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On the optimal control of the discretization problems for elastic bodies

W. KUFEL (WARSZAWA)

A DISCRETIZED elastic body is treated here as the continuous medium with constraints. A theory
for such medium was formulated by Cz. WoZniax. This aproach enables us to obtain the basic
system of equations in terms of the ordinary differential equations and estimate through the
reaction forces a degree of accuracy of the solutions of the boundary value problems. The main
aim of this paper is to solve the discretization control problem in such a manner that at the given
number of finite elements and given norm the optimal net of division, i.e. a net of points for
which the reaction forces reach minimum, is obtained.

Przedmiotem rozwazan jest dyskretyzowane cialo spreiyste traktowane jako osrodek ciagly
z wiezami, ktérego teorig sformulowal Cz. WozZniak. Podejécie to umozliwilo otrzymanie pod-
stawowego ukladu réwnan jako ukladu réwnan rézniczkowych zwyczajnych oraz przeprowa-
dzenie poprzez sily reakcji oceny stopnia dokladnosci rozwigza probleméw brzegowych.
Zasadniczym elementem pracy jest rozwiazanie zagadnienia sterowania dyskretyzacja w ten
sposob, aby przy danej liczbie elementéw skoficzonych oraz normie uzyska¢ optymalng siatke
podziahu, tj. siatke punktow, przy ktorej sily reakcji przyjmuja minimum.

ITpeamerom paccy»xIeHUH ABIACTCA AHCKPETH3HPOBAHHOE YIIPYTOE TEJ0, KOTOPOe TPaKTYeTCH
KaK CIUIOLIHYIO Cpefy CO CBS3AMM, TEOPHIO KOTopoil cdopmymposan Y. Bosbhsik. JToT
MOAXOM [a/l BO3MOMKHOCTE IIOJIYYMTE OCHOBHYIO CHCTEMY YPaBHEHHMH KaK cHCTeMy OOBIKHO-
BeHHBIX AuddepeHnHaNbHbIX ypaBHeHUH, 4 TaK)Ke MMPOBECTH, Yepe3 CHIILI PeaKIMH, OLEHKY
CTENMEeHH TOYHOCTH pellieHH# KpaeBhIix 3anau. OCHOBHBIM 37ieMeHTOM paboThl ABJIAETCH pelle-
HHE 3a[a4H YIpaBJICHHA AHCKPETH3alHel Takum oOpa3om, yToOb! NMpH 33IaHHBIX KOJIHYECTBE
KOHEUHBLIX 3/ICMEHTOB M HOpME MOJNYYMTH ONTUMANBHYIO CEeTKY pasbueHus, T. €. CeTKY TOUEK,
NpH KOTOPOi CHJIbI PEaKI[HHM MPHHUMAIOT MHHHMYM.,

THE subject of consideration is a discretized elastic body, the motion of which is described
by the finite system of the unknown generalized displacements dependent solely on time,
and determined by a prescribed set of points. This approach, leading out from theoretical
mechanics has been recently known as a finite element method. In this paper a discretized
body is treated as a material continuum with constraints. This enables us to reduce the
basic system of equations to a system of ordinary differential equations and estimate,
through the reaction forces, a degree of accuracy of the solutions of boundary-value prob-
lems. Assuming the reaction forces to be negligibly small in comparison to the external
forces (mass and surface forces) acting on the body, it is possible to obtain a solution
sufficiently close to the solution which could be obtained for a continuum without con-
straints.

The main aim of this paper is to solve the discretization control problem is such a way
that at a given number of finite elements and given norm, the optimal net of division,
i.e. a net of points at which the reaction forces reach a minimum, is obtained.
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1. Introduction

Consider an elastic body B with particles X and a fixed configuration ». Assume the
body B is discretized and is subjected to the action of constraints [1). It means that the
body may be divided into the finite number of the disjoint regions B,,a = 1,2, ..., [ so
called finite elements(*) or elements such that

ro_
= |_J) B,
a=1

It also means that the motion ¥ of each particle X € B, is the known function of the form:

(ll) x«(x! ‘E’) = ‘:’,(X, q(t))!
dependent on certain unknown variables q(7) called generalized deformations.

Assume also that the functions q(7) satisfy for every a, d = d(a) the following condi-
tions:

(12) Yo(a() = 0.

The conditions (1.2) may characterize the material and boundary conditions superposed

on the functions q(7).
In the case when the body B is hiperelastic the constitutive equations have the form [1]

de
1.3 h=— s
(1.3) 2 o
where
(14 ta= | 0u0u(X, Vo)AV —AY,.
#(Ba)

The function ¢,(X, Vy,) is the elastic energy of the element B,, whereas A are the
Lagrange multipliers.
Introducing notations

I(r,q)— [fe“a‘dmf aq’dS]

(1.5) Ll
1., f 0P, 0P,

where b, and p, are external forces and surface loading, respectively, the equations of
motion of the discretized bodies with constraints may be written in the form

(1.6) TS o i
T

The equations of motion (1.6), the constitutive equations (1.3) together with the known
initial conditions, constitute the initial problem for the functions q(7) and Lagrange multi-

(*) Here finite elements are understood in the same sense as in the well known finite element method.
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pliers A. After the evaluation of the functions q and A the motion of a continuum is de-
termined from the Egs. (1.1), whereas the state of stress is determined from the relations

oo

(1.7 T.X, )= [ (X,Vx(X, 7~0)).

o=0

The action of constraints (I.1) leads to the arising of the reaction forces r,; s,, 84, [1],
where

0.Ta = 0o Xoa—divT,—po,b,, Xex(B,),a=1,2,..,1,
(1.8) s, = p.—T,n,, Xedx(B)nx(B),
Sap = Tyn,+Tyn,, Xedx(B,)Nn dx(By),
and n, is an external normal versor to dx(B,) and n, = —n,.

The surface reaction forces s, in the Eqs. (1.8) take into account the constraints con-
nected with a discretization as well as with the supports of the boundary. In a case of
boundary support the reaction forces of the boundary constraints will arise. Denoting these
forces by s2, the surface reaction forces of the constraints of discretization are differences

s,—s>. Thus the reaction forces caused by a discretization are characterized by r,,s,—
0
sﬂ ] scb'

2. Linear constraints

Let {X, }, @ =1,2, ..., p denote a chosen series of points belonging to »(B,) U 0x(B,).
The motion of the neighbourhood of the point X, may be described by the function

(2'1) yaﬂ = [x(xaas t): x.?l(xnu? t)! i x.?l---‘}‘r(xﬂ“r t)]:

wherey, =1,2,3,r=1,2,...,¢.
The functions y,, = Y., (7) are assumed to be the generalized deformations ¢(7).
To obtain linear equations of motion it is assumed that:

®,(X,u,) = D, A%u,,,

-3

@2) Ya(w,) = D Beau,,,

0u(0g,) = 5 V,C,VEL,

where u, (1) = ya,(¥) —¥a,(70)-
The Eqgs. (2.2) imply that from the relations (1.1) and (1.2) only these equations are
taken into consideration which may be approximated by the linear homogeneous functions.
Using the Egs. (2.2), the equations of motion (1.6) may be written in the form:
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where the suffix / runs the number 1,2, ..., N and
{le i Ny = 050 2 Lol =1 200}

and
.
DV = — 0aVA" C,VAZ: dV,
a=1 x(Ba)
.
2.4) E = Y B%,

.

ail = g{‘ﬂi} 0,A% A% dV .

*
Here summation ) runs through all values of a for which
i = dg, j=aﬂ9 a,ﬁ=]s2:--'sp'

The suffix 7/ introduced here for numerical convenience enumerates all points X,
through X;. The set of points X; is called a net of points for a discretized body B.

The Egs. (2.3) and (2.2) form a set of the linear displacement equations of motion for
the discretized bodies. Mathematically they constitute a system of linear second-order
ordinary differential equations. In the case when DY, E do not depend on time we have
a system with constant coefficients. _

For the quasi-static problems the right-hand sides of the Egs. (2.3) are equal to zero.
Then the relations (2.3) and (2.2) form a nonhomogeneous algebraic system of equations
for determining of the unknown w; and A.

3. Optimal control

Although each body may be discretized, i.e. “divided on the finite elements”, the re-
sults obtained for discretized bodies describe the system under consideration (in fact
without constraints) within the reaction forces.

After evaluation of the generalized deformations g(7) from the equations of motion (1.6)
and the constitutive equations (1.7), the total reaction forces may easily be determined
with the help of formulae (1.8).

Defining the norms || ||, and || - ||, in a space of external and surface forces (b,, pa
as well as the reaction forces the solution obtained in a process of discretization {X},
i=1,2,.., N is considered to be sufficiently close to the solution which could be

obtained for a body without constraints if for every a the following estimating condition

i
G (leally +11Sall2+11 Y, Sasllz = € (Ibally +11pa+55l12),
b=1

is satisfied. Here S, = s,—s? and € is a given positive number sufficiently small with re-
spect to 1. For practical use € = 0,05 may be assumed, since with such accuracy the ex-
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ternal forces acting on a body are determined. This condition (3.1) says that the external
and surface reaction forces should constitute the system of forces negligibly small in com-
parison to the system of external forces acting on a body. Starting with evaluation of the
optimal net of division let us denote the set of points X by Q,

2, ={X;Xe ':; 0x(B,) u dx(B)}.
a=1

The set 2, < E* o = 1,2, 3 is composed of the net points {X;} when « = 1, net
points and arcs {(X;, X;)} when a« = 2 and net points, arcs and sheets {(X;, X, ..., X;)}
when o = 3.

A unique decomposition of the set £2, on the nets of points, arcs and sheets results
from the manner of discretization (since the finite elements are disks). The set £2, will be
called further a-dimensional net of the discretized body, where « corresponds to the
case of one, two- and three-dimensional body.

Furthermore let 4 be a homeomorphism A: x(B) — x(B). As it is easy to verify by
using the elementary notions of topology, the homeomorphisms form a group of trans-
formations which we will denote by .

In particular the homeomorphisms A, which are identities on the boundary, form a sub-
group .

Let us define now the homeomorphisms g € G in the following way

2:2,»Qcx(B)AgX) = h(X),X € Q,.

The homeomorphism g is then a transaction of a homeomorphism # to the net £,.
The set 2 is also an a-dimensional net of the body B. This fact results immediately from
the properties of the homeomorphisms. And on the contrary, each net £ describing the
discretization of the body B by means of the same number of finite elements B, is the image
of the net £,, i.e. there exists such a homeomorphism that g=*(2) = £,. It is evident that

vg(,) = "_(F)
gEG

The motion of a discretized body in every moment of time 7 and for each net £ is de-
scribed by the generalized displacements u; determined in pointsy; = g(x)), i = 1,2, ..., N
and g(£2,) = 2.

The system of differential equations (2.3) with initial conditions

3.2) u(7o) = u;, (1) = V.,-

serves for evaluation of the functions u;.

The generalized displacements u; at the fixed 7 and fixed net £ belong to the Euclid-
ean space E*Mm. We shall call them the vectors of state or phase vectors and the space
E4Nm _ the space of state.

A set of nets 2, where 2 = g(£,), g € G will be denoted by @ and called a domain

of control. In many particular cases the nets 2 will belong to a certain subset 6 c 6.
A specification of this subset in the set @ depends on the conditions superposed on the
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homeomorphism g (i.e. the piece-wise linear conditions) as well as on a domain of deter-
minancy g. In fact, the control of the whole net £ is not always needed but only a part.

To every solution u; with boundary conditions (3.2) the number ¥ may be attributed
in the following way:

1 1
(3.3) V="Vu,Q = Z (Ilra(uy, )1y +11Sa(u;, Q||)2+“25ab(“h9)”2)’
a=1 b=1
where Q € 6.
We say that the control or the net 2% is optimal if the solution u} of the state equa-
tions (2.3) at the initial conditions (3.2) and corresponding to this net, satisfies for 2 € @
the following relation:

(3.4) v}, Q%) <V, Q).

Thus by the finding of an optimal net of division of the body B we shall understand
the finding of such element of the set @ for which the functional (3.4) takes the smallest
value.

4. A method of evaluation of the optimal discretization

A basic problem in the solution of the optimal control of the discretization problem

is to determine the set of controls @, frequently called admissible. The difficulty in finding
an optimal discretization (optimal net) depends in a great measure on this set.

Let ® < @ be a set of representatives of the following equivalency relation:

4.1) (2, = 2;)« [g,(X) = gX) Ar8:1(L20) = Q,, 8:(8,) = 2,],

where 2,, 2, € 6.

The relation (4.1) is reflexive symmetric and transitive, it is then the equivalency re-
lation.

For an abstraction class ||£2|] of the equivalence relation (4.1) it is convenient to choose
the representative 2 € @ in following way:

Let 2 = g(£2,) and the images of arcs (X;, X;) at g be segments and the images of
sheets (X, X;, X,) be polygons.

In particular when the discretization £, is a triangulation of the body B by simplexes
(in a two-dimensional case it takes place in a division into the triangular finite elements
and in the spatial case into tetrahedral elements), then all triangulations of the body B

arise from the triangulation 2, form a set of representatives 6.

Elements of the set @ may be assigned mutually and uniquely to certain subsets in the
Euclidean space.

Since the abstraction class ||Q|| determines uniquely the net of points {Y;}, i =
= 1,2, ..., N, and vice versa a net of points {Y;}, according to the Eq. (4.1), determines
uniquely ||2||, then the point y € E°N assigned to ||©2||, where « = 1,2,3 and y = (Y;,
Yo, Yy)
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Obviously, for the fixed i, Y; € %(B), so then the point y in the Euclidean space EN,

to which a certain element © is assigned, belongs to N-multiple Cartesian product »(B)
from which the set

M= {y:yex(B)x... x;f-l_ﬂ,\/yw_, =Yo_aa=0,1,...,0—1}
i%j

is removed. In this case a control domain may be identified with the set S = }RE) X .o X
#(B)—M.

In many boundary-value problems it is assumed that the homeomorphisms g are iden-
tities on ox(B). Let X, e %(éB), t = 1,2, ..., N, and N, < N. Then a dimension of the
domain of S is equal to a(N—N,), and § is an open set (a sum of disjoint regions).

A functional (3.3) after taking into account the Eq. (3.1) may be rewritten in the form

n
@2 V= [ X {I-dvT.(X, Y, u)—2,X)b,(X, 1)+, K)BX, Yi, u)ll,

To a=1

1
+ITa(X, Yo, w) 0, (X, Y) —p,(X) =i+l D) To(X, Y, ) ny(X, Y))
b=1

+Tn(x: Yl" ui)na(x) Yi)”.‘&}dl’:
where

bl a Vﬁn X, Yi:
T,(X, i, u) = ea@)%%—(i_(??ﬁ"uﬂ '

In a static case the integration with respect to time in the Eq. (4.2) will not occur.
As an example of a functional of purpose (4.2) let

n I
@3 v=[ Y|u [ 1-divT.—gb,+o@2av+ [ [Tn,-p,
% a=1 x(Ba) dx(Bay~0x(B)
i
—sods+ Y [ [T+ Tymylds|dv
b=1 x(dBa)b(Bp)

where the weight /, is a quantity characterizing the element B, (for example the diameter
of B,).

Let now u(Y;, 7) be the solutions of the system (2.3) with initial conditions (3.2)
where Y; € S. Introducing w; to the functional (4.2), and performing corresponding oper-
ations such as integration and tensor multiplication, we obtain ¥ as the function of the
variables y.

A problem of determining of the extremum of the multivariable function is easy to
solve. Thus it is seen that, in the case when a set of admissible controls is a set of the equiv-
alent nets with respect to the relation (4.1), the optimal control problem may be reduced
to the significantly simpler problem of seeking extremum of the multivariable functions.

It may happen, however, that there is no point Y; € int S in which the sufficient con-
dition of the existence of extremum is fulfilled.

We must then look for the smallest value on the boundary S. In the case of a closed
set S the existence of the smallest value results from the Weierstrass theorem.
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In the case when S is an open set (for example at the fixed net points on 6x(B)) and
the extremal points in S do not exist, the behaviour of the function ¥ must be examined.
Then from the analysis of this behaviour we must conclude how to change the distribu-
tion of points Y; € dx(B).

5. Example of the optimal control

Consider a plate layer loaded as shown in Fig. 1. We divide the section of the layer
on four finite elements AEC, ABE, BED, ECD, where A = (—-1,0), B= (1,0), C =
=(-L1), D= (L,1), E= (0, a). 4, B,C, D and E are the net points. Because of the

NN

A -
\\‘\ // -
~_E7
R T
A" —= bl
f 2 ol
L] 1

Fic. 1.

symmetry of the problem we consider only these homeomorfisms which are identities on
the boundary and transform the point E into set

Lraxt=0 0<x*<l}
Thus N = 5,No =4,5 = (0,1) = E..
The equations of constraints (2.2) after taking into account the approach described
in [2] take the form

&% = [(@a-(1—a)x* —x)ul + (1 +x) s+ (—a—ax' +x*)uE], for x* € AAEC = B,

G5.1) Dk = -%[(a—ax‘—x’)zd+(a+ax‘—~x3)u§+2x2u§], for x* € AABE = B,,
1

= 2(1—a)

[(—a+(@=1Dx'+x?)uk+Q2—=2x})uf+ (—a+ (1 —a)x' +x?)up),
for x*e ACED = B;,

Of = —[(—a—(1=a)x' +x?)uf+ (=1 +x)uf+ (a—ax' —x?)up],
for x*€ ADEB = B,.

Computing next the function of the elastic energy (4 = 1, u = 1/2) and solving the system
of the Egs. (2.3) we obtain

uy=ui=uy=ut=ut =0,

1

. L
g, Ug = Up = —

(318

62) gl gl

ut = au?.
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Substituting the Eq. (5.2) into the Eq. (5.1) we have:
l 1
P = g(a+ax‘—x2), Pl =0, &= %, Dl = -;—(a-ax‘ —x?),

2
(Dz = —.x—- — ¢
P 3 1,2,3,4.
Computing the reaction forces s,, s,, from the relations (3.1) and substituting them into
the Eq. (4.3) we get

1
(5.3) V(a) = ———[4a2 —8a+85+ (16a* — 64a® +80a® — 111a+265)

1
144 @+1)"2

m (16a*—32a* +233a*—398a + 294):' ;

After evaluating V’(a) we obtain V'(a) > 0 for 0 < a < 1. Thus it is seen that in the
interval {0,1> the function (5.3) is decreasing and takes the smallest value in the point
a = 1 (Fig. 2).

._l_

E
c — —0 )
——
// \\
s % -
/’ \'\ u
y i g
7 ~
7™
FigG. 2.

The example presented here has a test character. However, the analogical procedure
may also be applied to the more combined problems of optimalization of the division
of a body on the finite elements.
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