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On the averaged-equation approach to conduction
through a suspension
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D. J. JEFFREY (CAMBRIDGE)

Tuis paper derives the group expansion for the average heat fiux through a suspension using
the averaged-equation approach to the problem. The equation governing heat conduction is
expressed in a form which reflects the structure of the suspension and an ensemble average
is then taken. The resulting hierarchy of equations is solved by truncation and the familiar
group-expansion solution emerges. This shows that the averaged-equation approach is con-
sistent with earlier approaches.

W pracy niniejszej wyprowadzono rozwiniecie wzgledem grupy dla usrednionego strumienia
ciepla przeplywajaczgo przez zawiesine, wykorzystujac dla rozwigzania zagadnienia podejécie
usrednionego réwnania. ROwnanie rzadzgcz przewodnictwem ciepla wyrazono w postaci
odzwierciedlajacej strukture zawiesiny, a nastgpnie utworzono zbiér u$redniony. Otrzymany
w ten sposOb uklad réwnan rozwiazano przez odrzucenie odpowiednich wyrazéw rozwiniecia
i uzyskano znane rozwigzanie rozwiniecia wzgledem grupy. Pokazano, ze metoda usrednio-
nego réwnania jest zgodna z podejéciami wcze$nisjszymi.

B Hacrosuneit paGore BBIBEJEHO Da3NoyKEHHE IO OTHOIICHWIO K TDYINE JUIA YCPEeIHEHHOTO
[OTOKA TeIlla MMPOTEKAIOLIETO Yepe3 B3BeCh, HCIONL3YA [JIA PellleHHsT 3a[ja|uy MOJX0M YCpen-
HEHHOrO ypaBHEHus. YpaBHEHHE ONMCHIBAIOLIEE TEIUIONPOBOAHOCTE BBIPAKEHO B BHAE OTO-
Gpa)KalollieM CTPYKTYPY B3BeCH, a 3aTeM CO3[JAHO ycCpeJHEHHoe MHoykecTBo. IlonyueHHas
TaKuM 00pa3oM CHCTeMa YpaBHEHHH pellleHa ITyTeM OTOPAChIBAHHA COOTBETCTBYIOIMX UJEHOB
Pa3s’NoXKeHHA M IIOJIYHYeHO M3BECTHOE PEllleHHE PAa3jIoXKEHHMs MO OTHOLIeHMI0 K rpymmne. IToka-
3aHO, YTO METOJ YCPeIHEHHOTO YpaBHEeHUs coBrnafaeTr ¢ Gosee paHHHMMH IOJXOMAMH.

average heat flux,

average temperature gradient,

average dipole strength,

point in suspension,

position of sphere centre,

set of vectors ry ... Iy,

set of vectors ry ... Iy,

probability density,

temperature,

average temperature (angle bracket with subscripts),
average temperature (angle bracket with r (bold) subscript),
approximate solution,

Delta-function on f; = 0.

1. Introduction

THE problem to be considered is the conduction of heat through a homogeneous suspen-
sion in which the volume fraction of the particles, which for simplicity are assumed to
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be spherical, is low. Two approaches to this problem exist; the first one, due to BATCHELOR
[1], has teen used by JEFFREY [8] to find complete group expansion for the average
heat flux through the suspension. The second one, the averaged-equation approach, has
been slower to develop and the object of this paper is to show that it is consistent with
the first one by using averaged equations to derive the group expansion for the average
heat flux. The reason for doing this is that it seems that the averaged-equation approach
is the more powerful and versatile of the two and the first step in proving this is to show
that it reproduces existing results. Other work has shown that the averaged-equation
approach can be applied to problems for which the group expansions break down (see
[2, 5, 6)), thus giving further support to the contention.

2. The hierarchy of averaged equations

Let the particles have conductivity A, and the matrix (fluid) have conductivity 4,.
In the suspension there is a temperature field 7" which is the result of an applied average
gradient G; the average heat flux F is required. The averages here are ensemble averages,
however, because of the homogeneous statistics, the volume averages of [8] will equal
their ensemble-average counterparts here. The aim is to find an equation for (T, the
ensemble average of 7, and more important (T),, the average when a particle (a sphere)
is fixed with its centre at r,. In fact (7") must equal G - x by definition and it is actually
{T)», which determines the flux.

The governing equation for any one realisation of the suspension is

2.1) V. (AVT) = 0.
This form is not convenient for taking an ensemble average, however, and so some pre-
liminary manipulation must be done. From (2.1),
AVIT+VA-VT = 0.

The VA term is zero except at the surface of a sphere when it has to be represented by
a d-function concentrated on the surface of the sphere. If the surface of a sphere with
radius @ and with centre at r; is given by

Jix) = [x—r]—a =0,
then the é-function concentrated on f; = 0, written §(f)), is defined by [4]

[emomav = [, _.ex)da,
where g is an arbitrary good function and the volume integration is over all space. In
terms of this d-function, (2.1) becomes [9]

o8
@2) VT = Y @-D580,
i=0
where & = 1,/4, and T /dn is the normal derivative of T calculated from the field inside
the sphere.
A few words about this equation. It should be noticed that the left-hand side now
contains only T and not, as in (2.1), a product of T and A. Because of this separation
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of T and 2, an equation for {T) follows directly from the average of (2.2), in contrast
to the equations obtained from averaging (2.1) [3]. It is also possible to look at (2.2)
as a Laplace equation; after all the equation for T could equally well have been written
as the Laplace equation together with the saltus of the temperature gradient at the surfaces
of the particles. Looked at in this way, the d-functions on the right-hand side of (2.2)
have been used to modify the Laplace equation so that a single equation replaces equa-
tion-plus-boundary-conditions; each term in the summation represents the presence of
one particle.

The ensemble average can now be taken. In the manipulations that follow a conven-
tion on the use of x and r is observed: x is used to denote a point in the suspension and
r to denote the position of the centre of a sphere. Averaging (2.2) gives

V(T = (Y@= IL 8.
i=0

Both sides of this equation remain functions of x. At any point x, the term being aver-
aged on the right-hand side is only non-zero when a sphere is touching that point. Thus
the average can be written as an average over the positions of all particles except one,
followed by an average over all positions in which this particle touches x. The first part
of the average introduces {T),, the average of T with a particle fixed at r, and the second
part introduces an average over r. The resulting equation is [9]

@3 VKT = (1) [ LTI = (1) [ 2T, P@)dAw),

where 2(r) is the probability density for any sphere centre being at r, f(x) = 0 is the
surface of the sphere and dA(r) is an element of area on the surface of the sphere. It is
obvious from (2.3) that an equation for (T, will introduce an average of T with two
spheres fixed and hence that (2.3) is the first member of an infinite hierarchy of equations.
The general equation can be written down by adapting the notation used in [8]. Let the
fixed particles be at ro,r;, ..., r; and let %, , be the set of these position vectors. Let
{T>o,4.....x be the corresponding average of T, then

24) VXTHou..x

3
d d
= D@D Tt I+ @=1) [l Tro.s.. 0 P60 dA),

i=0
where the integral is over f = 0 as before. The boundary condition at infinity for (2.3)
and (24) is (T)g,;,....k > {T) = G-x as x - co. The terms in the summation in (2.4)
serve the same purpose as those in (2.2).

3. The expression for the flux and the group-expansion solution

The expression derived in [7] and [8] for the average flux F carrics over, with some
adaptation, to the present calculation. The expression is

(3.1) F = 2,G+nS,
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where n is the number density of the particles and S is defined for each particle as
S = (A~ 1) [VTav,

the integration being over the particle volume. The original approach to the calculation
of S proceeded by choosing a reference particle and averaging the value of S for this
particle over all realisations of the suspension while holding the reference particle fixed.
In the present notation this is expressed by holding the reference particle fixed at r, and
calculating (S),. Thus (3.1) can be used with the present approach, provided S is re-
defined as

(.2) S = (= 4,) [KTDodv,

the integration being over the sphere at r,. This equation is the bridge between the two
approaches. What must now be shown is that the Eqs. (2.4) can be solved for {T), in
such a way that (3.2) yields the group expansion given in [8] as

(3.3) S= D [st®; Gd¢,,
where =
_ k-1
(3:4) St = Su@i: ©)P(&ilre)— D) SFH(%:; Gii(%:-)) P(%1-)).
i=0

The notation is explained in [8], but note that ¥, here and %, in (2.4) are connected
by €o,x = €xV {ro}. The important point to be remembered for the present is that the
S, term in (3.4) comes directly from the definition of S and the other terms were introduced
through the condition that the average field must be G and are needed to make the in-
tegrals in (3.3) absolutely convergent.

4. Closure and solution of hierarchy of equations

It turns out that the simplest closure of the hierarchy is all that is required to obtain
the group expansion: if, for some N, the k = N equation is closed by omitting the integral
term completely, the resulting solution for S is equal to the first N terms of (3.3). The
truncated k = N equation is

N
VTS0 = ) (=)l Tro..n 00D,
i=0
which is identical to (2.2) save that the sum stops at N instead of continuing to infinity.
Thus the solution of this equation is simply the temperature field around N+ 1 spheres
when there is a gradient G at infinity; this can be assumed to be known, as it was in [8],
and the problem left is to work back down the hierarchy to {T),.
The general approach can be illustrated by truncating the equations at k = 0. The
equations are then

@1) VAT = (a=1) [T, 2()dA®),
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and
VXT)o = (a-1) —{To 8(fo)-

Multiplying the second equation by 2(r,) and integrating with respect to r, gives

a
V2 [(T30Po)drs = (a=1) [ 2 T36P(20) 8 o).
This equation will be the same as (4.1), provided

@2) (Ty = [(TYeP(ro)dro.

This procedure of solving one equation by comparing it with another seems the perfect
tool until it is realised that the integral with respect to r, does not converge ({T), is
0(|x—rol=2) far from r,). To see this another way, consider the formal solution of the
Poisson equation for (T,

4.3) (TS = G- x+f(<x—1)f o (TP OAAC) L ‘W(")

where the inner integral is now over all spheres touching x’. The essential difference be-
tween (4.2) and (4.3) is the order of integration: in (4.2) the r integral is done last and
in (4.3) the x’ integral is done last. It would seem that reversing the order of integration
in (4.3) — which is effectively what is done to obtain (4.2) — leaves the integrals non-
convergent. The order has to be reversed, however, if the group expansion is going to
be derived, because a solution in the form of integrals over r is needed.

The reason for considering this example first, besides the fact that it lays bare the
convergence difficulty, is that (4.1) provides the identity which allows the equations to
be modified so that only convergent integrals appear in the solution. It was stated in
Sect. 1 that {T) = G- x and if this is substituted into (4.1), the equation becomes

(a—I)f—E%—(T),Q’(r)dA =0

This identity is now subtracted from (2.4):

k
@9 VHTrok= ) @=1)LAT0,..a8(f)

i=0

+@=1)[ 12 T0,..a P60 — A THPO( A

The Eq. (2.3) is no longer required. In the terminology of [4], (4.4) has been renormalised.
In line with the remarks in the last section, the condition that the average gradient is G
has been the source of the terms which correct the divergence difficulties. The systematic
solution of (4.4) proceeds by considering the hierarchy to be truncated at k = 0, k =

=1,...k =N and k = N+1. The notation used for the solutions of the successive
systems of equations is
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i) k=0: the solution for (TDo is {(T)H§;
(i) k=0,1: the solution for (TDe is {(TO& +{TDH",
and for {T),,; is {TO8);
(iii) k& =0...N: the solution for (T, is (Y@ HLTID 4 ... +L{TOM,
for (TDo,1 is {TH+ ... +{THETY,
for {TYo..x is {TYQ 4+ ... +{THEP,
for {TDo..nis {TY§ 5.
The equation for (T)§-F is
k
VKT = ) (am D) pkTEDO)

i=0
d d

+@-nf {—3;<T>s?::.:"9(rm.o— -,;a»”—*-"@(r)}dm

with {(T)§-0 - 0 as x —» co provided k < N.
What has to be shown is
(2= 1) [KTY§0av = [S§(%y; G)d%ny.

The proof is by induction. Suppose S¥ is given by (3.4) (the S¥ and S¥ cases are trivial
but have been given in [9]) and suppose now that the equations are truncatedcat k =

= N+1. All equations retain the same form for k£ < N with the superscripts increased

by 1; the kK = N equation gains an integral. The k = N equation can be solved by the
comparison method described above

(TYP n+{THP y = f{<T>g??.N+1?(rN+lIgD.N)-<T>l(J?.}.N(G[(rN+1))93(rﬂ+l)}drﬁ+l-

The notation is adapted from [8]; (T)§” y(G,(rn+,)) is the temperature field around the
spheres in €,y when the field at infinity is G,. Then since {(T)§” y produces the term
SyP(%xir,) in the expression for SE, (TH y will produce terms

Sn+1P(€n1lro)—Sn(€n; Gy (tn+1)) P(€nlro) P(tns1)
in the expression for S%,,. The other contribution to S§,, comes from the replacing
of the term %{T}f‘"*‘” by %(T)ﬁ”"" throughout the hierachy. Thus each term
S*(Gy-1)P(€x-:) must be replaced by
SHGw-141)P (G- i1+1) = SHGy-i (G1 (1141))| P(€x-) P (Ex+1).

When these two expressions are added together, the two subtracted terms combine to
give —S¥(%y; G,)P(ry,,) and S%,, has the same form as S¥.

5. Concluding remarks

The properties of the group expansion have been discussed in [8]. The main purpose
of this paper has been to establish the averaged-equation approach as an alternative to
existing methods. The approach has great flexibility both in the way the equations are
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closed and in the way the closed set is closed. The present lucubration has hardly made
best use of the possibilities but this was not its purpose. I think that averaged equations
have great potential for further development.
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