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Difference and finite-element methods for the dynamical
problem of thermodiffusion in an elastic solid

M. DRYJA (WARSZAWA)

In THE PAPER for the dynamical problem of thermodiffusion in an elastic solid with the homo-
geneous Dirichlet boundary the difference and Galerkin method, particularity the economic
scheme and alternating direction finite-element methods, which are very efficient in numerical
practice are considered. The errors estimates of these methods are given. Moreover, the well
posed of the considered problem in a Sobolev space for the certain regions is proved.

Dla dynamicznego problemu termodyfuzji w ciele sprezystym z jednorodnymi warunkami
brzegowymi Dirichleta rozpatruje si¢ metode roznic i metode Galerkina, w szczegolnosci sche-
maty ekonomiczne i metode elementow skorniczonych typu naprzemiennych kierunkéw, ktore
sq bardzo wygodne przy ich realizacji na maszynach cyfrowych. Podane zostaly oszacowania
bledow zbieznosci tych metod. Ponadto wykazana jest poprawno$¢ rozwazanego problemu
dla pewnych obszaréw w przestrzeniach Soboleva.

Jna auHamudeckoil samaun TepmoauddysHH B yOpyrom Teje, ¢ OJHOPOMAHBIMH KPaeBBIMI
ycnouamu JIupnxie, paccMaTprBaioTCa METOABI CeToK B [MaslepKiHa, B YaCTHOCTH SKOHOMHBIE
CKEMBI H CXEMBI METOJA KOHEYHBLIX 3JIEMEHTOB THIA [IEPEMEHHBIX HaHpaBJICHHﬁ, KOTOpBIE
OYeHb NPHIOJH BINPH HMX Pealu3alMM HA BbIUMCIHTENBHBIX UMGbpOBBIX MaukHax. llarorcsa
OLIEHKH TIOTPENIHOCTeH CXOMMMOCTH 3THX MeTofoB. Kpome aToro mokasaHa KOPPEKTHOCTE
paccMaTpHBaeMOH 3afaun [IJIA HEKOTophIX obnacteit B mpocrpaHcrBax CoboneBa.

LET Us consider the dynamical problem (1.1)-(1.7) of thermodiffusion in an elastic
solid with the homogeneous Dirichlet boundary and initial conditions in the region
2% (0, T), where £ < R3 This problem has been formulated by J. S. Podstrigal (see
W. Nowackl [1] and the references there). G. Fichera has proved the existence and unique-
ness of the solution to this problem using the Laplace transform when the boundary
302 of Q is C®-smooth (see [2]).

In this paper we prove that this problem is well posed in a Sobolev space for certain
regions with a piece-wise smooth boundary (see theorem 2.1 and 2.2). Next we deal with
the difference and finite-element methods applied to this problem. We consider the implicit
difference methods which approximate our problem and are convergent with an error
0(r?+h?) if I', = 62 and 0(z2+Ah'?) otherwise; here 7, h; are the steps of the time and
space grid, h = max{h,, h, hy} and I’ is the boundary of the set grid (see theorem 3.1
and 3.2).

If 2 is a rectangular parallelepiped we consider an economical scheme (see [3, 4])
which is unconditionally stable and convergent with an error 0(r?+h?) (see theorem
4.1 and 4.2).

The second part of the paper deals with the discrete Galerkin methods with “viscosity™.
An error estimate in this case (see theorem 5.1) is given.

If Q is a rectangular parallelpiped, we construct the alternating direction Galerkin
methods (finite-element methods, see [5]) which are very efficient in numerical practice.
Convergence with an error 0(z2+4A) (see theorem 6.1) is proved.
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1. The differential problem

The following system of partial differential equations is considered

3 3
(I.1) G Y Diu+(2+G) Y DiDyu;—p,Dib—p,Dip—oDiu,
i=1 i=1

='.F,-(.\',f), i=1y2y37

3 3

(1.2) K N D0—cDy0—dDopu— Y DoDju; = f(x,1),
=1 j=1
3 3

(1.3) D D D} u—bDou—dDob—p, D' DoDju; = glx, 1),
=i j=1

for (x,1) e Qy = 2x(0, T), where Q is a bounded subset of R* with a boundary é02;
G, 4, 0, pe, P, K, ¢, d, D and b are given constants; F;, fand g,i = 1,2, 3, are given real
functions:

x = (x;,Xx3,x3), Dg=2lét, D;= dléx;.

We associate with the system (1.1)-(1.3) the following boundary conditions:

(1.4) w(x,t)=0, i=1,2,3,

(L.5) 0(x,t) =0, p(x,t)=0,

for x€ 62, te [0, T)] and the initigl conditions

(1.6) ui(x,0) = u;o(x), Doui(x,0) = ui(x), i=1,2,3,
(1.7) 0(x,0) = Oo(x), u(x,0) = uo(x).

We shall say that {2 satisfies the condition S if there exists a function y:2 - R3such that
yeC?(£) and S = y(£2) is a ball or a parallelepiped (see [6], p. 130).

2. A priori estimate

Denote by (.,.) and || .|| the inrer product and the norm in the space L%(£2). Let
H'(£) be the known Sobolev space and H}(£2) be a subspace H'(£2) of functions which
vanish on the boundary 0£2. Recall that @ = 2x (0, T). Denote by H*/(Q;) a Sobolev
space of functions from L*(Qr) which have generalized derivatives up to the order k with
respect to x;, i = 1,2, 3, and up to the order j with respect to t. By H*(Qy) we mean the

3
space H**(Q;). At last let Vu = (D,u, Dyu, Dyu) and ||Vu||* = > ||Du||?.

j=1
Assume that

Fi,f,geLX(Qr), upe Hy(Q),

@n Ui, B, po € L2(2) for i=1,2,3.

THOEREM 2.1. Assume that

2.2) G>0, G+2>0, 0>0, ¢>0, b>0, d*<cbh.
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If the components of the solution of the problem (1.1)-(1.7) belong to the following
spaces: u; € H*(Qr), i =1,2,3, 0 and u € H*'(Qy), then

23) \ DO +1Vu ()12} + f [IVE(E)II2 + IV (®)]I121dE + 11612+ I|p(0)]]2

i—l

3 ot
<M|) [IF@IPds+ f (AN + g (@171 dé + 5“{nDou.(0)|12+uvui(0)u=}

i=1 0 c:]
+IOO)II2+ 1117},

where t € [0, T] and M is a positive constant independent of the solution and the data
functions.

Proof. Let us form the inner products of the equations of the system (1.1)-(1.3)
with — Dou; for i = 1,2, 3, and with —6, —pu, respectively. Next, let us summ up for
i=1,...,5 the expressions obtained and next integrate them with respect to &, £ € (0, 7).
Applying the Green formulae we get

3

24 4\_; {ellDou:(f)!lz+I(ul(t))}+CIIG(I)II’+blI#(f)ll’+f[KIIV3(E)IIZ+DI]V#(§)”’]JE

i=1

+2d(0(t), u(1)) < 2 [ol1 Do ()11 + 1 (:(0))] + (¢ + IdDIIBO)II* + (b + |dDI| «(O)]|?
i=1

3 (3 |
+0.5 {ZJ[‘é”Fj(E)HZ+EEHD0ui(§)“2] dE+J [;:”S(E)”ZSL’"f(f)”z'*'-‘-\ana('f)”z

+ Esllﬂ(-f)ll’]dé} ,

where
3 3
I(HE(I)) = Z Z {G(Dju;(r), Dju;(f))+ (A"‘G) (Dju_,v(t), D;ui(z‘))}.
j=1i=1

It is easy to verify that
3

3
G IVu(0)li* < 21(u;(r))< max {G, z+c}2uw(:)uz

i=1 i=1

Using these estimates, the assumptions (2.2) and the Gronwall’s lemma we get the inequality
(2.3). This completes the proof.

Corollary 2.1. From (2.3) it follows the uniqueness of the solution of the problem
(1.1)-(1.7) in the spaces H*(Qy) for u;, i = 1,2,3 and H*'(Qy) for 6 and p.

The obtained estimate (2.3) can be used to prove that our problem is well-posed in the
so-called energetic class (see [6], p. 227). We only sketch a proof since it is similar to Lady-
zenskaja’s idea. We shall use a functional method defined in [6].

Rewrite the problem (1.1)-(1.7) in a form of an operator equation as

Au = {F,up, u'},

6*
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where
F= {F;}?=;. Fo=f, Fs=g, u= {“w}?:u u = {uf)i}isﬂv

2 o 5 = —
Ups = by, Uos = po, u= {“t}s:u Uy =0, us=pu.

5
The domain of A4 has to be a subset of [[ L2(Q7) and the range R(4) = W, where W
i=1
is the Hilbert space defined by

5 3 5
w=[]r2enx ][] Hi@x ][] L@
=1 i=1 =1

with the inner product

5 3 5
({F,up,u'}, {G, v, V}) = 2] (Fi, Gi)‘-lfﬁr)-'-g" (20i> ‘Uoi),;:(m +f2; (uo:, T’t'n)Lz(m-
Note that A is a linear and unbounded operator. For definiteness we set D(4) = H3'*(Qy),
where HZ'2(Qr)is a subspace of H%2(Qy) of functions which vanish at x € §2and ¢ € (0, T).
Similarly to [6] (p. 229), it is possible to verify that 4 can be extended to 4, where 4 is
the so-called closure of A.

Using (2.3) one can prove that A4 is invertible and R(4) = W.

We shall call u = 4~*{F, u,, u'} the generalized solution of (1.1)~(1.7) in the energetic
class. Hence we get the following theorem.

TueoREM 2.2 If £2 satisfies the S condition and (2.2) holds, then the problem (1.1)-(1.7)
has a unique generalized solution which satisfies the estimate (2.3) for t€ (0, T).

Remark 2.1. It is possible to generalize theorem 2.2 for a region £2 which can be

presented in the form|_J, £; where for each £, there exists a cover £2} such that £¢n £, satis-
i

fies the S condition (see [6], p. 131).

3. The implicit differences scheme

In this section we deal with an mmplicit difference scheme which approximates the
problem (1.1)-(1.7). It will be proved that the solution of the difference scheme satisfies
an estimate analogous to (2.3). Next we shall show convergence provided the solution
of (1.1)-(1.7) is sufficiently smooth or belongs to a certain Sobolev space. To do this
the several definitions are needed. Let Rj be a grid on R? of the form R} = {x = (i, h,,
irhy,i3h3), by > 0, i; —integers, j = 1, 2, 3}.

By 2, we denote the grid set:

Q= {x:xeRAItxeQ A} ;xe®, i#j, i,j=1,2,3},

where
Ifx = xte;h;, e = (8, 63, 033)

and J;; stands for the Kronecker delta.

I-Ct-s‘?_h =R§nfj and Pp, =§;,,’.Q*.



DIFFERENCE AND FINITE-ELEMENT METHODS FOR THE DYNAMICAL PROBLEM OF THERMODIFFUSION 85

Finally let w, be a time grid defined by
w, = {t=nt, n=0,..,N, Nr=T}
The difference quotients are defined as follows
4yx) = &y = IFy=lh, 9y = G-I plh,
oy = (It y—1I7 y)2h;,
0:0iy = (I} y=2y+1I; y)|h,
A==t = (P -y,
R D L B A

where
Ity(x) = y(I#x), V'(x) = y(x, n7).

The difference scheme approximating the problem (1.1)-(1.7) is of the form

G.1) GZ 3,300+ itE 5“ (013, + B )0t
j=1 _;..I
—pgaif};-‘P#a;E?g_Mﬁ“—"F?, i= ]’21 3;
3 3

(3.2) KE 80,04 — cVi; —dv; —pe Z ovr = 1",

f= J-=
(3.3) D Z 0; Ojos — by —dvli; —p, _Z 8vj; = &"

=
for xef,, n=1,..,N—1, with the difference boundary conditions
(3.4) V] =03 =93=0, xel},
(3.5) 3 =0, 95=0, xelj},
and the initial conditions
(3'6) U?(x) = Ui,o(x), 1}il' (x) = vi,l(x)l X € QJU i= I’ 2’ 3;

(3‘?) vg(x) = 90(95), vg = Mo, ﬂi(x) = 31(x), U; = W, X E'Qh'
The functions v;,(x), 6,(x), u,;(x) can be calculated by

(3.8) 04,0 (x) = w0 (0) + TUl(X) + - Do ui(x, 0),

(3.9 6,(x) = Oo(x)+Do0(x,0), x4 (x) = po(x)+ 7Dop(x, 0).
The difference problem (3.1)-(3.7) approximates the differential problem (1.1}-(1.7) in the
grid points with an error 0(z2+ A2 if I'y, = 6Q and 0(z*+h)if I, & 62, h = max(hy, h,, h3)
provided the solution of (1.1)-(1.7) is sufficiently smooth.

Now let us consider the stability of the scheme (3.1)-(3.7). To this end let us introduce
the Hilbert space H, = L2(2,) of the grid functions defined on £, with the following inner
product and the norm

@, o) = ) hyxhixhyu(x) - v(x), [l = @, Wh.

XE?J&
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Let H, be a subspace of H, of the functions which are equal to zero at the grid points
of I',. We shall also use the space Hy and H{, which are the difference analogous of H*
and H{, respectively. The space H;(£2,) is the Hilbert space of the grid functions defined
on 2, with the inner product

W Dip = @ Dt hyhahs S Y Gu(x) - G0(x),
f=1 Q;|

where 2. means the set of all points of 2, at which é; are defined.
The space H},, differs from H}! since the functions of H§, satisfy the conditions: u(x) = 0,
xely.
Let (B;y) (x) = —8;0; y(x), x € 2, for y(x) = 0, xel},.
3
LemMaA 3.1. The operator.B = ) B, B:hcﬁ, — Hy, is self-adjoint and positive definite,
i=1
i.e.
B=B*2z=06E, 0>0,

where 6§ depends only on the diameter of £2. The proof of lemma 3.1 can be get by using
the formulae of summation by parts (see [3], p. 46). In the sequel the Hilbert space H,g
will be needed which differs from the space Hj only by the definition of the inner product
and the norm, namely

(u,v)s = (Bu, ), lullg = (Bu, u)y.

It is easy to prove that the norm of H,p and Hy, are equivalent with the constants
jndependent of h;. To simplify the further formulae we shall drop the index A.
THEOREM 3.1. If (2.2) holds, then the solution of (3.1)-(3.7) satisfies the inequality

3 5 N—-1 5
3.10)  max{ > [Ionllf + (o131 + X etlig}+< ' > liomi
=1 i=4 n=1 i=4
N-1 3
<mle X [ X UFrE- 1 + g

n=1 i=1

1 3 5 3
+ 2 nE g HleE+ Y il + ) leglia]
i=4 i=1

r=0 i=1

where M is a positive constant independent on the data functions, the grid steps, and the
solution of (3.1)-(3.7).

Proof. Let us form the inner products in & of (3.1) with —2v%;, i = 1,2, 3 and
(3.2), (3.3) with =272, i = 4, 5, respectively, and perform the summation over i =
=1,...,5and n=1, ..., k—1. Using the formulae of summation by parts (see [3],
P. 46) and the identity

2(}””—1;.}’?) = (yn, J’"):+T(J’l', )
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we get

3
@3.11) E {ollvfH1? + I(wh) + 1) }+ c[lIR5112 + 110121 + B lIws1> + 1251112

i=1

k=1 3
+7 N Ra{@s, 85+ @iz, 99N+ D 10,9501 +118,03112)) = Y [1(w9)+I(x})

n=1 i=1
+9E|ﬂﬂ|l2]+c‘[rlt | +||v41|21+b[izzs|12+|it«s||21
+2r 2 {Z( r, o)+ (7 6D+ (8% 6D,

where )
31
I@) = 0.5 Y {G(0;28, 9,21+ (A+G)(@:2}, 4,2}

=1
It is easy to prove that

3
3.12) Y 1 > va.ﬂn;.

i=1 i=

NIQ

A simple calculation yields the following estimates

&

[

G13) 20 Y (FL o) < e (K3 +(IRA1113) + Me)|IFH B
n=1
k—1
HIFE- A+ 1013+ (ot 13+ 7 Y IEF113- mZ 27113},
n=:2
a E ow
(.14) 2z, 80) < eallzl + - 91113,

where & > 0 and z can be'equal to f” or g". Substituting (3.12)-(3.14) in the equation (3.11)
we get (3.10) which completes the proof.
Now we are in a position to prove the convergence of the scheme (3.1)-(3.7).
THEOREM 3.2. Let the assumptions (2.2) hold. If the functions
Diu;, DoDiDju; (a+p<4), DiDlu,
DoDiu, D36, D3u, DD, i,j=1,23

are bounded, and the functions v;,,i = 1, 2, 3, 0,, u, are defined by (3.8), (3.9) then the
following inequality holds

N~-1 3
G.15) il = mxl,_, 25113+ 112311 + Z‘ ZlIa+7 Y D IR < MO(x, B),
i=] i=4 n=1 i=4

where z} = of—uf, i=1,2,3, zi=tL—-6" z%=1%-u",

, ?+h if I, ¢ 692,
o, )==t“+.’:“ if I, c Q.
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Proof. If I, = 612, then theorem 3.2 immediately follows from theorem 3.1 since
the approximations error of (1.1)-(1.7) is 0(z%+A?). Hence let I', ¢ 0Q2. Let us express
the solution of (1.1)-(1.7) at the grid points in the form o} = Wjp+ulp, i=1,...,5,
u, = 0, us = p, where

up={0 for xef, and u(x) for xel}}.
The functions uj, satisfy the system (3.1)-(3.3) with the right-hand side equal to

Gl = 0(x*+h)+¢&, i=1,..,5
where
[18"]15-2 = O(A'/2).

Applying theorem 3.1 for o —ujg, i = 1, ..., 5, and the triangle we get (3.15). Hence
theorem 3.1 follows.

Remark 3.1. The analogous results hold for a non-uniform grid (in the space
direction) with an error 0(z2+A?) if I, < 69.

The scheme of (3.1)-(3.7) is convergent under the assumption that the solution of
(1.1)-(1.7) is sufficiently smooth in the classical sense. Such solution exists when the bound-
ary 02 of 2 is sufficiently smooth, see [2].

Let us now pass to the problem of convergence of the scheme (3.1)-(3.7) under the
assumption that the solution of (1.1)-(1.7) belongs to a certain Sobolev space.

THEOREM 3.3. Let (2.2) hold and let the following functions belong to L2(Qy):

Dguh D{“;Duuh D = D‘:‘D?D?:
D36, Diu, D3D¥, DiDu, a=a+a+as<3,
where u;, i =1,2,3, 0, u is the solution of (1.1)-(1.7). Then

lizll§ = 0(z +A'2),
where || * ||y is defined in (3.15) and 2z} = o} —uf,i = 1,2,3, 2} = 050", 25 = v} —u’,
and o7 is the solution of (3.1)-(3.9).
The proof is omitted since the proof technique is similar to the proof of theorem 3.2.

4. The economical scheme

Let £ be a rectangular parallelepiped. In this case we can approximate the system
of (1.1)~(1.7) by an economical scheme with a splitting operator. By an economical scheme
(see [3, 4]) we mean a scheme which is unconditionally stable and the total number of arith-
metic operations needed to solve this difference scheme is proportional to the total number
of the grid points of 2, xw,.

An example of such scheme for (1.1)-(1.7) is presented below

3

3 3
@) o | E-6r0305i+G ) 501 +0.5G+6) X (6,3
i=1 j=l

+ 8100} —pe 00} —p, 008 = F}, i=1,2,3,

j=1
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3 3 3
@2 [] E-va5'40,0)5%+( D) 5,0%) A5 'p— 45" 4 D) 0,05
j=1 j=1 j=1

= A;'G", xe€£,, n=1,..,N—1,

where
0 > 0, "= (‘U:_, %)Ts G = (_f"; _g")ri ;E’ = (Ps,Py)Ts

c d K O
Ao =y b)’ 4=\o »p

with the difference boundary conditions (3.4), (3.1) and the initial conditions (3.6), (3.7).
THEOREM 4.1. Let the assumptions (2.2) hold. If 6 = 6,(G, 4, p) > 0, then the solutions.
of (4.1), (4.2) (3.4)-(3.7) satisfie the following inequality

@3) |l = max{ Z L@)+ Z fz(vr)}+r Z 157113

[r [ Z ERI2 + L7112+ lg?112]] + Z L))+ 2 L)),
where

L) = |l 1% + 1113 + 1ok 113+ = Z 110,92~ 11§ + 7811 8, 0, 05 2%~ ;
I<j

1
L} = ol +Hot-"l1F + X | D 72110,0,05112 + 22110, 2, 0,011}

r=0 I<j

Proof. Multiply (4.2) by 4,. After some transformations we get

Aoty — ZAB 50"+ 12454 )] 9,0,0,0,0% + T A(45" 4)? na v+ Z‘ 3vp = G".
I>j j=1

Let us form the inner products in H of (4.1) with 2797 and next (4.2) with 272", Simi-
larly to the proof of theorem 3.1 we summ up the inner products obtained with respect
ton, n=1,..,k—1. Using the assumption (2.2) and the Gronwall inequality we get
(4.3).

THEOREM 4.2. Let the assumptions of theorem 3.2 and 4.1 hold. Besides let the function
D}DiD3u;, i =1,...,5, DD}Du; (1<j), i=1,2,3, DeD}D}u; (1<j), i=4,5
be bounded; here u;, i = 1,2, 3, u, = 0, us = pare the solutions of the system (1.1)-(1.7).
Then ||zllg = O(z*+A?), where ||+ ||, is defined in (4.3), 2} = v}—uf, i=1,2,3, 24 =
= vg—0", z§ = v —u"; o} is the solution of the problem (4.1), (4.2) and (3.4)-(3.7), and
uf, 0", u" are the solutions of the problem (1.1)-(1.7) taken on the grid.

This theorem directly follows from theorem 4.1 and the approximation of the system
(1.1)-(1.7) by the scheme (4.1), (4.2), (3.4)-(3.9) with an error 0(x?+h?).

Remark 4.1. If n = 2 and £ is convex, we can construct an analogous scheme with
a splitting operator which is unconditionally stable and convergent with an error 0(z*+ 4?)
provided I', = 6. Furthermore this can be generalized for n = 3 when £ has the form.
Q= 0,x(0,1;) and 2, is convex in the plane R, (see [7]).
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5. Galerkin methods

In this section we consider the Galerkin method with “viscosity” for the problem
(1.1)~(1.7). The presence of the term of order 0(z?2), which is called viscosity, helps to solve
a system of algebraic linear equations since the matrix of this system has a simple form.

The Galerkin method is based on the weak form (variational form) of the differential
-equations. The weak form of (1.1)-(1.7) is as follows

3
5.1 o Z (D3ui(t), v;) + c(Dous(t), va) +d(Dous(t), va)+b(Dous(t), vs)
i=1
+d(Doug(t), vs)+a; (u(r), v)+ax(u, v)+ K(Vuy(t), Vo,)
5
+D(Vus(t), Vos)+a3(Dou,v) = ‘E (Fi, v),

i=1

Vo,e Hy(2), i=1,..,5, 0<t<T,

(5.2) (0) = upi, 1=1,2,3, u(0) =06, us(0)=po,
(5.3) : Dy(0) =u;, i=1,2,3,
where

ug =0, us=pn, F,=f Fs=g,

3 3
a,(u,0) = 3 ¥ {6(Dyui, D,v)+(2+G)(Diy, Do)},
Jj=1 i=1
3

aZ(u’v) = Z {P&(Diudnwl’)+pu(Di“59ﬂi)}s

iz
3
a3(Dou,v) = — Z {Po(Douj(t), Djva)+p,(Douy(t), Divs)}.
J=1
Let .# be a m-dimensional subspace of Hi(£2). Let w, be the grid of the form
o,={t=nt, n=0,...,N, Nr=T}
The problem (5.1)-(5.3) is approximated by the discrete Galerkin method in the form:

3
G4 0 (Uk, ) +c(Uk, v)+d(Uks, v) +b(Uk:, v) +d(Ukr, v) + 4, (U*, 0)

i=1
3
+ax(0*, 9) + D, 0v2(VUL;, Vo) + K(VO%, Vo) +D(VU%, Vos) +ay(UF, ©)
i=1
5
o —Z(ﬂ‘s i)
for Yv,edld, k=1,...,N—1; -
(5.5 U, v) = (upi,v:), Vuved, i=1,..5;
(5.6) UL, v) = (uy:,9), Vvied, i=1,..,5.

Here o4 = 0o, uos = po and u,; are the data functions, which can be calculated from
(3.8), (3.9). Here 0 is a positive parameter.
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Now consider the approximation error of the solutions of (5.4)-(5.6) and (5.1)-(5.3).

THEOREM 5.1. Let (2.2) hold and 6 = 0,(G, A) > 0. Let the following functions VD%u;,
VD3u;, DoF;, i =1, ..., 5 belong to L*(Qy) and let z} denote z} = uf— U, where u}, U"
are the solutions of (5.1)-(5.3) and (5.4)-(5.6), respectively. Then z" can be estimated as
follows

3 N-1
G iz = max] Y Q1+ IV + Vuz:'w}w‘: Vn%*uz
B =l k= rw4

< M{max} ¥ v U+ V] + Tnu”n P V‘{ ? [V 1+ 11k 1

=1

1 5 N1
+ 20 + iz iz} 3 UVt + 1]+ 3 12} +74),
r=0 —-4 k=1
where uf = w¥—i; and # is an arbitrary function from .#.
In the proof of theorem 5.1 the identities which are listed below will be used.
LeEmmA 5.1.

(5.8) 210k, ¥3) = O, W95

(5.9) Ok, 2%) = (%, o9, — (41, ob);

(5.10) Ok, %+ 1) = Ok, %) — (0%, o8);

(5.11) 2005, 9% = % M

6.12) O, o) = 04 05— (041, oD+ OF, o)
(5.13) 0%, 2+ G5 o5) = 0K 953

(5.14) =

There lemma 5.1 can be proved by simple calculations based on the definitions of
difference quotients.

Proof of the theorem 5.1. It is easy to see that
. (Ve = Vig+ 81, (D3w) = s+ O
' (Dow)" = uffy + 0%,
where

05llz2 = 0(z?), s=0,1,2, i=1,..,5.

Substitute in Eq. (5.1) t = nt and subtract it from (5.4). Next using (5.15) and

summing up fork =1, ..., n—1, we get

(5.16) v{Zg(zf‘,,,wf)+ﬁrzZ(Vz“,,,Vv,)+Il(z,,ﬂ)+a1(z v)+ay(% , )

k=1 j=1

+K(V25,V0,) + D(VE, Vo) +as(2h, o)} = _Z‘ {Z‘ [0(8%,, v) — T20(Vidks, V,)]

k=1 i=1

+1,(0%, 0) +ax(8he, ©) +ay (8%, 0) + (V5 Vo) + D(V3hs, Vos))
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for Y v € #, where
I, (WX, ©) = c(wi, vo) +d(wWh, vs) +b(Ws, vs) +d(wh, vs),
W= W, W), o= (0, ..., 05)T.

Let v; in (5.16) be equal to v; = 27(f;+uf;) for i =1,2,3 and v, = Zr(§f+5’;) for
i=4,5, where #* = v¥—#; and % is an arbitrary function from .#. The terms which
appear in the left-hand side of (5.16) are estimated from below.

Let J§ denote the first term of the left-hand side of (5.16). From (5.8), (5.9) and the
£~ inequality we get

1
(5.17) 5‘10 Z{e(l—sl)uzrr’n*—M{nzmm > i

i=1 r=0
n—2

2+ Z ZAll2+ 7 Z nuf,,nz

The second term in (5.16) is estimated by (5.17) where p is replaced by r’ﬁ and z, &t
are replaced by Vz, Vii, respectively. The sixth and seventh term of (5.16) are estimated
using the ¢ — inequality

n—1 n
(518) 20 Y (VE VA4V > 1)) {(2—ez)uv2fn=~ - |Wﬁﬂi=}.
k=1 k=1

Let us now estimate the other terms of (5.16). To estimate I,(zf, v) two inequalities
are needed. The first one is (with #; = #; for i = 4, 5):

n—1

(519 4r 3 G, 2 > A= QapE +1ar-12) - aef L gl
k=1

n—=2

+Hl 2+ Z uuu1|=+12 Ty [1|fl|2+||u'1|21}.
nD

r

The inequality (5.19) follows from (5.11) and (5.12). The second inequality needed is

(5200 2t
2t D) (s, A+ + (r, B +a)) > E {4, 205 Z[s4llz"ilz+ez‘liz:"1|*]}
n=1

k=n—1

n—2

-Mi 2 { "uz*n2+ 2 llk112) + Z Z[IIZ*IPHiu*lI’]}

To prove (5.20) it is sufficient to use (5.13), (5.12) and the e—inequality.
Using (5.19), (5.20) we get

n-1

5 n
20 YL@ 220 > 3 Y (d-es- el

k= i=4 k=n—1

1 n—2 n—1
M- m] S AR R Y I S i)
k=0 k=0 k=0
where d = cb—d>.
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Let us estimate a,(z*, ). Once more from (5.14) and (5.12) we have
k—1
1

3 1
G2) ) a2 +iD) > o 5’{ Z [(G—eIV2-"112=GIIVZ]|?]

n=2

n—2

=G [IIV= 12+ [IV28117] - M{Z Hage 1+l — = | 3, 192412

r=0
4 Z IVl + 22 2 [||Vz§.nz+uva§,-u2}}},
k=0 k=0

where G = max(G, 1+G).
It is easy to verify that the other two terms can be estimated using the formulae of
summation by part and the & —inequality as follows
k—1
(5.23) Z_ {a,(2*, 2ezs+ 2tiy) + as(25, 20 (GF +i9) }

=1
3 n—1 -1

> —eg ) Vuznnl—w? Z 2 124112~ Mr{ Z 2 { Zn ]+ Z Zz,‘uuun }}

= k i=4 k=1 i=4 j=1 k=1 k=0i=1
An upper bound for the right-hand side of (5.16) is given by

(5.24) Z { 2 {eallZhaI1? + M2 + 7] Va2 + 1Vl 12]

k=1 i=|

+el|Vziz 1|2} + Z‘ {exollZA12 + ML+ (Vi) 2] 410l (V3512 + 74

i=4
Substituting (5.17), (5.18) and (5.21)-(5.24) in (5.16), taking suitable &;, 0 larger than
8,(G, 7) and applying the Gronwall’s lemma we obtain (5.7). This completes the proof.

6. Alternating-direction Galerkin (finite-element) methods for rectangular parallelepipeds

By AD-Galerkin method we mean the Galerkin method in which the total number
of arithmetic operations needed to perform one time step is 0(m), where m is the number
of unknowns at each time step. This method has been formulated for the parabolic and
hyperbolic equations in [5]. Here we extend this method to our problem. We shall use the
notations from the Sects. 4 and 5 and the following new ones:

5
= (e, us)’, <0y =), [uwd?, A=45'4,

=4 O
where here 2 = (0, /) x (0, 1) x (0, 15).
Let .# be a m-dimensional subspace of H§({2) such that D;D;w (i < j) and D, D, Dyw
belong to L?(2) for we #. The equation (5.1) is approximated by

3
61) 0D {(Uir,v)+Jo(Uiz, v)} +a,(U* v) +ay(U*, v)

5
+a5(U%, 0)+ (Ao UE, 95+ CAVUY, Vay + 4, (T ) = — ) (FE, )
i=1
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for Vv,e #, k = 1, ..., N—1 with initial conditions (5.5) and (5.6). Here

Jolz, w) = 072(Vz, Vw)+0%1* ¥ D,D;z, Dy D;w)+6°t(D, D, D3z, D, D, Dyw),
I<j

J,G, W) = 12 Y (AADD;Z, D,D;w)+7v*(AA2D, D, D5z, D, D, Dsw),
I<j
6 — positive parameter.

Note that for z" = &"— U" where ", U™ are the solutions of (5.1)-(5.3) and of (6.1),
(5.5), (5.6), it is possible to obtain a similar estimate to (5.7).

We are now in a position to describe the 4D-Galerkin method. Let .# be the subspace
of HY(£2) such that the basis of .# is a tensor product of the functions of one space variable.
Letfori=1,2,3

{ais(xi):s = 1, ..., Ni} = H3(0, 1)
and let
M = span(%y, -5 %Ny,
M= MDMRDM .

Denote
I

(f.8)i = | fedx.

The solution U} of (6.1) is sought for in the form
Utx) = Z‘Eik.smaspe(x)s where  a,0(x) = o;5(x1) 2z (x2) 234(x3).
5P4

Let C;, A; be the following matrices

C = {(“ip’ %itra=1, Ai = {(D; %ips Dy tig)i}plgas-

Let ; be the N; x N; identity matrix and let 7 be a 2 x 2 identity matrix. Using these nota-
tions we can rewrite (6.1) as follows
3

6.2) [ Pi+6r20)él = g%, i=1,2,3,
=1
3
(63) [ ] #i+-0ne = ¢+,
I=1
where

3
1
Eii( iy {fi.qu}ii?:zgi”:! :".qu e '0_1[2 {G(DJ Ufk: Dj u;pq)‘+‘

= =1
+ (A+G) (D| U}: Djaqu)}+(pﬂﬂi U: +PpD1' Ug! “qu)'}'(Fr"} XP-“I)}
fori=1,2,3,
P, =1,0C,QI, 0, = Il ®A4,®1;,
P, = [ ®UQC)®L;, Qi =1LR(AR4)®;.

The matrices P;, P;, Q;, Q; are defined in a similar way where i = 1 and 3;

Ek = {E:m}f}-:;'?ls Equ = {gi,que Eg.qu}-
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The vectors %, U, 2,,, are defined similarly; G¥ = {f*, g*};
3
. 9 " s e B =
Gupa = — K3 DiUS) 455, apg) + CAVIH", Vi) + (A5G, g}
j=1

The Egs. (6.2) and (6.3) are considered under the following initial conditions:

(6.4) (U2, aspg) = (Uoi, %pg)y 1=1,...,5
where ug, = 0g, ttgs = o;
(6.5) (ut, fxqu) = (s, ‘-"m)’ i=1,..5,

where u,; is defined in (5.6).
Let us define a basis of .# which is convenient in numerical calculations. Let x; denote
the grid on [0, /] of the form

o= {xp:x;=jhi, j=0,..,Ni+1, (Ni+Dh =1},

and let wy(x;) = (x;—ph)/h;.
- The functions a;,(x;) are defined by

wpo1(x)),  xi€[(p—1hi, h
(6.6) aip(x;) = 1 1=wp(x3), x;€[ph, (p+1)h]
0, x; € [0, (p—=DhJol(p+1)h;, 1]
for p=1,..,N;.

The matrices C; and A; are now tridiagonal. Hence the total number of arithmetic
operations needed to solve (6.2) and (6.3) is of order of Nx N; x N, X N5.

THEOREM 6.1. Let the assumptions of theorem 5.1 hold. Besides, let the following
functions D, D,Dsu;, DFD;D,u; for i=1,...,5s,p=1,2,3 belong to L*Qy),
where u is the solution of (5.1)-(5.3). Then AD-Galerkin method of (6.2)-(6.5) with the
basis (6.6) is convergent if T — 0 and A — 0, where h = max {h,, h,, h3}. Moreover

llzlle = 0(z*+4),

where ||+ ||y is defined in (5.7), 2% = w*—U¥,i =1, ...,5; u%, U¥ are the solutions of
(5.1)-(5.3) and (6.1), (5.5), (5.6). It is possible to verity that this theorem follows from
the estimate (5.7) which holds for z*, and from the fact that

llu—2tlls1e0y = OCh)

provided u € H*(£2), where 4 is the projection of u into .# (see [8]).
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