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Stability of three-dimensional natural convection in a porous layer

W. KORDYLEWSKI, B. BORKOWSKA-PAWLAK
and J. SLANY (WROCLAW)

THE sTABILITY of natural convective flow in a fluid-saturated porous medium heated uniformly
from below is studied in order to determine the conditions under which the transition from
laminar to fluctuating flow occurs. The Galerkin method is used to investigate three-dimensional
convection in a cube, thesFourier series is truncated to eight modes. Two-dimensional steady
rolls cannot exist in a cube at a Rayleigh number larger than 1872, what is in agreement with
the numerical calculations of Schubert and Straus. At Ra = 1872, the two-dimensional rolls
in the cube begin to oscillate periodically, then the fluctuations become quasi-periodic and for
a Ra larger than 242 an exponential growth of amplitude can be observed. The mechanism of
the loss of stability of the steady two-dimensional rolls in the cube is different from that occur-
ring at convection in a square cylinder. According to the infinite Prandtl number, the trajec-
tories of the approximate Darcy-Boussinesq equations — after loss of stability — escape to
infinity instead of wandering in a bounded region as is the case with the classical Bénard con
vection. :

Badano stabilno$¢ konwekcji swobodnej w warstwie porowatej nasgczonej ptynem, grzanej od
spodu, w celu okreslenia warunkow przejscia od przeptywu laminarnego do fluktuacyjnego.
Analizowano konwekcj¢ w komorce szesciennej, stosujac metodg Galerkina i obcinajac diugosc
szeregu Fouriera do oémiu czionow,. Stwierdzono, ze dwuwymiarowe rolki nie moga istnie¢
dla liczby Rayleigha wigkszej niz 1872, co zgadza si¢ z obliczeniami numerycznymi Schuberta
i Strausa. Dla Ra = 187? dwuwymiarowe rolki zaczynaja oscylowa¢, nastepnie oscylacje staja
si¢ quasi-periodyczne i dla Ra = 242 obserwuje si¢ eksponencjalny wzrost amplitudy. Mecha-
nizm utraty stabilnosci dwuwymiarowych rolek jest rozny od mechanizmu utraty stabilnosci
przeplywu w kwadratowym cylindrze. Zgodnie z zatozeniem o nieskoriczonej liczbie Prandtla
trajektorie przyblizonych rownan Darcy-Boussinesqa uciekaja do nieskonczonosci po utracie
stabilnosci, zamiast bladzi¢ w ograniczonym obszarze jak dla klasycznego problemu Bénarda.

HccriegoBana cTaOHMIIBHOCTh CBODOMHONM KOHBEKIIMH B TOPHUCTOM CJIOE, HACBLIIIEHHOM MKHO-
KOCTBIO M TIOJOTPEBAEMOM CHM3Y, [UIS Orpefie/ieHHsl YCIOBHIl MEpeXoa OT JIAMHHAPHOTO Te-
uyeHHs K TypOymenTHOMY Tedenuro. KOHBeKIHs MPOAHAIIM3UPOBAaHA B KyOHUECKOM Kamepe
¢ npuMenenneM Metoaa 'ajepKuHa MPH COKpalIeHHOM MiHe paaa Pypebe N0 BOCEMH WIEHOB.
KoOHCTaTHPOBAHO, UTO ABYMEPHbIE BAIMKM HEe MOT'YT CyLIeCTBOBAaTh IpH umMcie Penes mpeBbi-
matoiem 1872, uto coorBercTByer umcieHnbiM pacueram Illy6epra m Illtpayca. Ilpn Ra =
187? nByMepHbLIE BaJMKHM HAUMHAIOT KoJeGaThCs, 3aTEM KoJeGaHHA CTAHOBATCA KBa3WIIEpHO-
anueckumu ¥ pu Ra = 242 HaGmogaeTcs 3KCMOHEHLUMAIBHOE YBEJIHUEHHE aMILTHTYAEI. Me-
XaHU3M TIOTEPM CTaOMJIBHOCTH TEUEHHSA NBYMEPHBLIX BAJIMKOB OTJIMYAETCA OT MEXaHHM3Ma II0-
TepH CTaGMIBHOCTH B UMJIMHApPE KBampaTHoro ceueHus. IIpu Geckoneunom wumcne Ilpanmrins
TPAeKTOPHX NPHOMKEHHBIX ypaBHeHnit Japcu—Byccrnecka oTXoOsAT B 6ECKOHEYHOCTE TOCTIE
MOTEPH CTAOHJIBHOCTH, BMECTO TOrO, YTOObI Guy)KJaTh B OrpaHWYeHHOH 06NacTH, KaK B CIIy-
uae KJacCH4YecKol sanaum Benappa.

1. Introduction

THERMAL convection in porous media has received considerable attention mainly because
of its geophysical interest. Since the Navier-Stokes equation is replaced by Darcy’s law,
the analysis of this phenomenon seems to be easier than the classical Bénard problem.
Although numerous investigations have recently been carried out on thermal convection
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in porous media, the understanding of some aspects of this phenomenon is still far from
satisfactory [1].

The first critical Rayleigh number Ra; = 472 for the onset of convective flow in a po-
rous medium was determined theoretically by Lapwoop [2]. This criterion is very well
documented by experiments. Small amplitude solutions emanating at Ra = 472 were
investigated by means of the perturbation method for two-dimensional physical space
by PALM et al. [3] and JoserH [4], for three-dimensional space by Zesis and Kassoy [5]
and by KorDYLEWSKI and BORKOWSKA-PAWLAK [6).

A classification of the steady-state solutions of the Darcy—Boussinesq equations bifur-
cating from the trivial solution was given by Beck [7]. However, not all of these solutions
are interesting from the physical point of view because only stable ones are observable.

The stability of two-dimensional rolls in the presence of three-dimensional pertur-
bations was analysed first by STrAaus [8] using the LorTz [9] method. An extensive pertur-
bation analysis of this problem for Ra close to 472 was given by JosepH [4]. The stability
of finite-amplitude solutions was analysed by means of numerical methods. STraus [8]
and KvernvoLD [10] have shown that on the plane Rayleigh number — wave number
there is an envelope inside which the two-dimensional rolls are stable. However, the assump-
tion made by these authors that the largest eigenvalue which crosses the imaginary axis
is real, is probably not always true for the finite-amplitude flows.

At present the most interesting problem is to determine the second critical Rayleigh
number Ra, for the transition from laminar to turbulent flow. CoMBARNOUS and Lt Fur
[11] established experimentally that Ra, is in the range of 240-280. Some numerical cal-
culations were also made of the critical conditions for the onset of fluctuactions. However,
between the particular numerical results obtained by different authors there is no complete
agreement. The interested reader can find a discussion of these results in [12].

The probable reason for these diverging numerical results is the multiplicity of steady
solutions of the Darcy-Boussinesq equations, the transition to fluctuating convection
depending on the realization of a particular flow. The situation is similar to the classical
Bénard problem where many routes to turbulent convection were observed [13].

This paper is a continuation of a previous work [14] in which the stability of two-
dimensional convection in the square box was analysed in accordance with Lorenz [15].
At present we are investigating the stability of three-dimensional convection in a cube.
Although only eight modes are assumed, we hope to be able to explain some qualitative
features of the transition from time-independent to fluctuating flow in porous media.

2. Role of the Prandtl number

Consider an infinite extended porous layer saturated with fluid between two non-
permeable horizontal plates. The lower plate is warmer than the upper one. Assume the
Darcy-Boussinesq equations in the dimensional form

1 du ; = _
1) e = e V.=
2.1 Pr 51 u—Vp+Ralk, u=0,
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(2.2) _a"g =V¥+u,—u-Vo,
at

where u:(u,, u,, u;), 0, p denote the velocity vector, temperature and pressure, respect-
ively, and k is the vertical unit vector. The Rayleigh number and the Prandtl number Pr
are defined in [16] where they are denoted by R and B!, respectively.

The problem will be considered only with regard to the cube; hence the following
boundary conditions are added:

on the upper and lower planes

(2.3) z=10:u,=0 and 06=0,
on the sidewalls

x=10:u, =0 and 00/dx =0,

y=10:u,=0 and d6/dy =0.

Introducing the new variables

(2.4)

0 =6—(1+PrRa)z, v =u, p' =p
we obtain Egs. (2.1) and (2.2) in the form

1 ou L - =
— 2 - _wW-Vp'+Ral Ra)k;
(2.5) Pr ot uw' —Vp'+Ral'k+zRa(l+PrRa)k;
(2.6) %Bt =V20'—u' - VO —u.PrRa;
z=0:u;=0 and 0 =0,
@) z=1l:u.=0 and 0 = —(1+PrRa);
x=10:ur=0 and 6'/ox =0,
(2.8)

y=10:u4,=0 and 260'/0y =0.

Multiplying Egs. (2.5) and (2.6) by #’ and 6’ and integrating over the cube domain
V, we get

2.9)  1/20/61(i|)>+]|0]|?) = —Pr|[@||>—||V6'||>+ PrRa(l + PrRa) [ zudo
V

%

1
—(1+PrRa) [ [ 80'(x, v, z = 1))dzdxdy < —Prllie||> ||V 0|2
0

0
. .
+PrRa(l+PrRa) [ [ulldo+(1+PrRa) [ [160'(x, y, z = 1)/éz|dxdy,
14 00
where || || denotes the norm in L, (V).

For the finite Prandtl number the right-hand side of the above inequality becomes
negative when the trajectory (i, 6’) escapes too far from the origin. We conclude that
there is a bounded region B in L, (V) so that every solution of Egs. (2.5)-(2.8) eventually
becomes trapped by B. This property, noticed by Lorenz [15] and emphasized by RUELLE
[17], caused the chaotic behaviour of the trajectories of the Lorentz system. At present
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we know that the appearance of a strange attractor in the extended Lorenz system may
be preceded by a few bifurcations of periodic flows [18]; however, the role of the trap
is still important. When the Prandtl number increases, the “boundaries” of the trap shift
away from this origin, and for the infinite Prandtl number the trap disappears. Such
a situation is observed for the two-dimensional convection in a porous layer. When
Ra exceeded 30n2, the trajectories escaped to infinity [14]. For the porous media the
Prandtl number assumes large values; hence in Eq. (2.1) we assume the infinite Prandtl
number which is common in literature. The consequence of this assumption is the lack
of trap for the system of ordinary differential equations obtained from Egs. (2.1) and
(2.2) by Galerkin’s method.

3. Approximate time-independent solutions

To determine the approximate finite-amplitude solutions of the Darcy-Boussinesq
equations, we will use the Galerkin method. However, first we transform Egs. (2.1) and
(2.2) into the form given by STrRAUS and SCHUBERT [12]:

(3.1 V2 = —Ra#,
/% 6 P a0 (a2¢ a%p) a0 .. P %
G Gt mamatyry vy T w  a

where ¢ satisfies the boundary conditions
x=0,1: 8% [oxiz = 6(V3p)|dx = 0,
y=0,1: *p/dycz = d(Vp)/dy =0,
z=0,1: 0% /dx,+ % |dy* = d*¢p[oz* = 0.
Expand 6 and ¢ in the Fourier series satisfying the boundary conditions

o0

(3-3) ¢ = Z 2 d)nijnjm’ 2 2 eum njms

n=1 j,m=0 n=1j, 0
where
V2 sin(nzz) for m=j=0,
l 2sin(nnz)cos(jnx) for m=0,
Enim = 2sin(nwz)cos(mmny) for j=0,

2/ 2 sin(nzz) cos(jmx) cos(mmy)

and introduce the relations (3.3) into Eqgs. (3.1) and (3.2). By multiplying these equations
by F,;m and integrating over the cube, we obtain an infinite set of first-order, ordinary
differential equations for the unknown 0,;. (or for ¢ ,;m).

To reduce the number of equations, we truncate the series (3.3) to the first eight terms.
The resulting differential equations have the following form:
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do A2 nRa
i Raz“” 9101+—i/—z(e,mem—emom/S)

dt
6 Ra 7Ra
Tt = 5‘/ 01110210+ 2!/;2-01106211,
db Ra—18x2 7Ra ' 2 nRa
),2*” = == ‘} . 0211‘" ‘?61016110_ l/ 6111610(),
dt % 1’2 3

10 Ra—4n? #Ra

¢ dl[lo _ 2 6 ——er 7 (01100200 = 02100100/5)
6nRa nRa
él—/f‘ 01110201+ 272: 01010211,

dﬁ zRa 2)Y2nRa

(3.4 };703 = —4n?l,00— l/—i(e f10+0%01)— *lég 0711

Ao TnRa Ra

_6}10_‘? = —72000 '0*'75(91109210+91019201)+ %‘9211611“

do Ra—25x2 7 Ra

_,,,di;‘,’, = s 0210~ l/; (01100100/2+ 20101 0111,

do Ra—257? nRa

B (;;‘“,, =— 6,01 — 'I' — (01010100/2+20,160111),

do X 2 nRa I

(/1;1 _ 2,R,d3 9{5791“_;. /_;#(; 6,1‘6200—-3—31009211

+ % 01100201+ ';1" 0101 0210) .
We denote the right-hand side of these equations as a vector field F: (Fio1, Fa11, Fi10,
Fr00, Fro0, Fa10s Fa01, Fi11)-

Eight branches of steady-state solutions calculated for the above equations are presen-
ted in Fig. 1. Only three of them: 4, B and C represent stable flows in a suitable range
of the Rayleigh number. At Ra = 472 three branches emanate: 4 and B corresponding
to stable two-dimensional rolls, and E which corresponds to unstable three-dimensional
flow. Branch C representing three-dimensional flow emanates at 4.57% as a curve of un-
stable steady solutions and then crosses the point of secondary bifurcation Ra ~ 4.78n2,
becoming a stable branch.

The corrdinates of the steady-state solutions belonging to curves 4, B and C are

A4:  [0,0+2)/Ra—4a? Ra, —(Ra—4=%)/()/27Ra),0,0,0,0),
B: (+2)/Ra—422/Ra,0,0, — (Ra—42?)/(y2zRa), 0,0,0,0),
C: (0,0,0, (Ra—4.52%)/()/27Ra), 0, 0,0, +}/3(Ra—4.57?)/Ra).

The solutions cooresponding to the two-dimensional rolls (branches A and B) lose
stability at Ra = 1872 when the largest eigenvalue of the Jacoby matrix DF (187?*) crosses
the imaginary axis
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F1G. 1. Variation of the norm of steady-state solutions with the Rayleigh number.

Agp = tin? /14,

This is in agreement with SCHUBERT’s and STrAUS’S [12] statement saying that steady,
unicellular rolls cannot exist in a cube at a Rayleigh number of a value higher than 200.

The stable three-dimensional flow (branch C) loses stability at Ra = 21z? when the
largest eigenvalue of DF (21x?) becomes purely imaginary

e = tim* Y45,
Since we have

fl'Re(ﬁA.u)r

dRe(Ac)
~ dRa ~ dRa

2 A : 7 2
(187%) # 0 and JRa 2lz*) # 0
then Ra = 1872 and 21x? are the Hopf bifurcation points. In the next section we analyse

the properties of periodic solutions branching at these points.

4. Time-dependeing flows

4.1. Two-dimensional rolls

The stability of the small amplitude periodic solutions emanating at Ra = 187% was
analysed by means of the MArSDEN and McCRACKEN [18] algorithm. While not losing
generality, we assume that the periodic solutions emanate at the A branch.

Usually when the number of differential equations is more than two, a stability analysis
leads to long and complicated calculations. In this case the Jacobian matrix DF (1872)
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assumes the form of a block diagonal matrix, what greatly simplifies calculations. Intro-
ducing a new variable in the system of Eq. (3.4)

4.1) 010, = l'/"’i_elO]
we get DF'(187%) in the form
0 Y14 0
4.2) DF'(1872) = | #2 Y 14 0 01,
0 0 S.

where F’ denotes the vector field F after the transformation (4.1), and S is also a block
diagonal matrix. Such a form of the Jacoby matrix (4.2) allows us to use immediately
the vector field F’ for calculating the expression ¥"'(1872) (see the formula (4.2) in MARS-
DEN and McCRACKEN [19)).

If V""'(1872?) < 0, then Ra = 1872 is the supercritical Hopf b1furcat1on point (periodic
orbits are attracting), F""/(1872) > 0 determines the subcritical Hopf bifurcation point
when there are no stable solutions for Ra = 18722, We shall omit lengthy calculations and
show the final results

24373
4y14
Hence the periodic solutions emanating at Ra = 18x2 are stable.

The stability of the finite-amplitude periodic flow was investigated numerically, the
set of equations (3.4) being integrated by the Runge-Kutte method of second order. The
numerical calculations are presented on the plane (0,4,,0,,,) which is tangent to the
central manifold on which the above mentioned orbits lie [19].

Figure 2 shows the periodic orbits for Ra = 200. The period of oscillations T =~ 0.18
is close to the period T which follows from the Hopf bifurcation theory:

_ = 1
[2 48l Jr[/3‘5'7 '

V(18a2) = —

(Itis interesting that CURRY [18] also obtained the period of the first closed orbit 7"~ 0.176).

When Ra crosses approximately the value of 205, the amplitude of oscillations in-
creases rapidly (Fig. 3). The period of oscillations also increases suddenly but a doubling
of orbits does not take place — there rather follows a bifurcation towards torus. For
Ra > 222.5 we have a stable quasi-periodic flow (Fig. 4). A plot of the amplitude and the
period of oscillations against the Rayleigh number is shown in Fig. 5.

When the Rayleigh number crosses approximately the value of 242, the quasi-periodic
flow loses stability. The numerical calculations have shown that the coordinates 6,
and 0,,, become almost equal and grow together with 6,,, until they suddenly escape to
infinity in the neighbourhood of the fixed point lying on branch E and corresponding
to the unstable three-dimensional flow.

It would be interesting to compare our time-dependent solutions with periodi¢ solu-
tions of other authors: ScHUBERT and STrAus [12] made numerical studies of unsteady
convection by means of the Galerkin method using a large number of modes. However,
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FIG. 5. Variation of the maximum of 0,,, and-the period of oscillations with the Rayleigh number.

they present only three-dimensional oscillations in a cube for which the period is almost
fifty times shorter than our T,.

4.2. Stability of three-dimensional flow

We do not have any analytical proof as to the kind of Hopf bifurcation involved in
this case. The calculations have turned out to be so long and complicated that it seems
impossible to avoid a mistake (for example the Russian editor of MARSDEN’S and Mc-
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CRACKEN’s [19] book does not give calculations of V" for the Lorenz system because an
error was found).

The numerical calculations have shown that the trajectories starting from a neighbour-
hood of fixed points belonging to branch C are attracted to these points at Ra < 21x?
and escape to infinity at Ra > 2172, Their behaviour was similar to that taking place
at two-dimensional convection for the infinite Prandtl number [14]. No periodic orbits
or nonperiodic attractor were observed. Hence we conclude that Ra = 2172 is the super-
critical Hopf bifurcation point for branch C.

The similarity to the two-dimensional case results also from another fact. Numerical
observations have shown that the subspace 0,40, 0211, 0200, 0111 i attracted in the neigh-
bourhood of the fixed points belonging to branch C. Assuming the remaining coordi-
nates to be equal to zero, we obtain a system of four differential equations of the same
structure as that in the two-dimensional case for four modes [14]. Probably, in both cases
the transition to an unstable solution by the subcritical Hopf bifurcation point was caused
by a very small number of modes as was also the case with the Lorenz system.

5. Discussion

A considerable difference is shown in the transition from time-independent flow to
a fluctuating state for the two-dimensional rolls in the two- and three-dimensional spaces.
In the first case the second critical Rayleigh number 3072 was distinctly marked and the
loss of stability followed at the subcritical Hopf bifurcation point. In the three-dimension-
al case it is difficult to establish a single value of Ra, because for Ra > 187> we have
the periodic flow which, with Ra increasing, becomes quasi-periodic and at Ra > 242
loses stability. However, the numerical difference is not the most important. Of great
interest is the route to fluctuating convection. In the three-dimensional case the oscilla-
tions are caused by the modes creating the rolls with their axes being perpendicular to the
axes of the original rolls. Such a mechanism of destabilization of two-dimensional rolls
was also suggested for the classical Bénard problem by CLEVER and Busse [20]. The sharp
transition to instability in the two-dimensional space [14] was probably caused by too
small a number of modes. An increase in the number of modes should change the picture
as it was observed in the extended Lorenz system [18].

There exists the problem of: choosing the minimum number of modes which would
ensure a qualitatively correct picture of the flow under study. A strict answer to this pro-
blem with regard to general flow is now unavailable, yet there are some attempts to esti-
mate the finite-dimensional space for particular flows. For example, MANLEY and TREVE
[21] made an estimate of the minimal number of modes for the Bénard problem based
on the mathematical results of Foras and Probi [22] for twodimensional physical space.

Finally, we would like to interpret the obtained results on the basis of recent theories
of transition from laminar to turbulent flow. We will consider only branch 4 or B. The
basic prediction of RUELLE and Takens [23] and NewHouse, RUELLE and TAKENS [24]
that nonperiodic motion occurs after a small number of bifurcations to 7™ (m > 3) torus
is consistent with our calculations. The nonoccurrence of chaotic behaviour on the part
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of the trajectories after stability loss results from the lack of trap. However, this fact can
be helpful in determining the minimal number of modes necessary to describe the transi-
tion to turbulence. Maybe a minimal number of modes would ensure the existence of
a strange local attractor.

We did not observe a cascade of subharmonic bifurcations of periodic orbits which,
according to the Feigenbaum [25] theory, leads to chaotic motion at the cumulative point.
In a recent study by Coste and Peyraud [26] such a process has been shown in the model
of the two-dimensional Bénard convection in which five modes interact. It seems that this
effect can be obtained also for the Darcy-Boussinesq equations if suitable modes in the
Fourier series (3.3) are chosen.
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