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The Stiissi-Kollbrunner paradox in the light of the concept
of decohesive carrying capacity

TRAN-LE BINH and M. ZYCZKOWSKI (KRAKOW)

THE Stiissi-Kollbrunner paradox consists in the independence of the classic limit carrying
capacity of a beam shown in Fig. 1 of the length of the beam span /;; at /; — o0 we obtain
the result which is different than the result obtained for the carrying capacity of the free-supported
beam. It was shown in this paper that the paradox mentioned above does not occur for the
perfectly-elastic-plastic material if continuous displacement fields or fields with admissible
discontinuities are the only considered. The classical scheme of limit carrying capacity cannot
be reached; the work of a beam which is assumed as a continuous system ends when the first
plastic hinge under the force appears. According to SZUWALSKI-ZYCZKOWSKI proposition the
corresponding load was called the decohesive carrying capacity of a beam and is continuous
function of the geometric parameter k in a whole interval 0 < k < 1, Fig. 4. The value of the
non-admissible discontinuities of the displacements corresponding to ‘the limit carrying capacity
is also determined.

Paradoks Stiissi-Kollbrunnera polega na niezaleznoéci klasycznej noénoéci granicznej belki
pokazanej na 1ys. 1 od dlugosci przgsla /y; przy Iy — oo otrzymujemy wymk rozniacy si¢ od
nosnosci granicznej belki swobodnie podpartej. W pracy pokazano, iz dla materialu idealnie
sprezysto-plastycznego przy ograniczeniu sie do p6l przemieszczen cigglych lub wykazmacych_
dopuszczalne niecigglosci powyzszy paradoks nie istnieje. Klasyczny schemat noénogci granicznej
nie moze by¢ osiagniety, praca belki jako ustroju c;aglego koficzy sig przy powstamu pierwszego
przegubu plastycznego pod sila. Zgodnie z propozycja K. SZUWALSKIEGO i M. ZYCZKOWSKIEGO-
odpowiednie obciazenie nazwano no$noscia rozdzielcza belki: jest ona ciagla funkcja geometrycz-
nego parametru k w calym przedziale 0 < k < 1, rys. 4. Okreslono réwniez warto$é nie-
dopuszczalnych niecigglosci przemieszczen, odpowiadajacych no$nosci granicznej.

TTapagoxc Cruccu-Kons6pynnepa 3akmouaerca B HE3aBHCHMOCTH KJIACCHYECKON NpeaesbHON
Harpyaxs Gamiu, ykasaHHo# Ha puc. 1, oT qmHBI nponera /;; npu /; — 00 momydaerca pe-
3YJLTAT OTJIMYAKOWMICA OT NMpEAebHON HArpyskH cBobomHo mommeproit Gamkxu. B paGore
MOK232HO, YTO [UIA MOCANBHO YNPYTO-IUIACTHUECKOTO MaTepHana, OrpaHH4HBAasCh IOJAMH
HENPEPLIBHBIX MepemMeleHuit w ofIaalonmx JOMyCKaeMbIME PasphIBaMi, BHILEYIIOMAHY-
ThIH NapafioKc He cywecTByer. KilaccHUecKan cxema MpefeNbHON HATPYSKH HE MOMKET OBITh
JocTurHyTOH, paGora 6a/IKH KK CIIOLIHOrO YCTPOHCTBA KOHYAETCA NPH BOSHHKHOBCHHM Iep-
BOTO IUIACTHYECKOro wapHupa nog cuioif. Cornaco npeminoxenmio K. llyBamsckoro 1 M.
HGrIKOBCKOTO COOTBETCTBYIOLIAA HACPY3Ka HasBaHa Hecyllell COCOGHOCTHIO pacueneHuA
Gamxn: oHa ABNAETCA HenpephIBHOM (yHKIMEN TreOMETPHUYECKOro mapameTpa kK B LEJIOM
unTepBaie 0 << k<X 1, puc. 4. OmpefeneHo TOXe 3HAUEHHE HENONMYCKAEMBIX PA3pbIBOB
nepeMenieHmif, OTBEYAIOIMX NpefeIbHONH Harpyske.

1. Introduction

THE classical theory of the plastic limit analysis is based on two intuitive axioms. Within
the frames of perfect plasticity it is assumed that for a given structure: (1) there exists at
least one mechanism of plastic collapse (infinitesimal motion at a constant loading para--
meter), (2) if it exists for a rigid-perfectly plastic body, then it may be reached by an elastic-
perfectly-plastic structure as well. The corresponding stresses and velocities (or displace--
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ments) should be continuous or exhibit such discontinuities which are admissible from
the viewpoint of a continuous medium.

In many cases both these assumptions are justified; however, some exceptions prove
that they are not quite obvious. In general, no mechanism of plastic collapse may exist,
or, if it exists for a rigid-plastic body, it may be unreachable by an elastic-plastic structure
without violating the required continuity conditions. The existence theorem for the elastic-
perfectly plastic bodies fails (G. DEL Piero [1]), and the papers by K. SzuwaLskl and
M. Zyczkowsk1 [14, 19] demonstrate several examples of the non-existence of any mecha-
nism of plastic collapse: earlier, in the elastic-plastic range, inadmissible discontinuities
appear and a continuous solution ceases to exist. The corresponding loading parameter
was called in [14] the “decohesive carrying capacity” of the structure. In the light of the
.concept of decohesive carrying capacity the problem of a half-plane discussed by
S. S. GoLUSHKEVITCH [4] and V. O. GEOGDZHAYEV [3], is quite clear: the limit carrying
-capacity cannot be reached here, since it is preceded by inadmissible discontinuities, con-
nected with infinitely large strains. Similar objections were raised by E. M. SHOEMAKER
[10, 11] and R. H. Woop [16].

Of course, the conclusions as regards the existence or non-existence of a continuous
solution may depend on basic assumptions of the theory. In [14] the small-strain-theory
of elastic-perfectly plastic bodies was used. Some deviations from perfect plasticity were
also discussed (asymptotically perfect plasticity). The simplest finite-strain-theory (NADAI-
DaAvis) for an annular disk joined with a rigid central shaft was applied in [18] with the
geometrical changes taken into account; this approach leads to some minor differences,
but a certain impassable limit of the elastic-plastic solution was determined as well.
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On the other hand, there exist many structures for which a certain mechanism of plastic
collapse may be found, but this mechanism may not be reached by an elastic-perfectly
plastic body. Several examples of statically indeterminate beams were shown in [15].
The present paper is also devoted to a statically indeterminate beam, namely that discussed
by F. StiUss1 and C. F. KOLLBRUNNER [12], Fig. 1. These authors analysed the dependence
of the limit carrying capacity on the ratio /,//, and pointed out the following paradox:
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the limit load P equals P = 8#]l, (where A is the limit bending moment for the cross-
section) and is independent of /, /l,. However, for /; — co the middle span is practically

unaffected by the outer spans and we should obtain P = 411-:1";‘12 as in the case of a simply
supported beam. So the case /; = co leads to a certain discontinuity of the result, which
is not justified from the physical point of view.

The experimental tests, carried out by Stiissi and KOLLBRUNNER [12], as well as by
H. MAIER-LEIBNITZ [6], do not agree with the classical limit analysis: real carrying capacity
depends on the ratio /;/l;. A. M. FREUDENTHAL [2] noticed that these results lie between
the elastic and the limit carrying capacity, P and P respectively, and proposed — quite
arbitrarily — to assume the arithmetic mean of P and P as the real carrying capacity of
the beam.

Several attempts have been made to clarify the Stiissi-Kollbrunner paradox. P. S. Sy-
MONDs and B. G. NEAL [13] calculated the deflections assuming ideal I cross-section and
found an infinite increase of central deflection in the limiting case /; — co. Their calcula-
tions were developed by K. A. RECKLING [8], who tried to introduce a “distributed plastic
hinge” with the length 0.1/,. However, these calculations admitted a finite jump of the
rotation angle « under the force, what is in contradiction with continuity requirements.
It turns out that the paradox discussed disappears if we adopt, in a consistent manner,
the assumptions of a continuous medium and perform the calculations until only the first
inadmissible discontinuity is formed.

Overlapping

Such a discontinuity is introduced by the plastic hinge if it at a finite deflection of the beam
is achieved (the corresponding discussion is given by A. R. RZHANITSYN [9] —e.g., this
case occurs if the bending moment reaches its strong maximum with a simultaneous jump
in the derivative, under concentrated force). Indeed, the plastic hinge may be understood
to correspond to the limit carrying capacity of the cross-section: an infinitesimal rotation
at a constant bending moment. For a rigid-plastic multi-span beam three such infinitesimal
rotations describe a certain mechanism of plastic collapse (Fig. 1), but, in general, this
mechanism will not be reached by an elastic-plastic beam, since the formation of the first
hinge under the concentrated force will terminate the process and the decohesive carrying
capacity is reached. Any finite rotation angle « in the hinge is namely impossible, since it
cannot be described by a displacement field which is continuous or contains admissible
discontinuities. It leads to vacancies on the tensile side and overlapping of the material
on the compressive side of the beam, Fig. 2.
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The present paper is devoted to the determination of the decohesive carrying capacity
of the Stiissi-Kollbrunner beam. This quantity depends continuously on the length of
the outer span /; and in this statement of the problem no paradox occurs.

2. Decohesive carrying capacity

Because of the symmetry of the beam we only consider its right-hand side, Fig. 1. The
bending moment under the force will be equal to the limit carrying capacity of the cross-
section, M. Therefore, assuming there is no rotation angle at this point we can determine
the decohesive carrying capacity, whereas admitting rotation and assuming that the sub-
sequent moment [M,| is equal to M we can estimate the inadmissible discontinuity, which
is determined by the magnitude of & under the force, corresponding to the classical mecha-
nism of plastic collapse.

For a beam of the rectangular cross-section b x h we introduce a dimensionless force p,
dimensionless coordinate &, and dimensionless deflection v:

@.1) p“ hpo b::’ P, &

e

x def Eh

o] , U= =W,
L & 30,13
—:;.-H‘1

where w denotes the physical deflection and o, the yield-point stress. The geometry of
the beam will be characterized by the ratio

der I, 1,

2.2) kS =g 0<k<l.

The dimensionless bending moment in the inner span, m;, and in the outer span, my,
equals
M, 4

@.3) m=t ==l 0<E<k,
@.4) m,,:j‘;1= 4(1 )(1 5, k<é<l.

Within the elastic range we integrate easily the two corresponding differential equations
[without the assumption m(0) = 1] and equating the maximal stress (under the force P)
to the yield-point stress ¢, determine the elastic carrying capacity of the beam:

_ 16 142k

e P=5 5
The number of intervals for the integration of differential equations of bending in the
elastic-plastic range must be higher, since we have to separate elastic bending from elastic-
plastic one. For the rectangular cross-section the dimensionless elastic carrying capacity
equals m = 2/3, so the first, elastic-plastic interval is given by 0 < ¢ < §&,, where §;, =
= 4k/3p. The rest of the beam may remain elastic, or other elastic-plastic zones appear
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near the support C. Equating m; to (—2/3) we find the second boundary coordinate &, =
= 20k/3p, if p > 20/3. Finally equating my to (—2/3) we find
3p+8k—-20
3(p—4) ’
Thus, for p > 20/3 we have five intervals for integration, and for p < 20/3 — three.
In the case of five intervals, the differential equations of bending are as follows

(2.6) & = also if p > 20/3.

o(®) = _M::iil/f’ 0<E<éy,
w'{(&):%’%—l, & <ESE,
. k
(2?) ﬂa(ﬂ:ﬁyﬁ’ Ez»ﬁfsk.
» 4y1-k
" = — » k £ 5 r
v (@) 3|/3 |/(p-—4)5+8—4k—p R
Their general integrals are
__ 16Yk8 Y.
v, (§) = 9'/5 +A §+A4,, ”3(5)—1‘4?—'2—*'515"'32’
16/ k(8k—pé)®
2.8 =-———=2"_4C,§+C,,
(2.8) v3(%) 5y/3 52 +C,§+C,
vy() = Sy 1=k ) Ke~GevB=Ae-pp +D,é+D;,

9Y3 (p—4)?
) = = 8(1 3 (5 E‘)+E1£+Ez

The boundary conditions v(k) = 0, and v(1) = 0, eight continuity conditions, and the
additional continuity condition (symmetry) v3(0) = 0 make it possible to determine ten
integration constants and the load parameter — decohesive carrying capacity p. The
final equation takes the form

(2.9 3Y/38—P) [(1+2k)p*+(4—28Kk)p+48k]—80(1 —k)p = 0.

It determines p in the considered range of five intervals, i.e., if § > 20/3. Substituting this
boundary value to (2.9) we find the corresponding boundary value of k, namely & = 5/11,
and hence (2.9) is valid if 5/11 < k < 1. For k = 1 (clamped beam) we obtain p = 8
and here p = .

If 0 < k < 5/11, then the beam should be divided into three intervals only, (1), (2)
and (5), since the elastic-plastic intervals (3) and (4) disappear. The differential equations
and their general integrals remain without change. The boundary conditions, four conti-
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nuity conditions and the additional continuity condition #;(0) = 0 determine six integra-
tion constants and the decohesive carrying capacity p, here in the explicit form

4 s i sy
(2.10) b= —{1+2k+]/(l+k) (1+5k) |.
2+k
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In the limiting case k — 0 we obtain p = 4 and this result corresponds to the classical
limit load for a simply supported beam. Inside the interval 0 < k < 1 .the dependence
p = p(k) is continuous and no paradox appears. This dependence is shown in Fig. 3.
together with p = p(k) and the paradoxical p = p(k).

3. Estimation of inadmissible discontinuities corresponding to the classical limit state

The equations (2.7) and their general integrals (2.8) may also be used to estimate the
value of inadmissible discontinuities in the classical limit state of the beam. These discon-
tinuities are characterized by the inadmissible finite angle of rotation o under the force P,
for £ = 0. If we reject the continuity condition ©'(0) = 0 and admit the formation of the
subsequent plastic hinges at B and C putting additionally m(B) = m(C) = —1, then
o may be evaluated. Of course, under these assumptions five intervals of integration must
_be considered for any value of k. Finally, the angle of rotation equals

Licd
d'r x=0

Jg Iz
Eh

. 40

3.1 = = (1 =k} -
3.0 s 55 (1-K)
and — because of the symmetry — the inadmissible discontinuity is characterized by the
angle of mutual rotation of the two adjacent sections 2az. For example, if a,/E = 0.001,
Lh =50, I, =1I., k =1/3, then 2a; = 0,0658 = 3°46/,
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The dependence of & = azEh/30,/; on the geometrical parameter k is shown in Fig. 4.
For k = 1 (clamped beam) ar = 0 and then the limit carrying capacity coincides with
the decohesive carrying capacity, as it has been mentioned above.

Fia. 4.

4. Final remarks

The Stiissi-Kollbrunner paradox has been explained here within the small-deflection
theory of perfectly elastic-plastic beams. However, if we replace perfect plasticity by an
asymptotically perfect one, the situation may change. The discussion is then similar to
that given in [14] for bars in tension, since the type of non-homogeneity of the stress state
is also similar. For certain stress-strain diagrams the decohesive carrying capacity termi-
nates the process; for other diagrams (as, e.g., for that proposed by A. YLINEN [17]) the limit
carrying capacity theoretically may be reached and further steps must be taken to remove
the Stiissi-Kollbrunner paradox. Since the classical limit state is then reached at infinitely
large deflections, the finite-deflection or even the finite-strain-theory should then be applied.

The problem may also be considered as a two-dimensional one (plane stress or plane
strain). Exact elastic-plastic analysis is then difficult, but in the case of perfectly elastic-
plastic body no major differences are expected: first, W. PRAGER and P. G. HODGE [7]
showed that in plastic zones of beams the stress state reduces to uniaxial tension or com-
pression (under the assumption of incompressibility) and, second, in certain two-dimen-
sional problems the necessity of decohesion was found as well (E. H. Lee [5], notched bars).
The result of a two-dimensional approach for an asymptotically perfectly plastic body
will probably depend on the particular stress-strain diagram and in some cases the finite-
strain-theory may be necessary to clarify the Stiissi-Kollbrunner paradox.
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