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Low-frequency transonic flows past a thin airfoil

B. K. SHIVAMOGGI (PRINCETON)

Low-FREQUENCY transonic flows past oscillating thin airfoils are considered. Three methods
of analysis: 1) method of perturbations, 2) method of local mean invariation, 3) method of
reduction to a constant-coefficient equation, are developed and illustrated.

Rozwazono nisko-czgstotliwosciowy oplyw przydzwickowy cienkich platow. Rozwinigto
i zastosowano trzy metody analizy problemu: 1) metode perturbacji, 2) metod¢ lokalnej inwa-
riacji i 3) metode redukcji do rownan rozniczkowych ze stalymi wspolczynnikami.

PaccMOTpeHO HM3KOUACTOTHOE OKOJIO3BYKOBOe OOTeKaHHE TOHKHX KPbIIbeB. PasBHTHI M IpH-
MeHeHbI TPM MeToja aHajk3a npodiuembl: 1) MeTox nepTypbanmii, 2) MeTox JIOKaJIBHOH MHBap-
HaHIMU # 3) MeTo[] cBejleHus K mudbdepeHMaabHbIM YPAaBHEHHAM C NMOCTOAHHBIMU K03Gdu-
LHEHTAMH.

1. Introduction

ONE AREA of applicability of unsteady transonic flow is the possibility of transonic
supercritical airfoils with which a shockless mixed subsonic and supersonic flow may be
realised. A few versions of the original “local linearisation” concept have been given by
STAHARA and SpREITER [1], DoweLL [2], among others, to treat unsteady flows. In the
present paper three methods of analysis:

1) method of perturbations,

2) method of local mean invariation,

3) method of reduction to a constant-coefficient equation, are developed and illustra-
ted to treat a harmonically oscillating thin airfoil in transonic flow. The restriction is
made to the low-frequency limit which is of relevance, for instance, in one-degree-of-free-
dom torsional flutter instability. Since the experimental works of NiEwLAND [3] and
HoLDER [4] revealed the existence of shock-free transonic flows, in the following a shock-
free case is treated.

2. Statement of the problem

For simplicity wing sections that are symmetric about the x-axis are considered. One
has for two-dimensional potential flows past a thin airfoil
Q1) &(P::— 2P —2ML D, — ML Di7) = ML[(y — D(Pi+ £D)(Dix + £Ps3)
+20, D, +2:D; Dy; +2(eP Py +6°P; D7),
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2.2) z = f(x, t): ll/j-ﬁi = (—;x +e& —(%—) f(x, 1);
upstream:
2.3) D,.,D; -0,
where
2 _ M2 -1

E:VEZ, t= &, B

A -=0(1), e&<1,

@ is the velocity potential, M, the free-stream Mach number, y the ratio of specific heats,
and z = f(x,?) the airfoil surface. All quantities have been nondimensionalised using
the chord length ¢, and free-stream velocity V.. The spatial scalings are motivated by the
fact that in the limit M, —1, the linearised supersonic-flow theory (LIEPMANN and PUCKETT
[5]) indicates that the disturbances are propagated almost undiminished to infinity in
the z-direction but are confined to a small width in the x-direction. The physical signifi-
cance of ¢ will become apparent when it is related to the thickness ratio 7.
The pressure coefficient is given by

(2.4 C, = —20,—2e@; + ef* D2 — D2 +2eM2 B D7 + M2 205

3. Method of perturbations
Let
(3.1) f(x,z, 1) = £2g(x)+ £52h(x) €™,
Seek a solution of the form
(3.2) B(x, 2,15 6) = 326(x, D+ [2p(x, D+ e3¢’ (x, D] e +0(52).
Then, from Egs. (2.1), (2.2), and (2.4), one obtains
$::— P = 0,

(3.3) ¢
Z=0:¢; = g
35— B —2M2ike, = 0,
(3.4) a ¢
z=0: ¢; a hxy
(3.5) i1 B —2M2 ik, = (y + DML (et .

z=0: ¢:; = _$xhx_¢xgx;
(3.6) C, = e¥2(=20)+ e2(—2¢,) eV + 52 (—2¢}) ¥ + 0(512).
From Eq. (3.3)

G $(x, ) = — ; g(x— ).
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From Eq. (3.4)

x—fz 2

; Mook 2 ‘
(3.8) ¢(x,z")——? he e T, [—%ﬁf—u/m—hw]dx

J, being the Bessel function of order n.
Putting

MLk

(3.9) P, D=e 8 “§(x,5)

and taking the Laplace transform

(310) 21¢']

Il

q; Ef e’ (x, £)dx,

Eq. (3.5) becomes

@3.1) e pd = = U Mt
from which,
(.12 (s, 2) = A(s)e P+ [,’%} Mﬁ,(g,qb,,)] Ze=Pe.

Upon inverting

(3.13) ¢'(x, ) = A(x—pa)+ M2 z[g(x — B2)]c[p(x— BZ, 0)],.

2;32
Using Eq. (3.5), one obtains
) 2 M r E MRk
(3.14) d'(x,2) = —FE " - [-f ﬂ(e w 5+—4"I§2—M§o)ge¢ed§
0
y+l

The pressure coefficient on the airfoil is given by

2 i Mczﬂk x 2 M:jk 13
(3.15) C, = &2 (2 ‘?)—82(24) Jet 4 gsi2 [411\; k Pty cak f(ei g ¢
0

Mmﬁ

?+ M2 ﬁz )gx¢x]+0(85/2)'

Consider a parabolic arc airfoil in pitching oscillation so that

(3.16) g(x) = x(1-x), h(x) = x
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one obtains for the lift coefficient

1 2

.3 . Mxk , 2
I -2 (- M2k
(3.17) C= 4% e fe pr 70y - (l—x’)] dx
0
1 2 2 2
8 .- Mok I i Mak Mk
+85f2 ij etkt {[]+€ 32 E-1 ey };‘;2 M?o (2 B2 £ g e

0

x [1+ f(—uo{";%k (E—x')}

0

MZk lek i ]
(o) =

x (1=28)d&+o(&%/?).

VAN DyKE [6] gave a calculation for the supersonic counterpart of this problem where

M, is fixed and 7 — 0, i.e. § is large. The present result is shown along with that of Van
Dyke in Fig. 1.

The present result, as well as that of Van Dyke, breaks down for M, = 1. Next,

therefore, methods that are capable of yielding better results at M, = 1 are developed.

Co ) o
Parabolic arc airfoil

T=0.06, k=01

1000
van Dyke

100 —
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of perturbations )

10 Shivamoggi (method of
local mean invariation)

/
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FiGc. 1.
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4. Method of local mean invariation

Let
(4.1) f(x, 1) = e¥2g(x)+ &5/2h(x)el¥;
seek a solution of the form
(4.2) D(x, 3,1, &) = ep(x, )+ e2p(x, 2 e + o(e2);

then, one obtains from Eqgs. (2.1), (2.2), and (2.3)
A; ;_ﬂz(:i;xx_Mio(y"" 1)$x$xx =0,

(4.3) :
Z=0: ¢; = gx;

“44) §: 5= Bux—2ML ik~ ML(y + )65 = 0,
Z=0: ¢; = h,;

(4.5) C, = e(=2¢,)+e*(—2¢,) e +0(?).

Equation (4.3) is solved by using the method of local linearisation due to SPREITER
and ALKSNE [7]. In this method qux is held constant in the nonlinear term only until a for-
mal solution is obtained, but q;“ is then allowed to vary with x.

Let,
(4.6) 2= B ME(y+1)p, > 0
so that, from Eq. (4.3)
4.7 —P§tdiz=0.

Now one assumes that A varies slowly enough so that it can be considered as a con-
stant in the initial stages of the calculations. Thus one obtains from Eq. (4.7)

(48) $ulx, 0) = — 5=
from which
(4.9) $ulx, 0) = — £,
so that upon replacing 4 by Eq. (4.6) and solving for $x,

. 1 3M3(y+1)g ]Z’“\
4.10 = — @3 | T OF 4C 3
e Gy VX oy {ﬁ [ R I
where 'C is a constant of integration. In order to determine C, let
@&.11) x=0: ¢, =0.

This amounts to modelling the steady flow as shown in Fig. 2. The subsonic region ahead
of the sonic point poses difficulties in analytical approaches, and similar steps have been
taken by STAHARA and SPREITER [1], DOWEL [2] to get around this difficulty.
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[ ) Modeled dfbf_’%/
\ Actual distribution
0 -
X

FiG. 2.

In analogy with the local linearisation hypothesis, a local mean invariation hypothesis
is now introduced to solve Eq. (4.4). Thus Eq. (4.4) is replaced in a small region by an
equation with constant coefficients, and then mtroducmg for the latter different values
for different points in the field. Mathematically, q5,, and ¢xx are considered constant until
a formal solution for ¢ is obtained, but are then allowed to vary with x. Hence one obtains

1 x= VB ML+ 1)éa
(4.12) ¢ = — S f dx'hy (x") e~ R3] [E(x — X)],
V8 + ML(p+ D p

where

Mz Ik_ '(')""l)] ¢xx

2
=" ﬂ’+M§o(y+1)¢x
2 xXx
= = / w2 _ 21
) = Mg, VT BHML+ DAL

Using Eqgs. (4.5) and (4.12), one obtains for a parabolic-arc airfoil in pitching oscillations,
Eq. (3.16),
1
4¢2

4.13) CL= s _— f e =¥ I (1 —x))]dx’,
B*+3M%LG+ DI

where

Milk—i(y+D{3ML(y+1)y+p3}13
BMZ(y+1)y+p22

n(y) = Y-
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The present result is shown Fig. 1 as Cp, vs. M, for kK = 0.1, = = 0.06. In Fig. 3 the
present result Cp, vs. k for M, = 1, 7 = 0.06 is shown along with those of the linearised
supersonic-flow theory, and DOwELL [2]. ;

fc./A Parabalic arc airfoil
72006, M=

Linearized
supersonic theory

Shivamoggi (method of
reduction to constant-
Dowell coefFicient equation)

Shivamoggi
(method of local
mean invariation)

FiG. 3.

5. Method of reduction to a constant-coefficient equation

Putting
G D= ¢p

in Eq. (2.1), one obtains to O(s)

(5.2) {82+ ML+ ).} bz :+2M2 45 = 0.
Reverting to the unstretched variables

(5.3) {MZL-D)+M2(y+1)D,} D, ~D..+2M2 D, = 0.

Let

(54 flx, 1) = gx)+h(x)e™, k<1,

(5.5) B(x,z,t) = d(x, 2)+P(x, 2)e™
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so that upon neglecting the higher harmonics, one obtains

(l—Mi)$xx+$zz_Mi(7+l)$x$xx =0,

(5.6) .
z=0: ¢z = &x;

(1= M%) byt ¢z —2M2 ik, = M2 (y+1)(hrhs) s

5.7 z=0:¢, = h,.

It turns out in the following that the solution to Eq. (5.6), given by Eq. (4.10), is not
proper to use for M, = 1. Note from Eq. (4.9) that, for M, = 1, (27“ is infinite at a point
where ¢, = 0 (sonic point), if g.. does not vanish rapidly enough at the same point (and
for the parabolic-arc airforl it does not). This did not pose any problem in the evaluation
of Eq. (4.12) but a different method of constructing a solution to Eq. (5.6) is necessary
if a physically realistic value for d)xx at the sonic point is needed per se.

For M. = 1, following SPREITER and ALKSENE [7], let

(5.8) 2= 4+ 1)y > 0
so that from Eq. (5.6)
(5.9) bra— A2y = 0.

Again one assumes that 4 varies slowly enough so that it can be considered as a con-
stant in the initial stages of the calculations. Thus one obtains from Eq. (5.9)

(5.10) ¢x(x, 0) S ;/;E [ Te f '/x 5 ]..

Upon replacing 4 by Eq. (5.8) and solving for ¢x,

) x - 1/3
(5.11) b= [y f{dxfl/x §d5} /|

where

l/

For a parabolic-arc airfoil, Eq. (3.16), this gives

1
*ows
(5.12) B o

Using Eqgs. (3.16) and (5.12), one obtaing

3 1/3
(5.13) (1n4x 8x+8x2+ 2)] 3

3
Bs = [n(y+ 1)
In order to solve Eq. (5.7), let

(514) d)(x’z) = w('xlz)'*'g(x!z)s
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where
(5.15) (I=M2) ye+y..+ —2MLiky, = *y,
so that

+2M2 ikg] + [M(y + Devde— "yl
Near the surface of the airfoil, as a first approximation, one drops the term on the

left hand side (a similar step has been taken by Hosokawa [8] for the steady problem)
so that one obtains

v ’ " ’ & 2k
. o Ja(x Ydx 20y 1) x.fa(x Ydx exf Kl 1) g N
' By b(%) b)) T bGx) .
where
A K
a(x) = (¢x1px)x_ m Yx»
MZ

b9 = b= 33y
If,
(5.18) x=x,: b(x) =0,
g, will not be well-behaved unless x; = x*, and a(x*) = 0.

Thus
M2z 1

(5.19) M o5,

xlx x*
(5.20) X=X ¢x = Yx,

i.e. the sonic point corresponding to the steady flow is the same for y as for ¢. Therefore
w would be a valid approximation in the neighbourhood of x = x*, at least on the airfoil
surface.

Note that for M, = 1,

(5.21) K=+ D)beds_xe

which is the same as that obtained by HosokawA [8] for the steady case! Earlier MAEDER
and THOMMEN [9] had advocated such a choice for the steady case on grounds of better
correlation with experimental results.

For M, = 1, Eq. (5.15) gives

1
B2 Y= Kt 2ik) dx [ ( df]
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For a pitching oscillation, A(x) = x, this gives
1 1

5.23 r = ——— —

P B V a(K+2ik) yx

and

(5.24) C,= —2y,,

(5.25) AC, = C;—C; = 2C, = —4dy,,
'1 8

5.26 C, = AC dx = ey

G - J T Y a(K+2ik)

The present results — Cy, vs. k, for M, = 1, T = 0.06, are shown, respectively, in
Figs 3. and 4, along with those of STAHARA and SPREITER [1], DOWEL [2]. Again the present
result, being adequate for low frequencies, shows departures at high frequencies from
that due to DOwELL [2].

Parabolic arc airfoil
lacl § T=006, Mo=1, k=01
8

Dowell

vaamagg{ (methad of
reduction 1o constant-
coefficient equation)

Stahara & Spreiter

X"

Fia. 4.

For a Guderley airfoil
(5.27) ¢, = 0.37(x—-0.4)

so that one obtains, upon including the correction term g, this time,

_ e [ 2
(5.28) c, 2(petgs) = — VR+2m0 L1+ vx

(I+2)"12—1
f ez Iﬁ{ (14+2z)t2+1 ”
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where :
_ X 2ik[0.37
=AY
The present result |C,| vs. x, for My, = 1, k = 0.5, T = 0.06 is shown in Fig. 5 along
with that of STAHARA and SPREITER [].

Guderley airfoil
1Col} T=006, Muw=1, k=05

Shivamoggi (method of reduction
to conslant-coefficient equation)

j—-
1 Stahara & Spreiter/
| L 1 1 |
0 02 04 06 08 10 x

FiG. 5.

6. Conclusions

The method of perturbations gives better results than the supersonic theory due to
VAN DYKE [6], but it fails at M, = 1 like the'latter. The method of local mean invariation
and the method of reduction to a constant-coefficient equation, on the other hand, yield
meaningful results at M, = 1. The points in favour of the method of reduction to a con-
stant-coefficient equation have

(i) a more sound rationale,
(i) simplicity (only a slide-rule calculation required),

(iii) greater accuracy.
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