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The self-similar problem of the unsteady motion
of viscous, heat-conducting gas driven by a piston

V. P. SHIDLOVSKY (MOSCOW)

THE one-dimensional motior of gas is assumed to be governed by Navier-Stokes equations and’
induced by a piston moving according to a power-law, with the initial pressure equal to zero.
The condition of self-similarity is formulated for such a motion. If this condition is satisfied the
problem is reduced to that of numerical solution of a non-linear boundary-value problem for
a fifth-order system of ordinary differential equations. The solution is analysed a computation
example being given. In addition, a special case of heat-conducting, inviscid gas is considered.

Przyjmuje sie, ze jednowymiarowy ruch gazu opisany jest rbwnaniami Naviera-Stokesa zgodnie
z potegowym prawem poruszajacego si¢ tloka przy cisnieniu poczatkowym réwnym zeru.
Dla takiego ruchu sformulowany jest warunek samopodobiefistwa, przy pomocy ktérego pro--
blem zostal sprowadzony do numerycznego rozwigzania nieliniowego problemu brzegowego,
opisanego ukladem réwnan rézniczkowych zwyczajnych piatego rzedu. Przeprowadzono dyskusje:
rozwigzania oraz dla jego ilustracji podano przyklad liczbowy. Rozwazono ponadto szczegblny
przypadek gazu nielepkiego lecz przewodzacego cieplo.

IIpunumaerca, YTO OAHOMEPHOE ABIMKEHME rasa omMchiBaerca ypaBHeHusAMH Hasse-Crokca
COTNIaCHO CTENEHHOMY 3aKOHY ABHXKYLUErOCA IOPIUHA, NPH HAa4alIbHOM [aBJICHHH pPaBHOM
Hymo. Jlna Takoro AemwkeHHA chOPMYTHPOBAHO YCIOBHE aBTOMOMENBHOCTH, NMPH TIOMOIIM
KOTOpPOrO 3ajjavua CBeJleHa K UMCIICHHOMY pelleHHIO HellmHeliHolH KpaeBoH 3afauy onucaHHOMN
cucTemolf OOLIKHOBeHHBIX AudGepeHINANBHBIX YPaBHEHMH NAToro mopsaxa. IIpoBemeno
ofcy>KIeHue pellleHHs, a TaKKe JJIA ero WUIIOCTPALMH NpHBejeH uHcioBoi mpumep. Kpo-
M€ 9TOr0 pacCMOTPEH YacCTHBIH CITy4ail HEBA3KOro, HO TEIJIONPOBOAHOrO rasa.

THE one-dimensional non-stationary motion of gas driven by a piston is usually consider-
ed as a classical example of propagation of wave perturbations. Self-similar problems
of this class for adiabatic flow with shock waves were stated first by L. I. SEpov [1]. Their
detailed analysis was made by N. N. KocHINA and N. S. MELNIKOVA [2, 3] and S. S. GRI-
GORIAN [4].

Together with the motion of gas compressed by a plane piston may be considered
motions under the action of an expanding cylinder or sphere. The solution of the self-simi--
lar problem in the case of an expanding sphere was obtained by N. L. KRASHENINNIKOVA
[5], who considered some variants of the power-law of expansion, one of the variants
being analysed with consideration of the influence of viscosity and heat conduction.

If the density of the unperturbed gas is that of normal atmospheric conditions, the
influence of viscosity and heat conduction reduces to the display of a shock wave
structure and a thermal boundary layer at the surface of the piston. However, reduced
density gives rise to conditions, under which the influence of dissipation extends over the
entire region of motion of the gas. As a consequence, complete Navier-Stokes equartions.
are needed for the correct description of that motion.
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Below we consider the general case of the self-similar problem of a piston acting on
a viscous, heat-conducting gas, using power-laws of motion of the piston and variation
of viscosity and any type of symmetry of the motion.

Let us consider the one-dimensional non-stationary motion of a viscous heat-conduc-
ting gas, characterized by plane, axial or central symmetry. If the gas of arbitrary nature
has constant coefficients of specific heat and constant Prandtl number and the viscosity and
heat conductivity are related to the temperature by power-laws, the motion of the gas is
governed by the Navier-Stokes equations. The form of these equations and the method
of their transformation to a dimensionless form corresponding to the self-similar motion
is given in Ref. [6].

Let the gas, the initial density of which, g,, is uniform, move under the action of a
plane piston, or an expanding cylinder or sphere; this impermeable moving surface will
be referred to in all the cases considered as the piston. Its velocity of displacement will
be prescribed by the equation

(1.1 U=ect™, c¢,m = const.

It will be assumed that there is, at any instant of time, no heat exchange between the
gas and the surface of the piston. Then, the initial and boundary conditions for the solution
of the piston problem can be written in the form

0=¢, p=e=9v=0 for =0 and t>0,r=ry,

1.2)

%0 udefor =0, v=ct™ for t>0,r=r,

where v—velocity, p—pressure, e—internal energy, c—Prandtl number, »—ratio of
specific heats, u—viscosity, r,—coordinate of the piston and r,—coordinate of the per-
turbation front. Let us observe that the existence of the perturbation front is connected
with the assumption that the temperature of the gas in the unperturbed region is zero

(see [8)).
Denoting 6 = 1+ m and following [6] we shall adopt as an argument the quantity
(1.3) n = arfr, = adr/(ct’)

and transform the variables, which are sought for, according to the formulae
U
e=01R(m), v= P ¥ V(n),

{1.4) p= el(a%) P(p), &= : (%) N(n),

x—1

U
M= X0 'EN(T?),

where

@) A Uty

X==1Ve,  rya
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If the expression (1.1) for U, and the expression for r, obtained from it by integration
are substituted in (1.5), the condition of independence of the parameter y on time will
represent a condition of self-similarity of the motion, which has, in our case, the form

(1.6) n=1+4+02m)"L

The condition (1.6) will be considered, in what follows, to be satisfied, but there are
other limitations (see [2]), valid in the limiting case of adiabatic flow and also the condition
of non-negative exponent n.

Taking into account all the limitations we can consider the values of n and m whithin
two corresponding intervals

y—2 v

5 =2nz=0, ——4mg—-l— and m >0, n> 1.
v

(1.7 v+2 2

If the condition of self-similarity (1.6) is satisfied, the Navier-Stokes equations reduce,
by virtue of (1.4), to the form

8qR —VR' —RV'—(w—1)RV/y = 0,

R[(6—=1)V—0qV'+VV']+RN+RN' = %x[m(yf—l% V)] +2”;1 xN"(V‘—%V)
(1.8 _ =
L RI2(6—1)N—8nN'+VN']+ (x— l)R'N(V’+ %V) - x%:—[(N"N’)’-}- et I\"‘N’]

-1 1 {v—1 2
» g Y= pa % 178 V’):]
+2(x I)XN“[V b P 3( —~Epy |

The dimensionless coefficient @ in (1.3) can always be selected so that 5, = arg/r, = 1.
Then, instead of (1.2) we obtain the conditions

RN =1, P(1)=N(1)=V(1)=0,
%0 'yN"(@)N'(a) =0, V(a)= aé.

(1.9)

These conditions, together with the Egs. (1.8), ensure complete formal interpretation of the
self-similar problem of a piston in a viscous heat-conducting gas. The constant dimension-
less parameter y [Eq. (1.5)] vanishes together with the coefficient of viscosity and for
a finite Prandtl number o it may be used as a criterion for the combined influence of visco-
sity and heat conduction.

To solve the boundary-value problem it is necessary to describe in a more accprate
manner the behaviour of the integral curves in the neighbourhood of the singular point
7 = 1, that is in the neighbourhood of the perturbation front. As was observed in Ref.
[6], the form of the expansion in the neighbourhood of that point and the number of terms
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necessary to obtain a “free” parameter, depends on the physical characteristics of the gas,
or, more rigorously speaking, on the power éxponent » and the quantity

@.1) t=22.

Let us consider the case of a piston, the velocity of which varies according to the law
(1.1) and m = 5. By setting n = 1.1 we can ensure the satisfaction of the self-similarity
condition (1.6). The case considered is that of uniform initial density (¢, = const) and,
if we set { = 3/2 (that is x = 20), then, according to [6], use can be made, for small values
of z = 1—#, of the following asymptotic representations

V = szlﬂ,‘ll +B‘,215“1, N = ZA.,ZIOHI +BN220,1'11,
R = 1+(4,/6) 27 + (B,/6)*",

133\ 5 2
Au = E (W) , .BN = — 51—(?‘-*1)‘4,.

The Egs. (1.8) will be satisfied in an approximate manner by the Egs. (2.2) for any
value of B,, so that there is some arbitrariness which is necessary to satisfy the boundary
conditions (1.9) at both ends of the interval a < 5 < 1 considered.

In practice the computation is started from a certain arbitrary value B{%, which is in-
troduced into the formulae (2.2), thus enabling us to determine the values of the sought-for
variables at the original point 7, = 1—¢ (¢ < 1). Numerical integration of the Eqs. (1.8)
is performed by negative steps, starting from the point 5 = %, and ending at that point =
= 4 where the condition ¥(a‘®) = 4 § is satisfied. Then, a simple algorithm enables us
to vary the value of B, in such a manner, that the second of the conditions (1.9) established
at the point = a should be satisfied with a prescribed accuracy. The value of a is deter-
mined at the same time.

On the basis of the above method and following the standard Runge-Kutta procedure,
computations were performed for a plane piston (» = 1), for the values x = 1.4, ¢ = 0.7,
m = 5, n = 1.1. Let us emphasize once again the fact that the values of m and » are inter-
related by the self-similarity condition (1.6) and the value of n selected enables us to ensure
satisfactory approximation to the real law of viscosity variation at a certain, sufficiently
large temperature interval. It is also worth while observing that the kindred variant
of the self-similarity problem of the piston, for m = 1, n = 3/2, was considered by
V. V. SycHev and N. C. Avanesova [7].

The patterns of variation of velocity, density and temperature in the region between the
surface of the piston and the perturbation front are shown in Figs. 1 to 3, respectively.
Each of the diagrams shows curves found by numerical integration of the Egs. (1.10).
The figures express the values of the parameter y. In the case of ¥y = 0 the computation
was carried out using equations obtained from (1.8), but the external boundary of the flow
region is not a perturbation front but a shock wave with a relevant modification of the
boundary conditions (see [1]). As is seen from the diagrams, the weakening of the influence
of viscosity and heat conduction, that is the reduction in y, is manifested first by a narrower
perturbation region. Second, as y decreases, the profiles of the gas-dynamic parameters
approach discontinuous profiles of adiabatic motion. Nevertheless, even for a very small
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value of y, different from zero, the perturbation front is a surface of weak discontinuity,
not strong. In addition, for any ¥ > 0, the temperature and the density at the surface of the
piston are finite and different from zero, whereas for the “adiabatic” case the temperature
at the surface is equal to zero and the density is infinite.

From the above it follows that at the limit y — O there is a transition from a continuous
motion to a motion with a strong discontinuity (shock wave). The case in which the Prandil
number tends to zero with the parameter y and

(3.1) lim (ﬂ) = yr = const
z-0,8-0\ O

is of particular interest. If it is borne in mind that the quantity y is proportional to the
coefficient of viscosity u# and the Prandtl number is equal, according to a definition, to
0 = pucy/4, it is clear that the condition (3.1) is satisfied, if the gas is inviscid but heat-
conducting. Then, the parameter g is, of course, in direct proportion to the coefficient
of heat conduction of the gas A.

Assuming that the heat conduction is related with the temperature by a power-law of the
same type as hitherto assumed for the viscosity, that is

(32 A =c,Are",
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we can generalize, in a formal manner, many former results to the limiting case considered..
In particular, the conditions (1.6) and (1.7) are invariable. The independent variable (1.3)
may also remain in the former form. Next, from the (1.8) we dbtain, by setting ¥ = 0,.

xxlo = xr,
&R —VR —RV'—(»—1)RV/[y = 0,
R[(6—1)V—06nV'+VV'|+RN'+R'N =0,
R[2(6—1)N—8nN'+VN']+ (x—1) RNV’ + (»—1) V[n]
= 2r[(N"N') + (»—=1)N"N"[n]..

(3.3)

By preserving the condition of zero heat transfer at the surface of the piston, we obtain,,
instead of (1.9),

R(1) =1, P(l). =N(1)=¥v(1)=0,
xrN"(@)N'(a) =0, V(a) = ad.

Despite the external identity with the Eqgs. (1.8), the Eqgs. (3.3) with the boundary
conditions (3.4) have no continuous solution similar to that described in Sect. 2. This can
easily be explained by taking into consideration the fact that the gas considered is inviscid,.
but can also be confirmed by a purely formal analysis of the behaviour of the solution in the:
neighbourhood of the point 7 = 1 in the case of ¢ — 0, in agreement with the general
method [6].

A qualitative study of propagation of perturbations in a heat-conducting gas having zero
temperature of the unperturbed volume was given in the book [8]. The result of that study
reduces to a statement of necessity of occurrence of a strong discontinuity at a certain point
7 =1, a<ns;< 1 and due to a heat conduction the temperature of transition through
the discontinuity should vary in a continuous manner. More accurate studies of motions
with isothermal discontinuities were carried out by I. O. BEZHAEV [9] and V. E. NEUVAZ-
HAEV [10], who gave also examples of computation.

The conditions at the isothermal discontinuity have, in dimensional symbols, the form

(3.4

Q+(‘E'J+ —C,) = Q_(ﬂ_ '_Ca)!

et @ —c)*+(x—1e*e = " (07 —¢)* +(x—1e7e,

G5 et et +u=1)e*0 e (3e)(0e/0r)*

= (0 =)o~ + (=) 0"~ (He)Pelor),

the symbol ¢, denoting the velocity of displacement of the discontinuity surface and the
upper indices + and — denote values behind and before the discontinuity, respectively.

By virtue of self-similarity at the surface of discontinuity we have 5, = const and from
the formula (1.3) it follows that

e Cna Lo U,
fs=5Mt G= g = 55
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so that the dimensionless equivalent of the velocity ¢, is a quantity d»,. Making use of the
result obtained, the relations (3.5) can be written in a dimensionless form. On solving
them for the values behind the discontinuity we find

R* = R~ (V- =9,0)%IN, V* =n8+N/(V~=n,),

Y =Y N..R(V‘—m&)’[ (—fTﬁ]

The introduction of the discontinuity surface at the point = 7, enables us to obtain
the solution of the Eqs. (3.3) satisfying all the conditions (3.4) for # = 1 and the condition
V(a) = da. In addition, the unknown value of 7%, is the “free” parameter, by variation
-of which we can also satisfy the second condition at # = a, that is we can solve in a com-
plete manner the boundary-value problem which has been stated.

In the case of a plane piston (v = 1) and for the same values of m, n and # as in Sect. 2,
the computational results are shown in a diagrammatic form in Figs. 4 to 6. The figures
marking particular curves express the values of the parameter of heat conduction yr.
Similarly to the case of combined action of viscosity and heat conduction, the reduced
influence of heat condution manifested by a decrease in the parameter nr, leads to a narrower
perturbation region. As regards profiles of gas-dynamic parameters it is of particular
interest to study the velocity profile (Fig. 4) and the temperature profile (Fig. 6). It is
obvious that if we do not take into account the region before the shock wave, the character
of the velocity profile in heat-conducting gas approaches more closely that of the “adiabatic”
profile than the previous profile Fig. 1. On the contrary, the temperature profiles of a heat-
conducting gas resemble more closely the profiles shown in Fig. 3 taking into considera-
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tion the simultaneous influence of viscosity and heat conduction. Thus, it may be stated
that the variation of velocity of a viscous heat-conducting gas driven by a piston is deter-

mined above all by the mechanism of viscosity, while a principal role in the variation
of the temperature is played by the mechanism of molecular heat conduction.

4 Arch. Mech. Stos. nr 1/76
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