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Plastic deformation of F.C.C. polycrystals 
in the microstrain region 

J. LAMBERMONT (LIEGE) 

THE behaviour of pure polycrystalline materials in the early deformation range has received 
consid~rable attention. The plastic tensile strain in this region has experimentally been found 
to be related quadratically to the tensile stress and linearly to the grain volume. It is the pur­
pose of this paper to show that the general thermodynamic theory of plasticity developed by 
the author leads to this result. The prevailing equations are also derived along the lines em­
ployed by metallurgists. This example provides a bridge to the gap which exists between the 
mathematical and physical theories of plasticity. 

Dui:o uwagi poswi~cono zachowaniu si~ czystych materia16w polikrystalicznych we wczesnym 
zakresie odksztalcenia. Stwierdzono doswiadczalnie, i:e rozci'lglj(!ce odksztalcenia plastyczne 
w tym obszarze S'l zwi'lzane kwadratowo z mpr~:Zeniem rozci(!glj(!cym i liniowo z wielkosci(! 
ziaren. Celem tej pracy jest wykazanie, i:e og6lna termodynamiczna teoria plastycznosci rozwi­
jana przez autora prowadzi do tego rezultatu. Wi~kszosc r6wnan wyprowadzono r6wniei: 
w spos6b stosowany przez metalurg6w. Fakt ten stanowi pomost nad luk(!, jaka istnieje mi~dzy 
matematyczn(! i fizyczn(! teori<t plastycznosci. 

hlaoro BHHMalUUI nOCBeiQeH;O nOBe.D;eH;HH liHCTbiX nOJIH1<pHCTa.JI.JIWieCKHX MaTepHaJIOB B paHH;eH 
cra,wm ,ll;e<IJopMaQHH. 3KcnepHMeH;Ta.JibH;O o6aapymeao, trro paCTHrHBaroi.IUie IIJiaCTHtieCKHe 
,ll;e<IJopMaQHH CBH3aH;bi, B 3TOH o6JiaCTH, KBa,ll;paTHtm;O c paCTHrHBaroiQHM HanpH>KeHHeM H JIH­
aeiiao C BeJIHliHH;OH 3epeH. I.J;em,ro 3TOH pa60Tbl HBJIHeTCH ,ll;OKa3aTeJILCTBO, l.JTO 06IQaH TepMO­
,ll;HH;aMJNeCKaH TeopHH nnaCTHtm;OCTH, pa3BHBaeMaH aBTopoM, npHBO,ll;HT K 3TOMY pe3ym.TaTy. 
Eom.IIIHH;CTBO ypaBH;eHHH BbiBe,ll;eH;o Tome cnoco6oM npHMeH;HeMbiM MeTaJIJIYpraMH. 3ToT 
<IJaKT COCTaBJIHe TnOMOCT Ha,ll; npOOeJIOM, KaKOH cyiQeCTBYeT Me>K,ll;y MaTeMaTJNeCKOH H cPH-
3H'tleCKOH TeopHHMH nJiaCTHtm;OCTH. 

1. Introduction 

UNDER slow deformations of a pure annealed polycrystalline material composed of fairly 
elastically isotropic crystallites, the Frank-Read sources of the most favourable slip system 
will be activated first in emitting dislocation loops. These expand freely to sizes equal 
to the cross-sectional area of the grain where they pile up and are probably locked in 
place by the formation of dislocation locks as Lomer-Cottrell locks. Under increasing 
deformation the resolved shear stress on less favourable slip systems will reach the critical 
shear stress necessary for the activation of their sources. Thus under increasing stress 
more and more slip systems participate in the process. Due to the random distribution 
of the grains in a polycrystalline solid, the activated primary slip systems lie, in a sufficient 
early deformation stage, in grains remote from each other. 

The stress field of an unrelaxed piled-up loop of n dislocations with mean diameter 

D falls off as n ~ for distances r larger than a few D, while the back stress on their 
r 

source is proportional to n/D. Therefore, in the very early deformation region the stress 
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fields of dislocations lying in different grains may be assumed not to influence each 
other. 

It has been found experimentally that under a simple tensile stress the microstrain 
region ends at a plastic strain of about I0- 4

• 

The plastic tensile strain e" in the microstrain range of pure polycrystalline metals 
has experimentally been found [3, 4, 5, 6] to be related parabolically to the tensile stress 
and linearly to the grain volume 

(1.1) 

where D is the grain diameter and a* a reference stress. 

The constants a* and B are nearly the same for a variety of metals such as copper 
and iron. 

In their analyses of the microstrain region BROWN and LUKENS [5] and FRIEDEL [6] 
assumed that there is a linear relationship between the back stress on a source and the 
number of piled-up dislocations. However, we shall show that under this assumption, 
when the correct distribution function for the slip systems in a F.C.C. polycrystal is 
introduced, the relation (1.1) does not follow. 

In order to obtain the correct tensile stress-strain relation one must introduce the 
constitutive assumption that the resolved shear back stress on the primary sources which 
have emitted on the average n dislocation loops in a grain with diameter D is proportional 

to J! nfmD, where m is the Schmid orientation number of the primary slip system with 
respect to the tensile axis. In effect this means that the long range stresses of the primary 

·piled-up dislocations are modified by slip on secondary slip systems(~). Since the resolved 
shear stress acting on the sources in secondary slip systems depends not only on the prim­
ary dislocations induced stress but also on the macroscopic stress, one expects the relaxa­
tion of the primary pile-ups to depend on the orientation of the primary slip system. 
MITCHELL [7] and BASINSKI [8] calculated that the piled-up groups of dislocations in the 
primary system in F.C.C. crystals are capable of producing slip on many secondary sys­
tems over distances of the order of the pile-up length. The resulting Burgers vector of the 
pile-up group is thereby reduced, giving rise to a lower back stress. It has also been verified 
that the density of secondary dislocations is, in order of magnitude, equal to that of the 
primary dislocations, however, the slip distance is much smaller. The plastic strain due 
to the secondary dislocations is estimated to be about 2% of that of the primary disloca­
tions and therefore we shall neglect its contribution. 

The purpose of this paper is twofold. The calculation of the micro-strain tensile rela­
tion will be made by applying the general constitutive equations derived on thermo­
dynamic grounds by the author [1, 2]. In Sect. 4 these relations will be derived directly 
along the lines used by metallurgists. Thereby, we shall show the equivalence of the 
thermodynamic and metallurgical approach to plasticity. 

(1) By definition, the resolved shear stress due to the macroscopic applied stress exceeds, on a primary 
slip system, the critical stress necessary to activate the sources, while on a secondary or latent slip system 
the m1croscopic resolved shear stress is smaller than the critical value. 
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2. Formulation of the problem 

Figure 1 shows a Frank-Read source which has emitted several dislocation loops. To 
define the dislocation state we recall [1, 2] the following convention. 

Consider first that the source when it is straight is a pure edge dislocation, i.e. consists 
of atoms inserted into the lattice on one side of the slip plane. The source can bow out 

A is positive 
g is negative 

loops emana fed From the source 

A is negative 
g is positive 

FIG. 1. 

by conservative motion only in one slip plane. The Burgers vector of the source is parallel 
with this plane. We introduced [1] a unit normal n to the slip plane by the convention 
that it points in the opposite direction of the extra atomic half plane making up the edge 
dislocation, see Fig. 1. A unit vector m parallel to the Burgers vector of the source specifies 
the slip direction. Once n and m are selected they remain fixed. When the source is of 
mixed character its Burgers vector can be decomposed into a normal and tangential part. 
The normal component determines again an edge dislocation, having a strength less 
than the Burgers vector. The extra atomic half plane associated with it determines the 
unit normal n as described above. 

Lower and upper atom planes, adjacent to a slip plane, have been defined by the 
convention that n is directed from the lower to upper plane. 

Under an applied resolved shear stress a source bows out by glide and becomes even­
tually unstable whereafter it emits dislocation loops. Often it is assumed that a source 
bows out in its stable region as a circle arc and becomes unstable when it bows out more 
than semi-circularly. MHCHELL and SMIALEK [9] have shown that at the critical stress 
the configuration corresponds more to an ellipse. 

The distance between the nodes of a source is denoted by /0 • The state of a source 
in its stable region is specified when the glide direction is known as well as the are a en­
closed between the straight and bowed out position. Thereto a scalar quantity A has 
been introduced, see Fig. 1, whose absolute value is equal to the enclosed area and is po­
sitive or negative when the source is bowed out in the direction of m or -m, respectively(l). 
Moreover, a quantity A. = signA was introduced. 

(2) M.Jre g!nerally, one may select n as m arbitrarily and A by the convention that it is respectively 
positive or negative when the lower m1terial is displaced relatively to the upper material in the 
direction of m or -m, to bow out the source from the straight to the momentary position. Hewever, 
some of equations presented here must be modified accordingly. 
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To define the state of the dislocation loops which emanated during plastic flow from 
a source, a displacement vector g was introduced; this vector specifies the relative dis­
placement which the atoms below the slip plane have undergone relative to the atoms 
above the slip plane. 

In small deformation theory the unit vectors n and m are, and remain constant over 
a slip plane. The relative displacement caused by the created loops can therefore 
be specified by a scalar quantity g defined by 

g =gm. 

When n loops have been milled out by a source, the absolute value of g is nb, where b 
is the magnitude of the Burgers vector. 

The dislocation loops which are generated by a Frank-Read source expand unstably 
until they are stopped by obstacles or dislocation reactions. In the description of the 
dislocation state we jump over the unstable positions of an expanding loop (running 
dislocation). Thus only the change in state of the stabilized loops is considered. In a 
macroscopic description it is mandatory to adopt this view because a theory which at­
tempts to describe the state of the unstable positions of a running dislocation necessarily 
becomes a macroscopically unstable theory. 

In addition to g the distribution of the shapes or swept out areas of the loops emitted 
by a source must be specified. We adopt the continuous dislocation description as is 
often used in the calculation of a pile-up group of dislocations. Hence the discrete Burgers 
vector nature is smoothed out by a continuous distribution of dislocation loops of in­
finitesimal strength. During an infinitesimal loading increment a plastically activated 
(i.e., more than critically bowed out) source is thus thought to throw off a dislocation 
loop of infinitesimal strength dg which expands instantaneously to the position it takes 
when stabilized. The information about the swept out area of this loop is contained in 
the stoichiometric law introduced in [1]. 

Sources on the slip system which have milled out about the same number of 
loops with about the same mean area can be grouped together in a macroscopic descrip­
tion. We denote by AP the average bowed out area of the sources of the pth slip system 
defined by nP and mP. When during a loading increment the sources of this ih group are 
plastically activated they throw off loops with a mean infinitesimal strength dgP. The 
stabilized mean area swept out by them is denoted by .s;IP. 

In the dislocation state description the micro dislocation behaviour is smoothed 
out by jumping over the instabilities and by averaging many similar source-loops 
systems. 

In the microstrain region the strain due to the secondary dislocations is small and 
may be neglected. Their only effect is the modification (relaxation) of the back stress 
acting at the primary Frank-Read sources. The stress fields set up by the modified piled-up 
dislocations do not influence each other in the early deformation region. In a pure metal 
the dislocations may be assumed to pile-up closely against the grain boundaries, i.e., the 
modified pile-up length is small compared to the grain size diameter. 

This greatly simplifies the analysis at two points. Firstly, the piled-up dislocation 
loop diameters are closely equal to the grain diameter, so that the stoichiometric law 
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(2.21)(3) introduced in the general theory, which expresses how the swept out areas change 
with deformation, is superfluous. 

However, under certain loading conditions, as cyclic loading, this assumption is 
bound to break down. Primary dislocations participate continuously in dislocation reac­
tions with secondary ones whereby locks are formed. Therefore, when under reversed 
loading a source emits dislocation loops of opposite character, these will generally not 
annihilate, at least not completely, the previously emitted loops. Hence the swept out 
area becomes generally smaller and smaller and the fault introduced by assuming it to 
be equal to the grain area larger and larger. We recall [1, 2] that the dislocation state is 
determined not only by the values of the g's of the (primary) slip systems but also by the 
distribution of the dislocation loop areas. Therefore it is generally impossible, even if 
by a certain plastic loading path all g's could be made zero, to come back to the initial 
state. Non-conservative dislocation motion, as occurs during annealing, would be neces­
sary to achieve this. We restrict the general theory to plasticity only where conservative 
dislocation motion is the controlling mode. 

Secondly, in the yield function associated with the i'h primary slip system or grain, 
of all dislocation stress fields, only, the modified resolved shear back stress appears 
which the loops belonging to the slip system exert on the primary sources which have 
created these loops. It is to say that the conditions expressed by the relations (2.272) 

are fulfilled and, consequently, Koiter's generalization (2.302
) of Drucker's relation 

is valid. 
For isothermal quasi-static deformations we derived the Koiter relation 

(2.1) '\.I ()cjJP I ()cjJP I de;} = / hP-~- -~- dak, 
.:_.; UO'ij T,g u(J'kl T,g 

p 

where e;j is the plastic strain tensor(4 ) and aii the stress tensor. 
The summation convention over repeated subscripts (but not superscripts) is valid. 
The incremental relation (2.1) has been derived [1, 2] from general thermodynamic 

considerations. Thereby, the history dependence of the yield functions c/>1 and hardening 
functions hi has been eliminated by introducing the dislocation state. The hardening 
functions can be obtained from the yield functions by (2.31)2 

(2.2) h· = f b:.~it .. r > o. 

where s;1P is the free mean area which the running dislocations of the slip system p sweep 
out before they are stopped by the grain boundaries. We assume, for reasons of sim­
plicity, that the grains are cubes with sides DP and that the grain boundary area is re­
lated to the size parameter by .s;IP .= (DP) 2

• 

Plastic stability demands that the stress field of the emanated dislocation 'loops have 
the tendency to inhibit the sources from further dislocation production. This condition 
is reflected in the inequality sign of (2.2). 

(3) A superscript 1 or 2 refers to an equation presented in reference [1] and [2], respectively. 
(4) This does not include the strain caused by elastic bow out of dislocation segments which is small 

compared to the strain. For its calculation the reader is referred to [1, 2]. 
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The summation in (2.1) goes over all primary slip systems which are activated during 
a process increment. The condition that a primary slip system is to be included in this 
set is given by the isothermal loading conditions (3.22) and (3.42) 

(2.3) tf>P = tf>P(ak, T, gP) = 0 

and 

(2.4) p a<~>pj 
). -~- defij < 0. 

u(fij g, T 

The change in dislocation state is given by (2.9 2
) 

(2.5) dgP =-

o<J>Pl 
~IT.g 
o<~>Pj 
()gP T,a 

This relation follows from differentiating the plastic equilibrium condition cfJP = 0. 
The relation dtf>P .= 0 expresses the fact that a quasi-static process consists of a succession 
of macroscopically infinitesimal nearby equilibrium states. Obviously, such a process is 
only possible if the material is stable. 

Physically, the yield function tf>P stands for the average resolved Peach-Koehler force 
acting at the critically bowed-out sources of the p•h primary slip group. 

Disregarding elastic anisotropy of the crystallites, tf>P is for the problem at hand, where 
the interaction stress due to the dislocations of the various primary slip systems can be 
neglected, given by (A.l3 1

), viz. 

(2.6) <J>P = (1p.¥lob)P {( AC ~: r +<tualJ+ i'C".(gP)}, 

where .;VP stands for the number of sources of the slip system p per unit grain volume 

and "PP = (D:)P is the volume fraction of the p•h grain. By definition, ).P = sign AP, 

i.e., ).P is respectively - 1, + 1 when the sources of the p•h slip system are bowed out in 
the direction of mP, -mP. 

The first term in brackets in (2.6) denotes the effect of the line tension which tends 
to straighten the critically bowed-out sources. The modulus of rigidity is G, while C is 
a numerical factor which MI rcHELL and SMIALEK [9] showed to have a value ranging 
from 0.3 to 2 for a material having Poisson's ratio of 0.33. 

This term does not include the effect resulting from the periodic nature of the crystal 
lattice which gives rise to a Peierls or friction stress. One can formally replace the term 

J.C ~: by To to include the effect due to an extended dislocation source. It is interesting 

to observe that ROSENFIELD and A VERBACH [4] showed that the explanation for the varia­
tion of the yield stress corresponding with a plastic strain of 2 x 10- 6 cannot be com­
pletely found in the variation of G with temperature in copper and also not from current 
theories on friction forces or forest intersecting dislocations. To explain the temperature 
dependence of To they proposed that for dislocation motion to start an amount of ther-
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mally activated stacking fault, differing from the equilibrium one, must be formed. Ex­
perimentally it is found that the variation of To with temperature has the form To = 
= A.AexpB/T, while for copper this relation may be replaced by a linear one. 

The symmetric tensor 

(2.7) 

associated with the pth slip system has constant components during the deformation. 
The resolved shear stress acting at the sources of the slip system p due to the macro­

scopic stress vector T is 

(2.8) 

The last term in (2.6) 

(2.9) -p - -p p 
Tback- Pi mi 

denotes the average resolved shear stress which the (modified) dislocation loops of the 
pth primary slip system exert on their own sources. The microstress vector set up by the 
modified pile-up loops is pP. 

When i£ack is specified as a function of gP, the plastic potentials cpP can be calculated 
with (2.6). The knowledge of those is sufficient to calculate the plastic strains and dis­
location state for the arbitrary quasi-static isothermal loading path, as follows from the 
relations (2.1) to (2.5). 

The polycrystalline solid may have a texture, in which case the distribution of the 
r:J.i/s differs from that of an random oriented polycrystal while the grain diameters and 
other parameters as the /0 's of the various slip groups may differ. 

The present state of knowledge of i£ack is rather poor, even for the microstrain region. 
We only know its form for uni-axial deformation and, strictly speaking, even then only 
for monotonically increasing or decreasing stress. 

3. The tensile stress-strain relation 

Under an applied tensile stress 0'11 = a the plastic tensile strain e~~ = s" follows 
from (2.1) as 

(3.1) ds" = 5, hP Joct>PI )2 dO', 
.:....J l O(f T,g 

p 

while (2.6) reduces for the case when all crystallites have the same grain size tp and dis­
location source density .;V with the same distance between the nodes /0 to 

(3.2) 

where 

(3.3) 
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as follows from (2. 7). Here, nf is the direction cosine between the tensile axis and the 
normal to the p•h slip plane, while mf is the cosine between the tensile axis and the slip 
direction. We shall agree to select the directions of the unit vector mP such that 0 ~ rx,P ~ 

~ 0.5. Then 1faP is the Schmid orientation number of the p•h slip system. 
BROWN and LUKENS [5] and FRIEDEL [6] assumed that the piled-up dislocations are 

not plastically relaxed, while the various slip systems act independently. The resolved 
shear back stress at a source located near the middle of the slip plane resulting from 
piled-up loops of n dislocations with diameter D, equal to the grain diameter, is then 
given by 

G 
iCack = = 2KD gP, K ~ 1 , 

where G is the modulus of rigidity. The average strength of the piled-up loops is lgpl = 

= nPb. This result is well known from the dislocation theory. A little reflection shows 
(see Fig. 1) that the sign of the back stress, which in a stable material must tend to bow 
the sources into a less than critical configuration, is correctly expressed by (3.4)1 • 

In the introduction we have explained that (3.4)1 does not lead to the correct result. 
Therefore, the modified back stress on the primary sources of the slip system p must, 
for tensile deformation, be taken as 

(3.4)2 

where B is a constant. The absolute value of gP divided by the magnitude of the Burgers 
vector is equal to the average number of loops milled out by the primary sources of the 
p•h slip system. 

From now on, a result obtained by using (3.4)1 will always carry an "I" in the equa­
tion number and similarly a "2" will be reserved for relations obtained from (3.4)z. 

Substitution of (3.4)1 and (3.4)z into (3.2) leads to the following forms of constitutive 
relations: 

(3.5)z 4>' = 'f'%/0 b ( J.'~Gb +O"a'+BGsign(g") v' a'r/). 

If we calculate with (3.5) the hardening parameters, we obtain 

(3.6)1 hP .= 2D(D
2 + blo) > O .91 = D 2 

(b/0)
21p.;VG ' 

for the Brown and Lukens assumption, whereas for the modified back stress we get 

(3.6)2 hP= 2(D2 +blo) , / DlgPI 0 
(b/0) 21p% BG Jl rx,P > · 

Both functions are positive as is required by the stability condition. 
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From (3.1), (3.5) and (3.6) the incremental tensile stress strain relation follows as 

(3.7)1 de" = 2
D;:'1p dCJ 2 (cxP)2, 

p 

(3.7}z de" = 2D;:'P da 2 VD !fl (~")2, 
p 

where we have made use of the approximation b/0 ~ D2 • The quantity jgPI appearing 
in (3.7h can be eliminated with the plastic equilibrium condition </JP = 0. Using (3.5)2 

gives 

(3.7h 

where we have put 

(3.8) 

de" = 

J..PCGb 
lo 

The summation in (3. 7) goes over all grains which are plastically activated under the 
tensile stress increment dCJ, i.e., for which 

(3 9) APCGb p G p - 0 1p p..J 0 
• 1 lo + CJCX + 2D g - ' .11. ex uCJ < ' 

APCGb -. / cxPjgPI 
(3.9)1. -

1
-
0

- - +CJcxP+BGsign(gP) Jl ~ = 0, APcxPdCJ < 0 

as follows from (2.3), (2.4) and (3.5). 
The change in the dislocation state of the p'h primary slip system follows from (3.5) 

and (2.5) as 

(3.10)1 

(3.10}z 

2DcxP 
dgP = ---dCJ 

G ' 

2 y'- 2D ( CJ0 ) dgP = -- DlgPja.PdCJ =--- (J(X-- dCJ 
BG B2G2 2 ' 

where, in Eq . (3.10)2 the plastic equilibrium condition <fJP = 0 has been used. 
There are some interesting conclusions which can be drawn from the above equa­

tions and substantiate the general theory presented earlier. 
Observe that the equilibrium condition </JP = 0 not only determines which sources 

are critically bowed out but also the sign of AP, i.e., in which direction those sources are 
critically bowed out. 

In practice, in order to determine whether the condition <fJP = 0 is met for the slip 
system defined by cxP, one calculates for each incremental loading step the value of <fJP 
which may be positive or negative. At the moment <fJP becomes zero or changes sign, 
thereby necessarily passing through zero, the sources of the p'h slip system are critically 
bowed out. 

It is also clear from (3.9) that, as long as the emitted dislocation loops are locked 
in place (D = const), the Bauschinger effect is manifested. This follows because the macros-
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copic resolved shear stress aa. which must be applied to the sources of a particular slip 
system to bow them out from a critical position to the opposite critical position, cor­
responding to a change in the sign of A, is twice the stress which must be applied to bring 
the sources from the straight to the critical position. 

It follows from (3.5) that the sources of a particuler slip system will, for the first 
time (gP = 0) be critically bowed out when 

(3.11) P - ao -aa. -T=ro. 

r 0 is the resolved shear stress which must be applied to bow the sources out from 
the straight to the critical position opposing its line tension. It is seen that ja0 1 defined 
by (3.8) is the tensile yield stress of a random F.C.C. polycrystal; this is the stress necessa­
ry to activate the Frank-Read sources of the most favourable slip system oriented at 
a. = 0.5. 

For 0 ~ a.P ~ 0.5 and a, da > 0, i.e., tensile loading, it follows from (3.9) that ;,P 
must be negative, and thus r 0 and a0 positive as follows from (3.8). This is easily verified 
because a positive value of aa.P means that the macroscopic shear stress acting at the 
lower side of the slip plane (that is the side of the slip plane on which n stands, see Fig. 1) 
points in the direction of mP. Under such shear stress a source clearly bows out in the 
opposite direction of mP, which corresponds with AP = -1. A little reflection shows 
(see Fig. 1) that a source which is bowed out critically in the opposite direction of mP(AP = 
= -1) can only throw off loops in such a way that the lower side will be displaced in the 
opposite direction of mP, i.e., for which dgP is negative. This also follows directly from 
(3.10) for tensile loading. 

Once a particular slip system is triggered into emitting dislocation loops it will 
continue to do so under monotonically increasing tensile stress. This follows 
because with ).P = -1 and da "'> 0, the second loading condition (3.9) is satisfied, 
whereas calculating dcf>P with (3.5) shows that this quantity is zero when (3.1 0) 
is substituted. Hence, cf>P remains zero as is required by the first loading condition (3.9). 
This relation expresses the fact that, at equilibrium, the macroscopic resolved shear stress 
acting at the critically bowed-out sources is balanced by the line tension of the sources 
plus the back stress which the dislocation loops exert on them. The relation (3.1 0) ex­
presses the fact that during a quasi-static process the increase of resolved macroscopic 
shear stress is balanced by the increased back stress which the emitted dislocation loops 
exert on the sources. 

Under monotonically increasing tensile stress the number of activated grains or slip 
systems increases because the resolved macroscopic shear stress on less favourable oriented 
slip systems increases with tensile stress. 

It is clear from (3. 7) that the plastic tensile strain in the microstrain region results 
from non-coupled contributions of strains due to the individual grains. 

For monotonically increasing tensile stress the relations ' (3. 7) can be integrated when 
the initial condition (3.11) is used. The result is 

(3.12) c" -= .J; e"P 
p 
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wherein the contribution of the pth grain is given by 

"P - 2D3 ,;V'1p ( P C1o) P e - G arx - T rx , 

(3 12) e"P = D3 ,;V''IJ' (""rxP- cto )2 
• 2 B2G2 V 2 

In Sect. 5 we shall introduce the distribution function for the slip system orientations 
whereby the summation in (3.12) can be replaced by an integral. 

The summation in (3.12) goes over all grains with orientations such that 

(3.13) P C1o rx ~-
2a 

because, in the case of monotonically increasing tensile stress, it follows from (3.10) 
that gP is negative. Making use hereof in (3.9) leads to (3.13). 

The equality sign can be included in (3.13) because we can see from (3.12)1. 2 that 
this does not give a contribution to the plastic strain. 

4. Calculation of the tensile stress-strain relation directly from dislocation theory 

To show the equivalence of the metallurgical approach to plasticity and the general 
theory we shall derive the relation (3.12) 1 directly from the dislocation theory. We follow 
[5] and [6] but correct some errors made by them. 

Therefore, we assume that the resolved shear back stress acting at the Frank-Read 
sources is proportional to the number of piled-up dislocations as expressed by (3.4)1 • 

An important point must be clarified in order to understand the following equations. 
In the metallurgical approach to plasticity, researchers (FRIEDEL, HIRSCH, KUHLMANN­
WILSDORF, SEEGER, McCLINTOCK, etc.) jump over, in the description of the dislocation 
state, the unstable positions of the expanding loops which emanate from the sources. 

It is quite natural to adopt this point of view because one intends to connect micro­
scopic plasticity, which is the result of a succession of unstable dislocation jumps, with 
stable macroscopic plasticity. The same starting point was adopted by the author in the 
development of the thermodynamic theory. With this in mind it is easy to calculate 
the contribution of the pth grain to the tensile strain. The macroscopic resolved plastic 
shear strain due to the pth grain containing .;V sources per unit grain volume which have 
emitted on the average each n square dislocation loops is 

(4.1) e;'P = 1p.#'D21gPI' lgPI = bnP, 

where 1p is the volume fraction of the pth grain and D 2 the slip plane area. 
The contribution to the plastic tensile strain due to the pth grain follows from (4.1) 

as(5) 

(4.2) e"P = rxP1pJV DzlgPI' 

where 1 f rxP is the Schmid factor. 

( 5) FRIEDEL (6) wrote e"P = e;'P frx.P, whil..! BROWN and LUKENS [5) omitted rx.P altogether in (4.2). 
Actually, th:!re is a:1other contribution to the plastic strain due to the movement of the source itself. 
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478 J. LAMBERMONT 

To relate lgPI appearing in (4.2) to the tensile stress the Peach-Koehler force equilibrium 
acting at a critically bowed out source is considered. The positive resolved macroscopic 
shear stress acting at a source of slip system p is aa.P, where a is the tensile yield stress. 
This stress must, during a quasi-static process which consists of a succession of nearly 
equilibrium states, be balanced by the positive resolved shear stress due to the line tension 
of the source r 0 , plus the positive resolved back shear stress which the loops in the 
pth grain exert on their sources. 

Hence(6
) 

(4.3) p G I PI aa. = ro+ 2D g . 

This relation is seen to follow from the equilibrium condition cf>P = 0 when (3.5) 1 

is used and tensile loading is considered. Combining (4.2) and (4.3) leads to (3.12) 1 • 

Analogically (3.12h may be derived when the back stress is specified by (3.4)2 • 

5. Integration of the tensile relation 

The number of grains in a representative element in a fine grained polycrystalline 
solid is very large. The discrete summation in (3.12) can therefore be replaced by an 
integral when the distribution function P(a.) is introduced such that the fraction of grains 
or primary slip systems which lay in the interval a., a.+da. is P(a.)da.. 

Denote the contribution to the tensile plastic strain by the small group of slip systems 
lying in this interval by e". Passing to a continuous distribution of primary slip systems 
the explicit expression herefore is given by (3.12)1 or (3.12)2 • 

For monotonically increasing tensile stress, the Brown and Lukens back stress as­
sumption leads to 

1 Jo.s 2D3% Jo.s ( do) 
e" = --:;p e"P(a.)da. = a- aa.- 2 a.P(a.)da.. 

a~~ a~~ 

Instead, for the modified back stress, we get from (3.12h 

e" = -~::, r (aa- ~or P(a)da. 
a of~ 

(5.1h 

The integration interval extends over all grains which contribute to the plastic strain, 
from the momentary activated one which has the value a. = r 0 fa = a0 /2a as follows 
from (3.11), to the first activated slip system with a.= 0.5. 

When a source has thrown off n dislocations with Burgers vector b, the line between the nodes with distance 
lo has moved forward the distance nb, and thus swept out the area /0 bn = l0 !gl. This causes an additional 
plastic resolved strain of /0 b!g!. Therefore, to D 2 in (4.2) we should add /0 b. However, this value is negli­
gible as compared to D 2 • In the general theory we had to carry this small contribution along (see Eq. (4.2) 
in [1]), otherwise, a contradiction would be apparent in the Maxwell equations. 

(
6

) BROWN and LUKENS [5] also omitted the r:x.P in (4.3). 
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PLASTIC DEFORMATION OF F.C.C. POLYCRYSTALS IN THE MICROSTRAlN REGION 

To obtain the relation (1.1) one must take in (5.1) 1 

c 
(5.3) P(rx) = 4, 

(X 

where C is a normalization constant. The result isC) 

, 2D3 C ( )2 
e = -G-- CJ- CJo • 

CJo 
(5.4) 

479 

Recently, ZAOUI [10] has derived the rx distribution function for an random oriented 
F.C.C. polycrystal under the assumption that not more than one primary slip system, 
the most favourable one, is activated in a grain. This function is shown in Fig. 2. AI-

P(a) 
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FIG. 2. 

0.40 0.45 050 
a 

2 
though a short analysis shows that there are grain orientations in the interval 

3
y

6 
~ 

~ rx ~ 0.5, where more primary slip systems in one grain are activated, it is clear that 
Zaoui's distribution must be applicable for sufficiently small tensile stress. There seems 
to be some experimental observations [6, p. 270] indicating that the first activated 
primary slip plane continues to dominate the plastic behaviour. This may also support 
the validity of his distribution for larger stresses. 

We shall proceed to show that Zaoui"s distribution function leads to the correct 
stress-strain relation when the expression for the modified back stress (3.4)2 is used. 

The tensile stress-strain slope follows from (5.1)2 , by Leibnitz's rule, as 

~; = ~':: ]' ( "~- ~0 ) ~P(<t)d~ 
ao{'2n 

(5.5) 

C> To obtain this result Brown and Lukens and Friedel had to assume a different distribution 
function differing from (5.3). 

15* 
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Fig. 3 shows a plot of the function 

(5.6) 

0.5 

I(_!!_) = 2_ r (f1rx- f1o) a.P(rx)drx 
(]0 (]0 ~ 2 

aof2a 

obtained by numerical integration of Fig. 2 (Hereto Zaoui's [10] plots of the functions 

0.5 0.5 

J a.Pdrx and J rx2 Pdrx 
ex ex 

were used). 

0.5 

I 
04 

1(6/uo)= 2/6o I ( 6cx- aa/2)aP(cx)dcx 
&Ita 

0.3 

02 

01 

0 
1.0 

V 
/ 

~-V 
1.2 

V 
/ 

/V 
V 

/ 

/ 
V 

V' 

1.4 1.6 1.8 

FIG. 3. 

From Fig. 3 it can be seen that I varies linearly from aja0 except for values of aja0 

close to 1: 

(5.7) 0.41 ( ) I= -- a-I.09a0 
(]0 

for 

Substitution of (5.7) into (5.5) results in 

(5.8) for 1:'1. 
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Integration gives 

(5.9) e" = 0.205 ~:-;: (0'-1.090'0 )
2 for 

0' 
---;;?!:; 1.15. 
O'o 

Thus, the microstrain should vary parabolically with stress for stresses larger than 
15% of the yield, and linearly with the grain volume. The intersection of the parabola 
to zero plastic strain should occur for a stress 9% higher than the yield stress. The ex­
perimental results of THOMAS and AvERBACH [3] on 99,999% pure annealed polycrystalline 
copper shown in Fig. 4 substantiate this trend. They found that the yield stress was about 
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1000 lb/in2 ~ 1 kg/mm2 , while continuation of the experimental parabolas intersected 
the a axis at higher stress values. The polycrystals with grain diameters of 0.08 mm, 
0.04 mm and 0.025 mm are described very weil by (5.9) as shown by the drawn curves 
in Fig. 4. The yield tensile stress for the 0.08 mm polycrystal is 0'0 = 0.81 kg/mm2 = 
= 1160 lb/in2 , for the 0.04 mm polycrystal a0 = 0.836 kg/mm2 = 1194lb/in2

, while for 
the 0.025 mm polycrystal, 0'0 = 0.93 kgfmm2 = 1330 lb/in2

• 

For copper with G = 4200 kg/mm2 the value of .;V /B 2 in (5.9) is 4.25 x 106 /mm3
• 

A reasonable source density of 107 per cm3 leads then to B ~ 0.1. For C = 2 and b = 
.= 2.55 x 10- 7 mm we find from (3.8) /0 ~ 0.005 mm for the average source length (dis­
tance between the nodes). 

From Fig. 4 it can be seen that after the microstrain region ends another parabolic 

http://rcin.org.pl



482 J. LAMBERMONT 

hardening of the same type but over much larger strains [6] sets in. The flow stress whereby 
this second parabola begins is related to the grain diameter by 

(5.10) ay = 0.43D- 1
'
2 -0.12, 

where c1 IS m kg/mm2 and D in mm. 
The relation (5.10) may be taken to define the macroscopic yield stress, the defini­

tion of which is also rather arbitrary. The Eq. (5.10) resembles the Hall-Petch relation, 
except only that the constant is negative. This constant has often been interpretedas 
a friction stress but should then be positive. 
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