- J f BpmkBqsl(C;jtlHjn,is+QHkn,sV;)!J,dL~dt~mnb 
L(t') 

where now vi is the velocity of the defect line L(t'). This relation could of course also be 
obtained more directly by a volume integration from Eqs. (4.6) and (5.20) to (5.23) of [31]. 
This is the basic relation we sought in this section. 

5.2. The elastic beod-tnt 

To find the elastic bend-twist we start with the derivative of the total distortion from 
Eq. (5.4): 

(5.8) u;,ms = J f B11ma:(CuuGjn,;s+QGln,svlc){h,+e,41,D41(x;-x~)}dL~dt' 
L(t') 

+ J J B11ma:(C;JtlGjn,is+QGu,svD!J,dS; dt' +f.l!n,s· 
S(t') 

By Stokes' theorem and Eq. (5.6) with A = Gtn the above surface integral becomes 

J f BpmtEqsl cljtlGj,,i!J,dL~dt' + J J Bpmk C;jtlGjn,il!JpdS~dt' 
w~ ~~ 

+ J f BpmtBqsl(!GA:n!Jpvl dL~dt'-J J BpmkGkn !J11 dS~dt' 
L(t') S(t) 

= J f B11mtBqsl(CijtlGjn,i+(!Gt11 VI}!J,dL~dt' +epmnl/>:,, 
L(t') 

where we have used Eqs. (2.5) and (5.8) of [31]. Hence we have for Eq. (5.8) 

(5.9) u'I.ms = J f B11ma:(C;JtlGJ,,Is+QG,11 , 3 VIc){h,+e,41,D41(x;-x~)}dL~dt' 
L(t') 

Now we find from Eqs. (4.9) and (5.12) of [31] that 

(5.10) "~t = 1/2Btmn(u;,ms- f.l!n,s)-f/>: • 
Thus the elastic bend-twist of a moving discrete defect line is 

(5.1 I) "st = 1/2 J f BtmnBpmk(C;jklGj,,is+QG,,,sv~){b,+e,qrDq(X;-x~)}dL~dt' 
L(t') 

+ 1/2 f f EtmnEpmkEqsi(CijklGj11 ,;+QGknv;)!J,dL~dt'. 
L(t') 

This relation could also have been obtained directly by substituting expressions (5.20) 
to (5.23) of [31] into Eq. (4.10). 
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5.3. The elastic velOcities 

We next wish to find expressions for the elastic velocities. From Eq. (5.1) we find the 
total linear velocity 

(5.12) u! = f f (CiJktG1,.,i+eG,,.vt){b,+e,q,Dq{x;-x~)}dS~dt'. 
S(t') 

Now by Eq. (A2) of [31] we have 

(5.13) 0~, f CiiklG1,,;{b1 +e111,D11(x;-x~)}dS~ 
S(t') 

=- f EpmkCijtkGJ,.,i{b,+e,,,JJ,(x;-x~)}v:,dL~- f cijlclGJ,.,db,+e,qrDt(x;-x~)dS~ 
~0 ~0 

- f CtiktGJ,.,ik{b,+e111,!J11(x;-x~)}v~dS~. 
S(t'J 

Thus by a partial integration over t' Eq. (5.12) becomes 

(5.14) u; = - J f EpmkcijklGj,.,i{b,+e,qr.Qq(x;-x~)}v;,.dL~dt' 
L(t') 

- J J (CiiklGJn,ik-eG,,.){b,+e,q,D11(x;-x~)}v~dS;dt'. 
S(t') 

The second line in this expression equals v: by Eqs. (2.5) and (5.9) of [31]. Therefore 
we find from Eqs. (4.11), (4.3), and (5.13) of [31] the linear elastic velocity for a moving 
discrete defect line 

(5.15) v,.(r, t) = - J f EpmkCiJktG1,., 1(R, T){b,+e111,!Jq(x;-x~)}v;,.(r', t')dL~dt'. 
L(t') 

Again the same result could have been found directly from Eqs. (4.12) and (5.22) of [31]. 
Note that it is not identical to the result (3.15) for dislocations only. 

To find the elastic rotational velocity, we first take the time derivative of Eq. (5.4) 

(5.16) zi~,m = J f Epmk(CijktGjn,i+eG,,.v/c) {b, + e,11,.!Jq(x;- x~)} dL~dt' 
L(t') 

+ J f Epmk(C;1",G1,.,;+eG~,.vi).Qpds; dt' +P!,.. 
S(t') 

Now by Eq. (A2) of [31] 

(5.17) f e11s,GJ,.,;v~dL~- J (G1,.,,ds; +G1,., 11 v~dS~). 
L(t') S(t') 

Therefore the surface integral in Eq. (5.16) becomes 

2 Arch. Mecb. Stos. 6n1 
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The second line in this expression equals e,,.,.tp: by Eqs. (2.5) and (5.10) of [31]. Therefore 
we have for Eq. (5.16) 

(5.18) u~,. = f f e,.a;(C;i"'G1,.,;+eG~,.vk){b,+e,,,Dq(x;-x~)}dL~dt' 
L(t') 

- J f e,,."eqstCijktGJ,.,tD,v~dL~dt'+P!,.+e,,.,.tp;. 
L(t') 

Now from Eqs. (4.15) and (5.14) of [31] it follows that 

(5.19) w, = 1/2e,,.,.(u!.,.-P!,.)-'I'~. 
Therefore the rotational velocity for a moving discrete defect line is 

(5.20) w, = 1/2 J f e,,.,.e,,."(C11"1 G1,.,;+eG1,.v~){b1 +e111,.D11(x;-x~)}dL~dt' 
L(t') 

- 1 /2 f f e,,.,. £pmk Bqsl cijkl Gjn. iD p v; dL~ dt I. 
L(t') 

The same result could have been found directly from Eqs. (4.16) and (5.20) to (5.23) of [31]. 
By Eqs. (2.3), (5.22) and (A3) of [31] this relation can be reduced to the relation 

(5.21) W1 = -I/2e,,.,.[.{ f £pskCiJklGJ11 ,;,.{b,+e,11,Dq(x;-x~)}v;dL~dt'+J,,.], 
L(t') 

that can also be obtained directly from Eqs. (4.17) and (5.22) of [31] or (4.18) and (5.15). 
We see that the basic elastic fields (i.e. the strain e,.,., the bend-twist "''' the linear 

and rotational velocities v,. and w,) can be written as line integrals along the discrete moving 
defect line L(t), i.e. they are expressed entirely in terms of integrals over the only regions 
of the body where the defect is localized, and the position of the surface S(t) is immaterial. 
Hence they are state quantities, because in this case the defect is localized on the line 
L(t). 

Section 5 has extended the results of a moving discrete dislocation line of Sect. 3.2 
to a moving discrete defect line, whereas it has extended the results of a stationary discrete 
defect line (Sect. 5 of Ref. [14]) to a moving discrete defect line. The central results obtained 
are closed line integrals for the basic elastic fields, the strain (5.7), the bend-twist (5.11), 
the linear velocity (5.15), and the rotational velocity (5.20) and (5.21). These expressions 
are in a form that is directly applicable to special geometries. 

6. Relation to the incompatibility problem 

6.1. The elastic fields 

In this section we find the elastic strain and velocity for a given incompatibility and its 
current. First we find an expression for the total distortion, 

(6.1) u~,. = - f (CulclGJ,.,,,.ef,- eG,,.,,.vDdV'dt' = f (C'l"'HJ,.,;,ef,,,.,s' 

- eH,,.,,'Or,,.,,,)dV'dt' = j[CijklHjll,is(ep,.k Bqs(Y}pq+~l.k's'+efs.m'l'- e~s.k'l') 
-eli,,.,,(Fsmz+e~,,,,+efs.,.,-e:,.,,,)]dV'dt' = j (epmke,s,CiJkl~n.is'Y/19 
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- eH1,,sFs,,)dV'dt' + j (Cu~r.1 H1,., 1"- H,,.)(e:.,,s's' +ef,,,,s,- e!',,,,s,)dV'dt' 

= J (epmtE11s1CiJ1r.lHjn,isfJpq-(!Hl,.,sFsml)dV'dt' +e:,.-J (2nR)- 1~11,m'Js'dV'. 
Here the first equality follows from Eq. (2.8), the second from Eq. (4.34) of [31] and 
partial integrations, the third from Eqs. ( 6. 7) and ( 6.8) of [31], the fourth by partial integra­
tions, and the fifth by Eq. (4.3) and (4.4). So by Eqs. (6.5) and (6.1) of [31] we find 

(6.2) e,,.(r, t) = f [e11,teqsl C;1~c 1 HJn,is(R, T)'Y],,(r', t')-eH,,.,s(R, T)F8 , 1(r', t')]dV'dt;,,.>. 

This is the elastic strain for a given distribution of incompatibility f}11q and its current Fs,1• 

Next we find the total velocity, 

(6.3) u~ = - J (C;1~r.,G1,.,;ef,-e6,,.vf)dV'dt' 
= j [C;Jt,G1,.(Filc~-vf.t'J'+efE.~r.,-e~.,,)+eG,,.vf)]dV'dt' = j C,1~r.,G1,.Fut~dV'dt' +V:. 

Here the first equality follows from Eq. (2.6), the second from partial integration and 
Eq. (6.8) of [31] and the third from partial integrations, Eq. (2.3), and a cancellation. 
Hence by Eqs. (6.6) and (6.2) of [31] we find 

(6.4) 

This is the linear elastic velocity for a given incompatibility current. 
Again, the elastic strain (6.2) and velocity (6.4) are state quantities because these 

expressions are integrals taken entirely over the incompatibility 1J11q and its current F,.,", 
which are also state quantities. 

6.2. Ccmistency with defect theory 

In this section we wish to show that Eqs. (6.2) and (6.4) are consistent with their counter­
parts in the defect theory, Eqs. (4.6) and (4.12). First consider the elastic strain, Eq. (6.2): 

(6.5) e,,. = j[e,,kCijlr.lHj,.,is(K,,,s'-Ksp,l'-EqslOq11)+eHtn,s(l," ,s' 

+e,,"(Ssp + Ks,))]dV'dt;,,.> = f [Epmk cijkl(Hjn,issK,,-eqslHjn,ii(Jf,) 

+ e(Hkn,sslmk + Epmk Iiln.sSs,)- e,,~r,(CI}kl Hj,.,il- eii~r.,.)K,,,s,]dV'dt~JIIII) 

= J [Epmlr. cijlr.l(Gjn,i ex,,- Eqsl~n,is(Jqp)- e(G~r.,.lmk- EpmkHkn,sSa,)]dV'dt(,,.>. 

Here the first equality follows from Eqs. (6.15) and (6.16) of [31], the second by partial 
integrations and rearrangements, and the third from Eq. (4.26) of [31], Eqs. (4.3) and (4.4). 
This relation is identical to Eq. (4.6), q.e.d. 

Next we find the velocity from Eqs. (6.4) and (6.14) of [31], 

(6.6) 

by partial integration. This relation is identical to Eq. (4.12), q.e.d. 
These results then show that the dynamic incompatibility theory is completely consistent 

with disclination dynamics. 
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7. Summary 

We started this paper with the general solution of the dynamic plastic strain problem 
which is a generalization of Eshelby's transformation problem and very similar to Mura's 
plastic strain problem. It formed the basis for all dynamic defect fields. We then reviewed 
dislocation dynamics, including the continuous distribution and the discrete line. This 
introductory material formed the point of departure for the general theory of disclination 
dynamics. The latter was renamed defect dynamics because it is a theory that combines 
disclination and dislocation dynamics. 

We derived closed volume-time integrals for the basic elastic fields in terms of the 
defect densities and their currents. These integrals contain kernels with the dynamic Green's 
tensor. For the elastic strain we also used as kernel a newly introduced quantity, the dy­
namic Green's potential tensor. These integral expressions for the basic elastic fields will 
form the basis for applications to special cases. 

We derived the basic elastic fields for a moving discrete defect line as closed line-time 
integrals along the defect line. These integrals also contained Green's tensor as kernels and, 
in particular, for the elastic strain we also had to use the Green's potential as a kernel. 
These integral expressions for the basic elastic fields are in a form that is directly applicable 
to special geometries. 

Finally we compared disclination dynamics with the dynamic incompatibility problem. 
We identified the relations between the defect densities and their currents and the incompati­
bility tensor and its current. We showed that the dynamics of the two theories w~s consist­
ent. 

So we have presented a general theory of defect (disclination) dynamics for a linearly 
elastic, infinitely extended, homogeneous body. The major shortcoming of the present 
treatment might be the use of the linear theory. This means that in a real solid the resulting 
fields close to discrete defects will deviate considerably from our formulas, but these 
fields will become more realistic the further away we are from a defect. However, without 
the linear assumption we certainly could not have pushed the theory as far as we did. 
This is the price we paid for a fairly complete analytic treatment which we think might 
have its usefulness. 

Within its clearly prescribed limitations the present theory is completely self-consistent. 
Aside from its possible intrinsic usefulness, it can be used as the starting point for further 
generalizations, such as nonlinear effects, couple-stresses, a finite body, or inhomogeneities. 
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