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Numerical study of transverse lattice waves and the martensitic
transformation

T. SUZUKI (SAKURA)

THE MAIN objective of the paper is to describe the martensitic transformation as the change
of the stacking order of the atomic planes — shuffling. To this aim a one-dimensional anharmonic
chain is constructed and investigated numerically. We show. that the model is able to describe
the dynamical generation of a static transverse lattice wave from a lattice wave pulse with a
sufficient amplitude but without any specific structure.

Celem pracy jest opis martenzytowego przejicia fazowego jako zmiany uporzadkowania plasz-
czyzn atomowych — przetasowania. W tym celu skonstruowano jednowymiarowy lancuch
anharmoniczny, ktory przeanalizowano numerycznie, Pokazano, ze model jest w stanie opisac
dynamiczng generacje statycznych sieciowych fal poprzecznych z sieciowego impulsu falowego
o dostatecznej amplitudzie, ale bez specjalnej struktury.

1lenpro paGoThl ABNAETCA ONMCAHWE MapTEHCHTHOTO (ha30BOro Ilepexofla KaK H3MEHEHHA
YIOPAJOYEHHA ATOMHBIX IUIOCKOCTedl — neperacoBKM. C 3TOH NeJIBIO ITOCTPOEHAa OJHOMEpP-
Hasg aHrapMOHHYECKAs 1Llellb, KOTOpas MpOoaHaJM3WpOBaHa yHciIeHHO. IlokasaHo, YTo MOmEsns
B COCTOSIHMHM OIIMCAaTh JHHAMHYECKYIO TEHEPAIMIO CTATHYECKHX PpEIUETUATHIX IIOIEepPeUHbIX
BOJIH K3 PeLLeTYATOro BOJIHOBOI'O MMITYJIHCA C AOCTATQUHOM aMIIMHTYAOH, HO Ge3 crneupanbHOM

CTPYKTYDBI.

1. Introduction

THE DIFFUSIONLESS structural transformation in materials like BaTiOs, SrTiO; or quartz
has been explained satisfactorily in terms of the soft phonon model [1]. However, the
soft phonon in its original meaning has never been found experimentally in the metal or
alloy that undergoes the martensitic transformation [2, 3, 4].

As far as the structural aspect of the martensitic transformation is concerned, it is
now established that the important part of the martensitic transformation progess is the
transformation in the stacking order of atomic planes—shuffling [5, 6]. Shuffling can be
described as a static transverse lattice wave with a finite amplitude and with such a specific
wave-length as to perform transformation. In this paper it is shown that such a specific
static lattice wave can be generated dynamically from a lattice wave pulse with a sufficient
amplitude but without any specific structure.

Since the results presented in this paper are obtained from the one-dimensional model
of the lattice, the scope of the validity to the three-dimensional process of the martensite
nucleation is not yet established. However, the present author wishes to propose that,
also in a three-dimensional lattice, the finite static finite displacements necessary for shuffling
is generated from a localized random displacement without any specific structure.
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2. Lattice model

The F.C.C. (face-centered cubic) lattice consists of the stack of the (111)g.c.c.-type
atomic planes. The martensitic transformation from the F.C.C. lattice to the H.C.P. (hex-
agonal close-packed) lattice can be accomplished by displacing every other (111)fc.c.
close-packed plane by [a/2, —a/2, O]f.c.c., Where a is the lattice parameter. This is schema-
tically shown in Fig. 1(a).

a b - B ‘ d

Fi1G. 1. The transformation in the stacking order of atomic planes; a) F.C.C.— H.C.P., b) B.C.C.- F.C.C,,
¢) B.C.C. - H.C.P, d) B.C.C. — 3R.

In the case of martensitic transformation from the B.C.C. (body-centered cubic) to
the F.C.C. lattice, the displacement of every (110)g c.c. plane in the [110]s.c.c. direction is
necessary. This is schematically shown in Fig. 1(b). But an additional small deformation
of (110)g.c.c. planes is necessary before the martensitic transformation from the B.C.C.
lattice to the F.C.C. lattice is completed. Even in the case of the martensitic transformation
from the F.C.C. lattice to the H.C.P. lattice transformation, a small adjustment of the
spacing between the (111)g.c.c. planes is necessary if the c/a ratio of the H.C.P. lattice is
not equal to the ideal ratio, (8/3)!/2. This aspect of the martensitic transformation is not
included in the present paper, although the uniform shear of the stacks of atomic planes as
shown in Fig. 1(b) is included as a special case of the shuffling displacement. In the same
way the shuffling displacement necessary for the B.C.C. to H.C.P. transformation is shown
in Fig. 1(c). The shuffling displacement necessary for the B.C.C. to the 3R structure is
shown in Fig. 1(d).

3. Interaction potential

In the present paper the martensitic transformation is considered as the transformation
in the stacking order of atomic planes and the lattice is described as a stack of atomic
planes. The phenomenological interaction potential ¥, between neighboring atomic planes
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are introduced from the following considerations. While the Stacking order corresponding
to the parent phase should correspond to the metastable configuration, the stacking order
corresponding to them artensite should correspond to the stable configuration. Accord-
ingly, the phenomenological interaction potential ¥, between the neighboring atomic
planes should have two kinds of minima as a function of the relative displacement u,—u,_,, .
where u, indicates the displacement of the n-th atomic plane.

If the parent phase has structure which consists of the stacks of the close-packed atomic
plane, the permissible direction of the finite displacement of the close-packed atomic planes
is dictated from the requirement to avoid the stacking sequence such as — A4— in terms
of the notation where the F.C.C. structure is represented by ABCABC —-. Hence the
interaction potential ¥, should have two minima as a function of the relative displacement.
The simplest phenomenological potential which have two minima is given by

3.1) Va = o Gyt V2 (it + b (=t )"
The coefficients P, and P, should be positive because both the parent and the martensitic
structures are at least metastable. The cubic coefficient P; can be positive or negative
depending on where the deeper minimum is located, in the left or in the right of the shallow-
er minimum at the origin. The relative position of the deeper minimum with respect to
the shallower minimum, and hence the sign of P; is dictated by the stacking sequence of the
parent phase. The finite displacements necessary for the martensitic transformation take
place from the shallower minimum to the deeper minimum.

On the other hand, if the parent phase has the B.C.C. structure, a finite displacement
of the (110)g.c.c. atomic plane necessary for the martensitic transformation can be the
positive or minus direction of [110]s.c.c.. Hence the phenomenological interaction potential
V, for this kind of martensitic transformation is given by
B2+ Vo= e ) (et ) S (b))
instead of Eq. (3.1). The coefficients P, and P should be positive because the parent and
the martensitic structures are at least metastable. The quartic coefficient P, should be
negative because the martensitic phase should have lower free energy than the parent phase.

4. Interaction potential V',

In a model in which the lattice is described as the stack of atomic planes, it is very clear
why we must introduce the phenomenological interaction potential ¥, between the two
neighboring atomic planes. On the other hand, it is not self-evident why the phenomeno-

logical interaction potential ¥; which depend on the relative position of three atomic planes
" must be introduced. It becomes clear only from the results of the numerical investigation
in the following section that the interaction potential ¥, does play an important role in
choosing a particular displacement pattern among many other possible displacement pat-
terns compatible with the interaction potential ¥, which reflects the structure of the parent
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phase. The results of the numerical investigation show that the structure of the martensite
is governed by the combination of the interaction potential ¥, and ¥V, and that it is not
affected by the input wave patterns. In other words, we are proposing that the factor
central to the structure of the martensite is the combination of the interaction potential V,
and ¥, but not the structure of the nucleus. The purpose of the following numerical inves-
tigation is to verify this proposal for the one-dimensional model for the lattice. For the
three-dimensional lattice, the proposal remains to be checked by the three-dimensional
numerical investigation and at the same time by the experimental study of the relationship
between the dispersion relationship of the transverse lattice wave in the parent phase and
the structure of the martensitic phase [2, 3, 4].

The phenomenological interaction potentials ¥, which are tried in the following numeri-
cal investigation are ' :

(41) V3 — Ez'l_ (urH-l _2un+un—l)2’
(42) V3 = % (un+2—2un+un—2)2;
4.3) Vs = 0 ey =2 +1,-5)2.

Equation (4.1) represents the three-body quadratic interaction among the (n+ 1)-th, the
n-th and the (n— 1)-th atomic plane. Similarly, Eq. (4.2) represents the three-body quad-
ratic interaction among the (n+ 2)-th, the n-th and the (n—2)-th atomic plane. Many other
forms of the many body interaction including various combinations of Eqgs. (4.1), (4.2)
and (4.3), as well as nonlinear many-body interaction, may be investigated. As the purpose
of the following investigation is limited to show what kind of factor can control the struc-
ture of the martensite, only three different interaction potentials V5 are adopted as experi-
mental samples. The dispersion relationships for the transverse lattice wave in the parent
phase corresponding to the three different choices of ¥; are shown in Fig. 2.
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F1G. 2. The dispersion relationship of the transverse lattice wave propagating perpendicular to the stack

of the atomic plane; a) indicates the dispersion relationship for the choice of the interaction pc_)tential Vs
expressed by Eq. (4.1), b) for V5 expressed by Eq. (4.2), and c) for V; expressed by Eq. (4.3)



a) anoto ¢ LATTICE INITIALIZATION

00020 DIMENSION F1<200>
00020 REWIND 4
00040 DO 10 I=1,200
00050 10 F1<D>=0.0
00060 READ(S» 1> NaNXsH
00070 READ(S»2> AAsABsAC»ADs REs AF
00080 1 FORMAT (2IS+F10.3)
00090 2 FORMAT (6F10.3>
00100 NN=0
00110 WRITEC4> HyNX»HsRAsAB»RC» ADs AE» AF » NN
00120 WRITEC4) (F1¢JysJ=1sN)
00130 REWIND 4
60140 sToP
00150 END
b) oot SINUSOIDAL INFUT
00020 DIMENSION F1<2005yF2¢200)sF3<200)
06030 REWIND 4
00040 READ (4> NsMNXsHs AR s ABs ACs ADs AE» AF » NN
n0o0s0 READC4> CF1CI)sI=1sN>
00060 REWIND 4 .
00070 READ (S, 15 BsKsMyML
NO0s0 1 FORMAT ¢F10.35315)
00090 M1=M-1
Po100 FN=FLOAT (M> -2.
oul110 FM=FN-2.
00120 FK=FLOAT (K>
00130 OMEGA=2. 0#SIN (3. 141593FK/FN)
00140 0 31 I=1,200
00150 F2¢I>=0.0
an160 1 CONTINUE
00170 00 11 I=1,N1,2
a0Lg0 FT=FLOAT (C1+1) 72-1)
00190 F2<¢I)=BeSIN (3. 141593eFToFK FM)
an200 11 CONTINUE
60210 00 21 I=2sMs2
00220 F2(I>=B+COS (3. 141593FLOAT (1-2~1) sFK/FM #(~1.) «OMEGA
00230 21 CONTINUE !
00240 DO 41 I=1sML
00250 41 F3<D=F1<D>+F2(D)
00260 WRITEC4> NsNX»HsAR»AB» RCs AD» AE» AF » NN
00270 WRITEC4) C(FACI>sl=1sM)
00280 REWIND 4
00290 sTOP
an300 END
€) noo1o0.C GRAPH
10020 DIMENSION F1(200)»LINE (64)
00030 CHARACTER LINE
00040 CHARACTER BLANK»DOT»P
00050 DATA BLANK, DOTsP/1H s 1H. » 1He~
00060 REWIND 4
00070 READ 4> MsNX»Hs ARs ABs ACs ADy AE » AF » MY
00080 READ(4) <F1(JDsJ=1:N>
00090 REWIND 4
00100 N1=N-1
00110 DO 22 L=1:64
00120 22 LINE@W>=D0T
00130 DT=FLOAT (NND oH
00140 WRITE(6s100> DTsLINE
00150 100 FORMAT (1H152XsSHTIME=»Fé.152Xs 64A1)
00160 DO 23 L=1,64
00170 23 LINE (L) =BLANK
00180 DO 24 I=1sH1,2
00190 IL=CI+1)> 72
00200 LINE (33> =DOT
00210 L=10eF1¢I>+33.5
00220 IFQ.LE. 1) L=1
00230 IFCL.GT.64> L=64
00240 LINEW) =P
00250 WRITE(65101> ILsF1<I>sLINE
00260 101 FORMATCIH »2Xs 12,E10.3564A1)
00270 DD 26 L=1:65

00280 26 LINE (L) =BLANK
00290 24 CONTINUE >

00300 WRITE (4> N»NX»Hs ARs ABs AC» AD» AE» AF s NN
00310 WRITE(4) (Fi<hr9J=1N

00320 REWIND 4

00330 sTOP

00340 END,

[319]
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M-TH DRDER LIFFERENTIAL EQUATION(«RUNGE-KUTTA-6ILL)
COMMON ARs ABs AC» AiDe AE s AF
) DIMENSION F1¢200yF2¢200

nno4 DIMENSION G1¢200)»62v200)553(200> 64200 y65<200) 956 (200
00050 DIMENSION G57(200> G820 »69¢(200>+610¢200),G11¢200)
uhoso DIMENSION G12¢200):613(200M

nnaozo REWIND 4 s

0080 CR21=0.2928932

aoo20 READ (4> NsNXyHy s By AC» AN AE » AF » NN

no1o00 RERD (4> CF1 (s =1sN>

00110 REWIND 4

nni2o DO 10 K=1sHN

noLzo0 G1<K>=0.0

noi4n 10 Ge<Kr=F1 (K>

noiso 1=0

nnien 20 b0 30 K=1sH

nnLzo K1=K

0nngen NA=N

o130 G3(K) =HeFUNR (K 1552 NRy [

nozon G4 (K)=N, 563 (K> -5 (K?

G5 (K) =(2 (K) +64 (k)
30 G6(K)=G] (K)+3, 0#64 k) -0, Se33 K
DO 40 K=1sH

0040 K1=K

002s0 MA=N .

60260 G7 (K> =HeFUNR (K15 GS> NA> 1)

(=g} G4 (K) =CR2I®(G7 (K> -66<K))

n02sh 68 (K> =65 (K> +64 (K>

10290 40 GIK)=66(K) +3, 0#64 (K) -CF21 467 (K>
00200 DO S0 K=1»N

0n310 K1l=K

0n3eo NA®N

no330 610 O =HeFUNA (K1 s GE» NAs 1D

n0340 G4<K) =(2, 0-CR2I> ¢ (G1 0D -GS D)
nn3so G11 ) =GB (K) +G4 (O

00360 S0 G12<K) =69 (K> +3, 0454 (Kr» - (2. 1—CR2I) +610(K>
00270 DO 60 K=1sN

nnz20 K1=K

o390 NA=N

nN4nn G13(K) =HeFUNR (K151 1»NA» I

nnaro G4 =(G13 k) -2, 0312 KIS A, N
nn4en G2 (K> =611 (K> +54 (K>

0nazn F2 () =62 (K>

anaqn 60 51 CKI=G12CK) +3. 0064 (K)=0. 513D
0450 I=1+1

0nd460 HN=HHN+1

an4azvo IL=IL+1

00410 IF(NX=1> 90,90:20

10490 90 CONTINUE

a0sn0 DO 61 K=1»HN

ons1o0 61 F1K)=F2 )

0Ns20 WRITE (4> N»NX»HiFAAs HBs ATy AD» RE» AF s NN
ans3ao WRITE (4> (F2C(HsJ=1sM>

0S40 REWIND 4

00sso sTOP

GNSEN END

Fi1G. 3a, 3b, 3¢, 3d,. (cont. on p. 321)

5. Integration procedures

The equation of motion for the stack of atomic plane is given in terms of the interaction
potentials ¥, and ¥V,

(5.1) - magf;‘ = —%(2'(V2+V3)),

where the summation over n indicates that all the interaction potentials ¥, and V5 obtained
by changing the suffix n must be taken into account. m is the effective mass for an atomic
planein the stack. In the numerical integration of the system of the nonlinear simultaneous
differential equations Eq. (5.1), the time unit is converted to d(P,/m) and the displacements
u, are measured in the unit of d, where d is the spacing between the neighboring atomic
planes and P, is the quadratic coefficient in the interaction potential V.
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unit numbered ,,4” in the program. The program in Fig. 3(a) serves to read in the input
data necessary for the numerical integration into the auxiliary memory unit mentioned above.
The program in Fig. 3(b) serves to give the initial displacements to the stack of atomic
plane. This program can only input sinusoidal displacements of various amplitude'apd
wavelength. The initial displacements over the sinusoidal wave can be introduced to the
stacks of the atomic plane by using the program in Fig. 3(b) repeatedly with different
sinusoidal inputs. The program in Fig. 3(c) serves to print out the numerical data of the
displacements of the atomic plane in the stack. It also constructs an approximate graph
of the displacements. Large left and right displacements are not reproduced and hedged in
by the program.

The program in Fig. 3(d) is for the numerical integration. The program consists of the
main numerical integration program and the function subroutine program which is the
equation of motion with a periodic boundary condition translated into FORTRAN.
The main numerical integration program is based on the program package named D2/
HC/RKGNI at the Computer Centre of the University of Tokyo. This program carries
out numerical integration by means of the Runge-Kutta-Gill method. It is found that
although the numerical data obtained depend on the magnitude of the integration step,
the qualitative characteristic of the results, i.e. the structure of the stack as shown in Fig. 4,
does not depend on the jntegration step as far as it is smaller than 0.5 in the unit used in
the numerical integration. Thus it is certified that the important qualitative characteristics
of the results reported in this paper do not depend on the inevitable errors associated with
the numerical integration. It is also checked that even the simplest Euler procedure for the
numerical integration gives also the same qualitative results.

6. Results

The numerical study of the time development of the large amplitude sinusoidal trans-
verse lattice waves has already been published by the present author [7, 8]. The main
results of the previous investigation are summarized as follows.

1. When the arﬁplitude of the sinusoidal transverse lattice wave exceeds the critical
amplitude, the sinusoidal transverse lattice wave is distorted as it propagates the lattice
and finally evolves into the finite displacement pattern necessary for the martensitic
transfomation. .

2. What kind of displacement pattern is obtained from the initially sinusoidal transverse
lattice wave is governed by the interaction potential ¥, and V5. Because the interaction
potential ¥, and ¥; also govern the dispersion relation of the transverse lattice wave in the
parent phase, it is predicted that there should be a definite correlation between the struc-
ture of the martensitic phase and the dispersion relationship of the transverse wave in the
parent phase.

As to the results of the previous investigation, the present author is asked to answer
the following criticism. It is pointed out that the large amplitude sinusoidal transverse
lattice wave adopted as the initial condition for the numerical integration [8] is very unlike-
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displacement necessary for the transformation in Fig. 1 (a), F.C.C. —» H.C.P. transformation.
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ly to be present in the lattice. Then it is asked whether the large amplitude sinusoidal
wave is really necessary to trigger the martensitic transformation.

In order to answer these questions, the time development of several different initial
displacements are studied for a given interaction potential ¥, and V;. Different initial
displacement patterns and the corresponding results of the time development at = = 100
obtained by use of the numerical procedures described in the previous section are shown
in Fig. 4. From these results it is now clear that the large amplitude sinusoidal transverse
lattice wave studied previously by the present author is more than sufficient to trigger the
martensitic transformation, and the intitial displacement of just one atomic plane in the
stack of the atomic plane — a pulse displacement — is sufficient to trigger the martensit-
ic transformation. However, a pulse displacement with smaller displacement does not
trigger the martensitic transformation. The final displacement patterns which determine
the structure of the martensite are found not to depend on the initial displacement patterns
as far as investigated by the present authors.

However, it is found that the final displacement patterns from the pulse displacement
are entirely different depending on the choice of the potentials ¥, and V5. Figure 5 shows
the results of the time development of the pulse displacement for two potentials ¥, and
for three potentials V. .

The potential ¥, with P3/P, = 5 and P,/P, = 4 represents the potential appropriate
for the F.C.C. lattice as a parent phase. The potential with P,/P, = —9 and P¢/P, repre-
sents the potential appropriate for the B.C.C. lattice as a parent phase. Depending on the
three different choices of the potential V5, the phonon dispersion relationship of the trans-
verse lattice wave in the parent phase is given by either one of Fig. 2(a), (b) and (c). Although .
the existing data [2, 3, 4] on the phonon dispersion relationship of the parent phase and
on the structure of the martensite seem to conform at least qualitatively with the results
of the numerical investigation as discussed in the previous paper, a more refined treatment
of the potential V5 and the dispersion relationship is desirable as more experimental data
on the dispersion relationship of the transverse lattice waves in the parent phase become
available. Three different dispersion relationships obtained from the potentials V5 given
by Egs. (4.1), (4.2) and (4.3) represent typical possible cases for the three atomic layer
interactions.

7. Discussions

It has been shown that the single pulse displacement is necessary and sufficient for the
initiation of the martensitic transformation. The single pulse displacement is a martensite
nucleus in the one-dimensional model. The single pulse does not contain any specific struc-
ture characteristic of the martensitic phase. The difficulty of the classical nucleation theory
to explain the martensitic transformation comes from the large activation energy necessary
to introduce the nucleus. The activation energy AW necessary for the introduction of the
martensite -nucleus has been estimated by KAUFMAN and COHEN [9]

1974203
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where A represents a factor for the elastic strain energy associated with the introduction
of the nucleus, o the interface energy between the parent phase and the nucleus, Af the
difference in the free energy per unit volume of the parent phase and the martensitic phase.
The activation energy is proportional to the cubic power of the interface energy o [9, 10].
Hence, AW is critically dependent on the estimation of the interface energy o. However,
it is impossible to measure experimentally the interface energy, because the martensite
nucleus as such has never been observed.

In the classical theory of the martensite nucleation [10], on which Eq. (7.1) is based,
the nucleus is assumed to have the same lattice structure as the fully-grown martensitic
phase. Hence, the interface energy o is assumed to be approximately equal to the incoher-
ent grain boundary energy [10]. The present author wishes to propose to carry out a criti-
cal scrutiny about this point. In the one dimensional model it has been found that the
specific details of the structure of the initial input wave do not have any direct significance
on the structure of the martensite. The displacement within the single pulse need not to
be equal to the displacement within the martensite. Although this observation is made from
the results of the numerical investigation of the one-dimensional model, the present author
believes that the assumption on the structure of the classical martensite nucleus must be
revised and the three-dimensional process in which the martensitic phase with a specific
structure is developed from a localized random displacement pattern without any specific
structure must be investigated. The author suggests that the structure of the martensitic
phase in the three-dimensional lattice is governed in the same way as in the one-dimensional
model by the interaction potential and, hence, has a direct relationship with the dispersion
relationship of the transverse lattice wave in the parent lattice but the structure of the
martensitic phase is not influenced by the special arrangement of dislocations as needed
in -the dislocation theory for the martensitic nucleation [11].
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