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Some problems of the theory of conical gas flows

V.M. TESHUKOV (NOVOSIBIRSK)

TwoO-DIMENSIONAL unsteady problems of gas dynamics describing decompositions of two-di-
mensional discontinuities are considered. There are: the expansion of a wedge of gas into a va-
cuum, the instantaneous with drawal at constant velocity of two semi-infinite intersecting,
straight, rigid walls which initially contain gas at rest within the dihedral angle formed by these
walls, the expansion of gas from the tube. The existence of continuous solutions of the above
mentioned problems is proved.

Rozwazane sa dwuwymiarowe zagadnienia dynamiki gazow opisujace rozklad dwuwymiarowych
niecigglosci. Sa to: ekspansja klina gazu w proznig, nagle wyjecie ze stala predkoscia dwoch
nieskoriczonych przecinajacych sig prostych sztywnych écian, ktdre w chwili poczatkowej za-
wieraja gaz w spoczynku wewnatrz kata dwusciennego, utworzonego przez te $ciany, wyplyw
gazu z rury. Udowodniono istnienie ciaglych rozwigzan wyzej wspomnianych zagadnien.

PaccMoTpeHB! JBYMEpHbIE 3aJayM JHHAMHKH TIas’0B, ONHMCBHIBAIOIUME pACMa] ABYMEPHBIX
PaspeiBOB. JTO: paslieT KIMHA rasa B BaKyyM, BHeE3anHoe YAajieHHe ¢ MOCTOAHHOH CKo-
POCTBIO [ABYX IOMTYyGECKOHEUHBIX, MEPeCceKAIOLMXCH, IUIOCKMX YKECTKHX CTEHOK, KOTOpEIE
B HaYaATbHbIH MOMEHT COMEp AT NMOKOAIUMICH ra3 BHYTDH ABYTPAHHOTO yria o6pasoBaHHOTO
STHMH CTEHKAMH, HCTEUEHME rasa us TpyObl. JlOKasaHO CYILeCTBOBaHHE HeNpepLIBHBLIX pe-
LIEHHI BBIMICYTIOMAHYTBIX 3afad.

Two-DIMENSIONAL unsteady problems of gas dynamics describing decompositions of dis-
continuities are considered. There are the expansion of a wedge of gas into a vacuum,
the gas flow after a piston of a wedge form moving with constant velocity, the initial
stage of the expansion of gas from the tube. These problems were studied in papers
[1-4] where some numerical results were obtained. The purpose of this paper is to prove
existence to the solutions of above mentioned problems. Proved theorems may be apllied
to some other conical flow problems.

1. Equations of the motion

Two-dimensional potential conical flows of a polytropic gas are described by the quasi-
linear second-order equation

((pe— ) — A@ee + 2(ps — E) (@ = DPey+ (@ —m)* =gy, = 0,

2

¢? = (y—DEpe+n9,—9—"2(0} +97)),

where ¢ is potential, ¢; = 4, ¢, = v, u = (4, v) is velocity vector, ¢ is sound speed, y
is polytropic index, & = xft, n = p/[t, x, y — coordinates at a plane, t — time. At all points
where |[Vp—§| > ¢ > 0 Eq. (1.1) is hyperbolic, if [Vp—&| < ¢ Eq. (1.1) is elliptic. Eq.
(1.1) parabolically degenerates at points where [Vp—&| = ¢ or ¢ = 0. We shall consid-

(1.1)
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er Eq. (1.1) in the domaim of hyperbolicity. Introducing characteristic variables «, f
by the relations
Ne = tgO+ A&y, 5 = tg(6—A)s,
f = arctgn—v/(§—u), A = arcsinc/|u—E|)
we obtain characteristic system of differential equations for five quantities 4, 0, u, v, ¢
Ay +0,+f(A)cs/c = 0, Ap—0p+f(A)cp/c = 0,

(1.2) (y—Duy+2sin(60—A)c, =0, (y—Dug—2sin(@+ A)cz = 0,

(y—=Dy,—2cos(@—A4)c, =0, (y—1)vg+2cos(0+A)cs = 0.
Here (y—1)f(4) = tgA(4cos?4—y—1). Variables &, n may be expressed in the form
(1.3) & =u+ccosflfsind, n = v+csinffsind.

Differentiating of Egs. (1.2) gives the system of two second-order equations for functions 4
and C = Inc

(1.4 245+ (flAC)+(f(A)Cp)e = 0,  Cyp+y(A)C,Cy = 0,

where p(A4) = 1+tgA - f(A4). The quantities 6, u, v may be found by integrating of Egs.
(1.2) after we have determined 4, C. Thus the boundary value problems for Egs. (1.1)
may be reduced to the corresponding problems for system (1.4). If formulas (1.3) define
one-to-one mapping from the domain of definition of the solution in «, # plane to the
corresponding domain in &, % plane, one can find the solution ¢(&, #).

2. Formulation of the problems
2.1. The expansion of gas into vacuum

Polytropic gas at rest is contained in the domain x > |y|tgd(d > 0). The wall x =
= |y|tgd disappears at the moment 7 = 0. It is necessary to describe expansion of gas
into vacuum for ¢ > 0. Motion will be one-dimensional out of some neighbourhood of
the vertex angle. It will be described by simple Riemann waves. The domain of interaction
of the simple waves is bounded by the characteristics of opposite families which pass
through the point of intersection of the wave front lines bounding gas at rest in &, n plane.
We must satisfy the conditions of continuous joining of the unknown solution to the simple
waves. Thus we obtained the Goursat problem for Eq. (1.1).

2.2. The piston problem

We consider the instantaneous with drawal at constant velocity U, = (U,, 0) (U, < 0)
of two semi-infinite intersecting straight rigid walls which initially contain gas at rest
within the dihedral angle x > |y|tgd formed by these walls. As in the previous case it
is necessary to find the solution in the domain of interaction of two one-dimensional so-
lutions. We obtain mixed boundary problem for Eq. (1.1): the conditions of continuous
joining of unknown solution to the simple waves and to the constant solution on char-
acteristic and the condition (u— Up)cosd+osind = 0 on the piston.
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2.3. Initial stage of the expansion of gas from a tube

Polytropic gas was contained at rest in the tube x > 0, —1 < y < 0. The wall x = 0
disappears at the instant of time ¢ = 0 and gas is expanding into vacuum. For small val-
ues of #, expansion is described by one-dimensional law at all points out of some neigh-
bourhoods of points M(0,0), N(0, —1). One-dimensional flow is disturbed by waves
of Prandtl-Mayer type centred at points M, N. To find the solution in the neighbourhood
of point M, we must solve Goursat problem with singularity. On the characteristic passing
point M we have conditions of continuous joining of unknown solution to the simple
Riemann wave. At the point M the solution must have the singularity of the Prandtl-
Mayer type.

3. Solvability of the Goursat type problems

After integrating of Eq. (1.4) we have

o B
24+ [ fAN)Codat [ f(4)Cpdy = (A+0)(0, f)+(A—0)(, 0),
0 0
B
@3.1) Culet, ) = Cale, 0)exp — [ 9(4)Csd),

Cale B) = G0, Prexp (- / "vyc.d,).

The boundary conditions of the problems 2.1.-2.3. determine functions (4+6)(0, f)+
+(4—=0)(a, 0), Cy(et, 0), Cs(0, B). In the case of the problem 2.1

(A +8)(0’ ﬁ)'l' (A _6)(0:: 0) = ?[—2(5, Cm(as 0) < 0! Cﬁ(os ﬁ) < 0:

(Aa +%f(A)C¢) (2,0) =0, (A.s +%f(A)Cs) 0,8 = 0.

We shall formulate existence theorem for Goursat problem. The solvability of prob-
lems 2.1. and 2.2. for some parameters y, 8, U, follows from this theorem. Let us intro-
duce the following designations

Ay = arcsin (—%‘ Vﬂ), i = arc cos(%(l +V2y +3)%) l<y<3,
m(a! ﬁ! aDa ﬁl)) = (A+a)(a0! ﬁ)"'(A_ﬁ)(a: ﬂ{})a

U= y—z_-tg A(Z;—l —cos? A) C,—A,, P = A, +f(A)C,,

V= ;g__ltgA(Z;—l —COSZA)Cp—Ags Q = Ay +f(4)Cy.
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THEOREM 1. Let ¢(a, 0), ¢(0, B), m(e, B,0,0) e CH(2) (2 = [0, o] X [0, B,]), (a,0) =
= ¢(0, B,) = 0 and one of three groups of conditions are satisfied:

1) l<y<3, A0,0)> 4,, m(x,5,0,0)<a—0c (c>0),
ca(us 0) < 0! cﬂ(o! ﬁ) < Os ¢(a! 0) > Os Q(O, .8) > 0,
2) l<y<3, 0<A(0,0)< A4,, m(x,p,0,0)>24,,

c(2,0) <0, ¢(0,8) <0, ¢(x,00<0, 0(0,p) <0,
U(x,0) <0, V(0,p) <0;
3) y>3, A@0,00>0, m(x,p,0,0)<a—oc (oc>0),
U(e,0) <0, V(0,0 <0, cfx,00<0, ¢(0,p8)<0O.

Then the classical solution of the Goursat problem exists in the domain & boundary of
which consist of characteristics » = 0, = 0 and the line, where c(a, f) = 0. Mapping
(a, B — (&, n) is univalent in 2.

Proof. Local existence theorem is valid under the conditions |m| < 7—o0y, |C,| < K|
|Cs] < K. We prove that monotony conditions of Theorem 1 are valid in the domain of
definition of the solution. For example, in the case 1 ¢,(a, f) < 0, cg(a, f) < 0, ¢ (o, f) >
>0, O(a, f) > 0. It follows from (3.1) and the linear system of differential equations
for ¢ and Q. Integrating of monotony conditions gives inequality A(x, f) > A, at all
points where ¢ > 0. Eq. (3.1) gives the bound 4, < A < (7—0)/2. This allows to get
the following estimate

2A0 < m(a! 18: o, 30) < ‘-;—-(J‘!—G) (C! = g, ﬁ = ﬁﬂ)

From the second equation (1.4) we obtain lower bound of

(e, B) = (c(ao, B +c(a, Bo)* —c(ao, Bo)' )",
where s = s(y) > 1, a > oy, f > f,. With the use of these bounds we prove that the
conditions of local theorem are valid in the rectangle 0 < a < o(e), 0 < B < f,(e)
(c(0, B,(e) = 2¢, c(ao(e), By (e)) > €). Then we consider the rectangle ao(e) < a < 2u,(¢),
0 < B < Ba(e) (c(ao(e), Ba(e)) = 2¢, c(uo(e), B2(£)) = ¢) and so on. If the domain Z,

is the union of the obtained rectangles, the domain 2 = lim Z,. Univalence of the
e==0

mapping (1.3) is proved in the analogous manner, as it will be done in Theorem 2.

From this theorem we obtain solvability of Problem I with parameters 1 <y < 3,0 <
< 6*:%7:—,41 and y > 3, 0 < 6 < 7/2.

Problem 2. From the properties of the boundary conditions of Goursat problem follows
the existence of constant U,, for which inequality U, < U, involves that the domain of
interaction of simple waves contains points where ¢ = 0. In this case the mixed boundary
problem may be reduced to two Goursat problems, for which existence of the solution
may be obtained from Theorem 1. Notice, that continuous solution was constructed in the
numerical calculations only in the case of vacuum zone appearance in the neighbourhood
of the vertex angle.
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Problem 3. Point £ = 0, n = 0 maps into interval « = 0, 0 < § < #, on the charac-
teristic plane. The Prandtl-Mayer conditions are satisfied on this interval. On character-
istic # = 0 we have the condition of continuous joining of the simple Riemann wave.

THEOREM 2. Let y > 3, ¢(a,0), m(a, 8,0,0) € c'(2), and following inequalities are
valid

(2,00 <0, U(x,00 <0, 0<m(a,p,0,0) <m.
Then the Goursat problem with singularity has continuosly differentiable solution in the do-
main 9 bounded by characteristics « = 0, f = 0 and the line ¢(x, f) = 0. Mapping (o, §) -
— (&, n) is univalent in 2.
Scheme of the proof is analogous to the corresponding Theorem 1. We shall prove

univalence of the mapping (1.3). From the existence theorem we obtain the following
properties of the solution

(32 O0<m(o,f,a0,fo)<m—06 (x2ay>0,2p0>0), (4+60),<0,
(A-0) <0, U, p) <0, Wa,pf)<0 (x>0,8>0).
We have relations
(3.3) &, =cos(B+A)U, n, =sin(0+A)U,
& = cos(B—A), nz =sin(@—A)V.

Notice that turning of the coordinate system in the &, % plane changes quantity € into
corresponding constant. According to the properties (3.2), the coordinate system may
be chosen so that

|[A+0] < /3(m—0), |A—6] <?/(x—0).

In this case £, <0, & < 0. Let (o, fo) € 2. We shall prove that E(a,, o) # E(«, B) if
(e, B) # (2o, Bo). Introduce the coordinate system in «, § plane with the centre in the
point (ag, fo) and coordinate axes parallel to original axes. It follows from the monoto-
nicity of & that points where E(«, #) = E(o, fio) may lie only in the second or fourth
quadrants of the plane «, . Let («,, f,) belong to the fourth quadrant. If the point
(a;, Bo) belongs to domain 2 we choose coordinate system &, # so that 6(x,, B,) = 0.
In this case (4+60)(«, fo) > 0, (0—A)(«;, f) < 0. According to (3.3) we see that change
of n from point (a,, fo) into point («,, #,) is non-zero. If point («,, f¢) does not be-
long to & characteristics o = a,, f§ = f, intersect line ¢ = 0 at points (x,, fo) and
(ay, f£2). We choose coordinate system &, 7 so that 8(a,, fo) = 0. From (3.2) we obtain
0 = 6(az, Bo) > 0(ay, B,). From (1.3) we have n(x;, fo) > n(«,, B,), Change of % into
f = B, and « = «, is considered as in the previous case. Univalence of mapping (1.3)
in the domain & is proved.
Solvability of Problem 3 follows from Theorem 2 for y > 3.
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