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Limit state condition and the dissipation function for isotropic 
materials 

J. PODGORSKI (LUBLIN) 

THE PAPER presents the limit state condition containing three stress tensor invariants which may 
be particularly useful in considering the behaviour of brittle and granular materials. The cor­
responding power dissipation function is found. This makes it possible to obtain a dual descrip­
tion of the a- E relation. Particular forms of the dissipation function derived in the paper corres­
pond to the classical limit state conditions and simplify the estimation of the load carrying 
capacity. 

W pracy przedstawiono warunek stanu granicznego zalei:ny od trzech niezmiennik6w tensora 
napr~i:enia, szczeg6lnie przydatny do opisu zachowania material6w kruchych i osrodk6w 
rozdrobnionych. Dla warunku tego znaleziono funkcj~ dysypacji mocy, co pozwolilo uzyskac 
dualnosc opisu zalei:nosci a-E. Szczeg6lne postacie funkcji dysypacji odpowiadaj'lce klasycznym 
warunkom stanu granicznego, kt6re podano w pracy, ulatwiajCl oszacowania nosnosci 
granicznej. 

B pa6oTe npegcraBJieHo yCJIOBHe npegeJILHoro cocroHHWI, 3aBHcHmee OT Tpex HHBapuaHToB 

TeH30pa HanpH>KeHWI, OCo6eHHO DpHrOgHOe gJIH ODHCaHHH DOBegeHWI xpym<HX MaTepHaJIOB 

H pa3MeJibtieHHbiX cpeg. )lJIH 3Toro ycnoBHH HaiigeHa <l>YHI<QHH gHccunaQHH MOII(HOCTH, liTO 

D03BOJIHJIO DO~ gyaJibHOCTb ODHCaHWI 3aBHCHMOCTH a--E. qaCTHbie BHgbl cl>ym<QHH 

gHCCHDaQHH, OTBetiaiOII(He KJiaCCHtieCKHM YCJIOBHHM npegeJibHOrO COCTOHHHH, KOTOpble 

npHBegeHbi B pa6oTe, o6JiertiaiOT oQeHKH npegeJILHOH HecymeH: cnoco6HOCTH. 

Nomenclature 

a stress tensor, 
a' deviator of the tensor a, 

E strain rate tensor, 
e' deviator of the tensor e, 

a· a denotes (J'J (J'h 

aa denotes (Ju: (J"h 

/1, lz, 13 invariants of the tens?r a, 
1 

(Jo mean normal pressure (]0 = -/1, 
3 

Jz, J 3 invariants of the tensor a', 

To octahedric shearing stress; To= ~: J2, 

tp angle at the deviatoric plane in the space of stresses, 

3y3 J3 
J = cos 3tp invariant of the tensor a'; J = ---~, 

2 Jz 

II, III invariants of the tensor e', 
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324 J. PODGORSKI 

Yo octahedric distortion strain rate, y 0 ~ V: II, 

Cfle angle at the deviatoric plane in the space of strains, 

le = cos3q;e 
3 y3 III 

invariant of the tensor £'; J8 = - - - - , 
2 IJ3'2 

1. Introduction 

f = 0 limit state condition, 
{}, A parameters defining the shape of the section of the limit surface by the devia­

toric plane, 
P(J) shape function of the limit surface, 
a, fJ parameters of the shape function P(J), 

C0 , C 1 parameters of the function 1; 
n . normal to the limit surface in the deviatoric plane, 

D power of dissipation, 
fl1, fl2 Lagrangean multipliers, 

a arbitrary constant from the interval (0, 1). 

THE FORMULATION of the limit state criterion for materials, the behaviour of which essen­

tially depends on the third stress tensor invariant and on the mean pressure, is still an 

open problem. 
The commonly used Coulomb-Mohr condition yields the results which differ from the 

experimental data (for instance in the case of rocks, concrete etc.) by more than ten percent, 

what is particularly evident in the range of positive mean normal stresses (at the vertex 

of the limit surface). This is the reason why repeated attempts have been made to determine 

the limit state more rigorously. Let us mention the papers by LADE and DuNCAN [I], 

MATSUOKA [2], GuDEHUS [3] in which new criteria for sands are proposed, · and also the 

papers by MILLS, ZIMMERMAN [4], WILLAM and WARNKE [5], OTTOSEN [6] where the 

failure conditions for concrete are given. 

In this paper a condition will be presented which embraces a very important class of 

conical limit surfaces (a more general condition was formulated by the author in [7]). 

This criterion contains the classical conditions by Huber-Mises, Tresca, Coulomb-Mohr, 

Drucker-Prager and also the recently proposed LADE [I] and MATSUOKA [2] conditions; 

the new criterion enables a more accurate description of the material behaviour. The dissi­

pated power function was also qetermined for this criterion; this made it possible to rep­

resent the relations between the stresses and strain rates in two equivalent, dual forms. 

Equations for the dissipated power functions correspond to the classical limit state con­

ditions and may be used to solve many practical problems, first of all the upper estimates 

of the load carrying capacity. 

The determination of the dissipated power function in the case of singular limit surfaces 

(the Tresca and Coulomb-Mohr conditions) and all conical limit surfaces is not an easy 

task due to nonunique relations between the stress and strain rate tensors. The difficulties 

were surmounted by means of the limit transformations presented in Sect. 4 and the 

Lagrange multipliers introduced in Sect. 5. 

http://rcin.org.pl



LIMIT STATE CONDITION AND THE DISSIPATION FUNCTION FOR ISOTROPIC MATERIALS 325 

2. Coordinate systems 

In order to simplify the description of the limit surfaces and the dissipa~ed power 
surfaces, let us apply the cylindrical coordinate systems in the stress and strain rate space·s. 

In the space of stresses the cylindrical coordinates (h, r, cp ), Fig. 1, are expressed in 
terms of the stress tensor by the following formulae: 

1/3 ~ 1-
h = -3- Il = V 3 fYo, 

(2.1) r = y'2J2 = ]!'3 r 0 , 

3JI3 ]3 
cos3cp = J = -

2
- 1~12 • 

a, 

FIG. 1. 

Here 11 = tra- first invariant of the stress tensor a, a 0 = ~- / 1 -mean normal stress, 

1 2 =+a'· a'- second invariant of the stress deviator a', r 0 = V ~ 12 - octahedric 

shearing stress, 13 = + (a'a') ·a'- third invariant of the stress deviator a', J- denotes 

cos3cp. 
Analogous relations are assumed for the components h6 , r8 , tp6 in the space of strain 

and the strain rate tensor invariants, 

]13 
hs = 3 Ekk• 

r 8 = y'2II = ]!'3y0 , 

3 v3 III 
cos3cp. = ls = - 2- IP/ 2 • 
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326 J. PoDG6RSKI 

Here Ekk - first invariant of the strain rate tensor E, II = ~ e' · e'- the second invariant 

of the strain rate deviator £', y 0 = V ~ II-octahedric distortion strain rate velocity, 

III = + ( e' e') · e' -the third inva~iant of the strain rate deviator e'; J8 - denotes cos 3tp8 • 

3. Limit state condition 

Comparison of the results of experimental investigations with the values predicted 
by the limit state criteria shows the section of the limit surface made by the deviatoric 
plane to constitute a very important element of the limit surface. In view of this fact, 
several authors have proposed different functions to describe the shape of that section. 
The functions, written in the form r = r(tp), or r = P(J), will be called here the shape 
functions. 

The simplest shape functions are 

r = r0 -J (MILLS and ZIMMERMAN (4]), 

and 
r2 = r0 -J (GUDEHUS (3]), 

in which r0 denotes a constant satisfying the convexity conditions: 
r0 ~ 10 for the Mills and Zimmerman functions, 
r0 ~ 4 for the Gudehus function. 

Owing to these conditions, the ranges of applicability of the criteria are considerably 
limited since for many materials (e.g. rocks, concrete, sand) it proves to be necessary to 
apply the section shapes which are almost triangular. 

Such a possibility is offered by the shape function proposed by WILLAM and WARNKE 
[5] who used the equation of an ellipse 

2(1-,P)costp + (2A. -1) J/ 4(1- A. 2)cos2 tp + 5A. 2 -4A. 
r = ' 4(1- A. 2)cos2 tp+ (2A.-1)2 

where A. denotes a certain constant equal to the ratio of radii rat tp = 0° and tp = 60°, 

(3.1) 
r(0°) 

A. = r(60°) ' 

angle tp ~ries within the interval -60°, 60°. 
LADE and DUNCAN [1], MATSUOKA [2] and_OTTOSEN [6] use the function given by the 

formula 

1 
r=-------

cos (-}arccos IX.T) 

with the constant IX satisfying the condition 0 ~ IX ~ 1 ; this function describes the family 
of curves contained between the circle (IX = 0) and the triangle (IX = 1). 
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Another classical condition of Coulomb-Mohr may be analyzed in this way by intro­
ducing the shape function 

1 
r = ---:-:---:---:::-

cos(jqJj- /l) ' 

where pis a constant depending on the angle of internal friction (cf. Table 1), and qJ satisfies 
the condition 0° ~ lqJ] ~ 60°. 

Table 1. 

Values of constants 
Criterion 

-I 

I 
HUBER- MISES 

v~ k 
n 

J2-k2 = 0 0 0 6 ,P= 1 

TRESCA l/ ~ k 
n 

!Tmaxl-k = 0 0 1 -
6 

---

DRUCKER-PRAGER 

v~ a y6b 
n 

VJ2-a+bl1 = 0 
0 6 ,P= 1 

CoULOMB-MOHR y2ccosq, y2 sinq, ( Y- 1 -sin q, ) 1 arctg 3 
1-rnl = c-tgq,an y3+sin2 q, y3+sin2 q, 3+sin~ 

LADE, DUNCAN 
0 v "1-27 v "1-27 0 

/~-"1 /3 = 0 2"1 2"1 

1 1 
MATSUOKA 1+-

1112 = 9(K2+1) V2(1+ 3~,) 
K2 

0 0 

/3 Vl+ -3~2 

In order to analyze the possibility of adaptation of these functions to the experimental 
data, let us introduce, in addition to A., another characteristic parameter of the cross­
section, and namely the ratio of rat qJ = 30° and at qJ = 60°, 

(3.2) 

The {}-A. relationships of the shape function and the ~xperimental results concerning 
concrete, sand and clay are shown in Fig. 2. Comparison of these relationships allows 
one to draw the conclusion that none of the shape functions used so far enables us to 
describe the behaviour of brittle and granular materials with sufficient accuracy. 

Hence it is necessary to introduce a new function depending on both parameters in 
order to obtain the {}-A. characteristics lying in the entire region bounded from below by 
the Coulomb-Mohr condition, and from above- by the Lade curve (Fig. 2). 
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. TESTS RESULTS 
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The function satisfying the above conditions may be defined by the following equa­
tion: 

(3.3) r = P~J) , P(J) = cos (+arccos IX.f- p), 
a, fJ being the constants satisfying the conditions 0 ~ a ~ 1, 0° ~ fJ ~ 30°. The para­
meters a and fJ may be determined on the basis of the known characteristics A., {} by means 
of Eqs. (3.4). The equations are easily solved by the method of consecutive approximations 
assuming the initial value fJ = 0°. 

a = cos3x , 

A.cos{J -cos(60°- {J) tg X = _ ---,--:_------:__:_---,--__:__.:..._ 
sin(60°-{J)-A.sin{J ' 

(3.4) 

fJ _ 2A.cosx- y3 {} 
tg - D-2A.sin x · 

The shape function in the form (3.3) may be used to construct the general form of the limit 
state criterion 
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Here A0 is a function of the mean pressure Go only, and A 1 , A2 are functions 
of J. 

This general form of the criterion was used by the author to describe the phenomenon 
of failure of concrete [7], what leads to a very good agreement with experimental results. 

In this paper considerations will be confined to such forms of the limit state condition 
which lead to the conical limit surfaces: 

(3.5) 

C0 and C 1 being constants. 
The criterion in the form (3.5) makes it possible to obtain several known limit state 

conditions by assuming different values of the constants ac, {3, C0 and C1 , what is shown 
in Table 1. 

Let us now discuss the method of determination of the constants ac, {3, C0 , C1 on the 
basis of the experimental data given by GREEN and BISHOP [8] and concerning packed 
sand. The results of the investigations taken from Fig. 3 of the paper [8] are presented 

a, 

proposed criterion 

FIG. 3. 

in Table 2. Using these results and assuming zero cohesion (r0 = 0 for Go = 0), the 
characteristics {} and A of the limit surface cross-section are determined from the for- · 
mulae 

A = 3/sin¢c-1 , 
3/sin¢r+ 1 

sin¢0 . 
{} = . ; - (3/sm¢c-1), 

2v3 

Here ¢c, ¢ 0 , ¢r denote the respective internal friction angles at the three-axial compression 
(q; = 60°, J = -1), three-axial shear (q; = 30°, J = 0) and three-axial extension (cp = 0°, 
J = i). . 

3 Arch. Mecb. Stos. nr 3/84 
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Table 2. 

b 

q; 
[deg] 

1/1 

[deg] 

b 

q; 
[deg] 

1/1 

[deg] 

0 

60 

39 

0.72 

15.75 

45 
43.5 

0.09 0.14 0.16 

55.33 52.57 51.43 

42.5 44 44 

0.86 0.91 0.98 

7.43 4.67 1.00 

45 45 44 
44 

------

0.22 

47.92 

43.5 

1.0 

0 

44 
41 

-

0.27 0.28 

~ 

44.87 44.25 

43.5 44 

b = (]2 -(]3 

(]! -(]3 ' 

0.31 0.33 0.43 0.44 0.51 0.59 

42.37 41.11 34.62 33.96 29.34 24.07 

42 42 43 
I 

43 43.5 4j 

---

(1-b) 
tgq; = y'f 1 +b ' (]! > (]2 > (]3 
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The assumption of zero cohesion makes the constant C0 in Eq. (3.5) vanish and so, 
once both parameters oc and {3 are found from the relations (3.4), there remains only one 
constant C 1 to be determined from the equation 

_ cos (+arccosr:x-{3) 
cl = 2 ]12 31 . ¢ I . sm t+ 

From Table 2 we obtain ¢t = 44°, ¢c = 39° and assume ¢ 0 = 43.5° what yields the values 
A = 0.7083, {} = 0.7486, oc = 0.9781, {3 = I0.28°, C0 = 0, C1 = 0.5291. 

The limit surface section corresponding to these parameters is shown in Fig. 3 (solid 
line), together with the projections of the experimental points obtained by Green and 
Bishop [8] and the corresponding curve resulting from the Lade and Duncan condition 
[I] for u 1 = 56 (dashed curve). Comparison of both conditions shows the possibility 
of a better fitting of the condition proposed to the experimental data. 

4. Constitutive relations of a perfectly plastic body 

Assuming the associated flow law, the strain rate tensor may be written in the form 

• of • 
E = A- where A > 0. 

oa' 

This equation may be transformed to another form, more convenient for further consider­
ations: 

(4.1) 

where 

I 1 ' 
E = 3 Eu +£' E' =in, 

of o[P(J) rol 
n = oa' = oa' . 

In the case of the condition given by Eq. (3.5), the above relations may be represented 
in the form 

·(4.2) a' ( - a" a'} n = P-- +P' 1'2 - 2 -J ·-, 
3r0 r0 r0 

where 

, oP I sin (+arccos r:xJ- {3} 
p =-=- -------::===--

oJ 3 V I , 
--]2 
r:x2 

, oJJ , , 21 
a = oa' = a a - io • 

3* 
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Finally, Eq. (4.1) assumes the form 

(4.3) e = i (} C1 l+o), 
which for the different criteria listed in Table 1 remains unchanged (1), in contrast to the 
formula determining the deviator n. 

The relation between the deviator n and the tensor a for the classical limit state condi­
tions is shown in Table 3. 

Table 3. 

Criterion 

HUBER-MISES 

TRESCA 

DRUCKER­

-PRAGER 

COULOMB- MOHR 

Deviator n 

1 ' n = - -a 
3ro 

(l) 

J2 =I= 1, n = n, 

(1) (2) 
12) I r 0 J J = 1, n =an +(1-a)n, 
nlJ = y2 ~ 00 

(2) (3) (3) I 10 0 

J J = -1, n = an+(1-a)n, n,J = yf ~ 1 
0 

1 
n =-- a' 

3ro 

(2) 

J 2 =I= 1, n = n 

J= 1, 
(1) (2) ((1) (2) (3) ) 

n = an + (1-a) n n, n, n determined by Eqs. ( 4.6), ( 4. 7), ( 4.8) 
(2) (3) 

J= -1, n = an+(1-a)n 

Let us now present the method of derivation of that relation in the most complex 
case of the Coulomb-Mohr criterion. The corresponding limit surface is a pyramid, hence 
its edges are located at 1 2 = 1; this accounts for the indefiniteness of the direction of o in 
the deviatoric plane. By assuming J 2 =1= 1, we may determine the deviator o for a side of 
the Coulomb-Mohr pyramid. 

e) This does not apply to the Lade and Matsuoka condition and other conditions in which the constant 
C1 appearing in Eq. (3.5) equals zero since the assumption of the associated flow law yields the conclusion 
of zero dissipation, and this contradicts the experiments. The contradiction may be avoided by assuming 
the nonassociated flow law. However, this is not the subject of this paper. 
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Substitution of IX = 1 in Eq. (4.2h (cf. Table 1) yields 

(4.4) n = COSVJ (-r o' (1-tgV' J ) + y'2 o" tgV' ] , 
3-r5 0 y /1-J2 y1-J2 

where 

1 
V' = 3 arccosJ-{J = lq;l-{1. 

From Eq. (4.4) it follows that n is a normal to a side of the hexagon which represents 
the section of the Coulomb-Mohr surface made by the deviatoric plane (Fig. 4). 

£ 

FIG. 4. 

In order to verify this property, let us calculate, in accordance with Eq. (2.2h, the 
value of cos 3qJ4 = la. 

For the deviator n we obtain 

II= ~ i 2 n· n = f.:~2 [P2 +9(P')2 (1-J2
)], 

1 . ). 3 
III= -

3 
13 (n n) · n = [P 3J+9P2P'(l-J2) 

21v2 
(4.5) 

sint/1 
On substituting; into these equations r1. = 1, P = COSVJ P' = 3 r we obtain 

' 3 yl-1 2 

from Eq. (2.2)3 J = cos3{J what proves that n is normal to the side of the hexagon. 
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Let us now analyze the deviator n given by Eq. (4.2h at the singular point J = 1. 
sin fJ 

In Eq. (4.2h 'we assume now P = cosfJ, P' = - v . The following express-
3 _I_ -J2 

(X2 

ions appear in Eqs. (4.5): 

I-J2 
wl = ---

_1 __ ,2 
(X2 

and 
I-J2 

-. /_1 _,2 ' 
Jl (X2 

their limits at the point <X = 1, J = 1 being equal to: 

limw1 =a, limw2 = 0 where 0 ~a~ 1 

depending on the path at the plane tx-J along which the point (tx = 1, J = 1) is approa­
ched. 

Indefiniteness of the limit w1 is the reason for the indefiniteness of the direction of n. 
Equations (4.5) may now be written in the following form: 

j2 
II = 6 (cos 2fJ+asin 2fJ), 

.}.3 
III=---- (cos3fJ-3acos{Jsin 2fJ), 

27V2 

4 . 3 v'--J = -cos3{J- -cos{J where e = 611. e3 e2 , 

By solving this equation for yll we obtain the equation of a straight line in the octahedric 
plane 

Jl'll = cos{J = cos{J . 

( 
1 ) coscp. 

cos T arc cos J. . 

The equation remains valid within the interval !cp.! ~ {3, only, what means that the tip 
of the normal n moves along a straight line perpendicular to one of the principal direc­
tions. 

The results obtained make it possible to write the normal n as a combination of the 
(1) {2) 

normals n and n of two sides of the Coulomb-Mohr hexagon (cf. Fig. 4): 
{1) (2) 

n ~ an+(l-a)n, where 0 ~a~ 1. 

(1) {2) 

The normals n and n are found from Eq. (4.4) by means of the substitutions 

(l) 1 
n = n(1p = 1p1), 1p1 = 1

3 arccosJ- {3, 

(2) 1 
n = n(1p = 1p2), 1p2 = 3 arccosJ+fJ 

http://rcin.org.pl



LIMIT STATE CONDITION AND THE DISSIPATION FUNcriON FOR ISOTROPIC MATERIALS 

or 

(4.6) 

3 
(1) 2 ~--, (l) 

n = y- L.J n1s1 ®s1, 

3 i=.l 

335 

(l} 

where si are the unit principal vectors of the tensor a, and the principal values n1 are equal 
to 

(1} (1) (I) 

n1 = cos{J, n2 = -cos(60°-{J), n~ = -cos( 60° + {J), 
3 

(4.7) 
(2) 2 .2 (2) 

n = y- n1s1®s, 
3 i=l 

(2) (2) (2) 

n1 = cos{J, n2 = -cos(60° + {J), n3 = -cos(60°-p). 

At the second vertex of the Coulomb-Mohr hexagon (for J = -1) analogous transfor­
mations yield 

(2) (3) 

n = an+ (1-a)n, 

(3) 

where n is normal to a side of the hexagon (Fig. 4), 

3 
(3) 2 '\1 (3) 

n = .;- J n1s1®s, 
., 3 f:t (4.8) 

m ~ <~ 
n1 = -cos(60°+{J), n2 = cos{J, n., = -cos(60°-{J). 

Finally, the deviator E' for the Coulomb-Mohr condition may be expressed by the for­
mulae 

E' = ~n, where 1 2 :f:. 1, 
• (l) (2) 

E'=J.[an+(l-a)n], where 1=1, 
• (2) (3) 

E' = J.[an+(l-a)n], where J = -1, 
(1)(2) (3) 

where n, n, n, n are given by Eqs. (4.4), (4.6), (4.7) and (4.8). 

5. Power of dissipation 

The power dissipated in the process of deformation of a perfectly plastic body is de­
termined by the equation 

D =a· E. 

Substitution of the relations ( 4.1) and ( 4.2) yields, in view of the condition (3.5), the 
following result: 
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whence, on eliminating ~by means of Eqs. (4.1h and (4.5)1 - it follows 

(5.1) D = 3Coll(J8)'Yo· 

Here Il(Js) is the shape function of the constant dissipation surface section by the devi­
atoric plane. 

The form of the condition (3.5), which is confined to the conical limit surfaces only, 
makes the constant dissipation surface a plane figure (or a plane curve if C 1 = 0) bounded 
by a certain cone in the space of strain rates, 

(5.2) 

This boundedness results from the fact that the direction normal to a conical surface is 
constant in the plane containing the vertex of the cone (Fig. 5). 

-q, 

FIG. 5. 

The form of the dissipation equation (5.1) and conditions (5.2) is the same for all the 
limit state criteria shown in Table 1 ; only the equations determining the shape functions 
Il(J

8
) must be different. Equations of the functions Il(J8 ) corresponding to the classical 

criteria are given in Table 4. 
In order to express the duality of description of the a-E relation, let us write the 

stress tensor in the form 

oD 
0' = OE . 

Due to the limitations imposed on the tensor e(w = 0, Eq. (5.2)), the relation must be 
written in a different form. 

(5.3) 
oD ow 

0' =- +~t-OE OE ' 

with p, denoting the Lagrange multiplier. 
This equation allows for the determination of the stress deviator only, since in view 

of the form of the constant dissipation surface the mean pressure Go may be assumed with 
a certain degree of arbitrariness, (Go ~ C0 /C1). It is easily verified that iUs the mean press-
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Table 4. 

(/) 
(!) 
(/) 

~ 
I 
L... 
Q) 

..0 
::J 

I 

0 
u 
(/') 
Q) 
L... 

I-

L... 

0> 
(]) 
0 
L... 

c. 
I 

L... 
Q.l 

.:::{. 
<.) 

:J 
L-

0 

L... 

.c 
0 
2: 

I 
.0 
E 
0 

::J 
0 
l) 

0 = 3 C0 T7(]~) ¥o 

f=O 

~ 
~ 

2 f = ]2 - k ;:: 0 

f = I tmax I - k = 0 

• 
f=VJ;"-a+ b r, 

-a, 

w = ckl< - 3 C1 Tl(J() 'to = 0 

c, 

€'3 

c2 

TT = 1 f, / 
~~ ~fl 

€2 

0 ~ J,~ 1 ' 
-1 ~ ]c ~ 0 ' 

[337] 

2 n, = VJ COS 'fE 
2 ( 0\ rr2 = vr cos <pf. - 6o 1 

TT = 1 

n- cos 'Pc 
1- cos ~ 

TJ. cos ['f'c- 60°) 
2 = cos[60°- ~I 
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ure which plays the role of a Lagrange multiplier in Eq. (5.3), and this makes it possible 
to write the equation in another form: 

(5.4) 

Here N = o[ll(J8)yo] is the normal to the curve bounding the constant dissipation surface 
oE.' 

in the deviatoric plane. 
For an arbitrary bounding surface w = 0, Eq. (5.2), the tensor N is expressed by the 

formula 

(5.5) N = n- +3Il' y2 - 2 -18-, 
E.' ( - E." E.' ) 

Yo Yo Yo 

where ll' = ~~, and E." =E.' E.' -y01, like the normal n (cf. Eq. (4.2)). In Table 5 the 
8 

equations are also given, determining the normal N for all the classical limit states cri-
teria. 

Let us now determine the deviator N in · the case of the Coulomb-Mohr criterion. 

Table 5. 

Criterion 

HUBER-MISES 

TRESCA 

DRUCKER­

-PRAGER 

CoULOMB-MOHR 

0 < ls ::s:;; 1, 

-1 ::s:;; ls < 0, 

le = 0, 

COS 3P < le ::s:;; 1 , 

-1 ::s:;; le < cos3p, 

le = cos3P, 

Deviator N 

1 
N=--E' 

3yo 

(I) 
(I) yz-12 N=N, Nl) = - 3 ~ 

(2) 
(2) yz~ N=N, NIJ = 3 0 

(1) (2) 

N = aN+(1-a)N 

1 
N= --E' 

3yo 

0 

~I -1 
0 -11 

0 

J 1 
0 

(1) (1) I r 0 

J N=N, N,J = yf cosP ~ -1 
0 

(2) (2) I II 0 
N=N, Nl) = 

V2 cos (; -il) ~ 0 

(1) (2) 

N = aN+(1-a)N 

J 
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The shape function of the constant dissipation surface is in this case given by the equations 
(cf. Table 4) 

ll(J) = n = cosq;8 8 1 cos{J 
for .. cos3{J ~ ]8 ~ 1 

and 

I/I(J) = Jl = cos(q;8-60°) c ( 1) J 3{3 8 2 cos( 60o _ {J) 1 or - ~ , ~ cos . 

The analogy of the formulae (5.5) and (4.2h may be used to write, on the basis of Eq. 
(4.5), the equations 

N · N = 3 [112 +9(ll')2(1-J8
2
)], 

(5.6) (NN) · N = ~[II3J8 +9Il2 (n')(1-J,)-27II(ll')2J8(1-J;)-27(IJ')3(1-J1)2], 
j/2 

and 

J=~ (NN)·N 
2 y2 (N · N) 312 

Substituting here II= II1 and II= Il2 we obtain 

and 

<Nt> = o(Ilt Yo) <1> <1> ~ 3 
N · N = --..,--

oe' . ' cos2{J ' 

(1) 

J(N) = 1, 

<2> o(ll2Yo) 
N=---

(2) (2) 3J (2) 

N. N = cos2(60o-p)' J(N) = -1' 8e' ' 
(1) (2) 

what demonstrates that N and N are normal to the hexagon of constant dissipation, 
Fig. 6. 

Flo. 6. / 
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( 1) (2) 

The normals N and N may also be written by means of the following formulae: 

3 
(1) y2 "\-"""1 (I) 

N = -- ) N,e,®e, 
cosp ~ ' 

i=l 

(5.7) 

(1) (1) (1) 

where ei are the unit principal vectors of the tensor e, and N 1 = 1, N 2 = -1/2, N 3 = 
= -1/2, -

(5.8) 

{2) 1 
N1 =2, 

(2) 1 (2) 

N2 = 2' N 3 = -1. 

A separate treatment is needed to determine the deviator N at the point of intersection 
of the surfaces fl1 and fl2 , that is at the vertex of the constant dissipation cone. Here the 
five components of the deviator e' must satisfy the additional condition J8 = cos 3p. 

This condition may be treated as a constraint imposed on the tensor e', and so the 
condition (5.4)2 is rewritten as 

N o{Ilt Yo) ok(Js) 
= oE' - f.-lt oE' ' 

(5.9) N _ o(Il2 Yo) - ok(Je) 
- oe' +p,2 0£1 • 

Here k(J6 ) = J8 - cos 3P = 0 is the equation of constraints, and p,1 and p,2 are the Lagrange 
multipliers. The , -" sign in the first equation results from the direction of the normal to 
the plane k(J8 ) = 0 (Fig. 6). 

Denoting okfoe' = M, Eqs. (5.9) are written in a form more convenient for further 
considerations, 

(5.10) or 

(2) (1) (2) 

N = N+p,2M from M = (N-N). 
#1 +p,2 

This equation is easily verified to be true in view of the equality 

a ak 
oe' [yo(/11- Il2)] = (p,1 + #2) oe' , 

which results from the fact that k(J8) = 0 is the solution of the set of equations 

Do = 3Coll1(Je)Yo, 

Do = 3Coll2(Js)Yo' 

valid for arbitrary D0 • These equations express the condition of equal dissipation at both 
segments of the curve and at the vertex of the constant dissipation curve. 
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or 

Equations (5.10) may be written in the form 

1 (1) (2) 

N = T [N+N+(p,2-/-ll)M], 

(1) (2) 

N = aN+(l-a)N, where 

341 

Consequently, the stress tensor in the case of the Coulomb-Mohr condition is expressed 
by the formula 

where 

(1) (2) 

I 

W, when cos3{J ~ l 8 ~ I, 
(2) 

N = N, when -1 ~ 18 ~ cos3, 
(1) (2) 

aN+(l-a)N, when ls = cos3{1, 

deviators Nand N being determined by Eqs. (5.7) and (5.8). 

6. Conclusions 

In the present paper the limit state condition for isotropic materials has been ~erived; 
the condition is applicable to a very important (from the practical point of view) class 
of conical limit conditions. 

This criterion contains the classical limit state conditions introduced by Huber-Mises, 
Tresca, Coulomb-Mohr, Drucker-Prager, and also the recently proposed LADE [1] and 
MATSUOKA [2] conditions; it enables a more. accurate description of the material behaviour, 
as it was illustrated by the example. 

The analytic form of the criterion enabled a simple derivation of the function of power 
dissipation associated with the limit state conditions which c~rrespond to both the smooth 
and the singular limit surfaces. The function used as the stress tensor potential allows 
for the dual description of the a-E relation. 

The dissipation potentials given in the paper may be applied to all classical criteria; 
this should simplify the procedure of solving numerous practically important problems 
of the load carrying capacity and, in particular, the evaluation of the upper estimates 
by means by the kinematically admissible velocity fields. 

Within the class of the conditions considered, the strain rate tensor components are 
not independent. The existence of certain relations holding between the individual com­
ponents (due to the singular limit surfaces) was treated in the paper as the additional set 
of constraints imposed on the tensor e; this, in turn, made it possible to apply (after 
fromulation of the constraint equations) the Lagrange multipliers technique. 
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