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Gradient description of capillary phenomena in multicomponent
fluids

A. BLINOWSKI (WARSZAWA)

KmemaTics and dynamics of a multicomponent non-dissipative medium with free energy de-
pendent on the constituent densities and their gradients is considered. Owing to a considerable
idealisation of the model it is believed that its physical meaning can possibly be restricted to
the limit case only —i.e., to the equilibrium equations. The equilibrium equations obtained
are used for the investigations of two-phase equilibrium of multicomponent fluids. Expression
for the surface tension is derived and equilibrium of the ideal solution with its saturated vapour
is studied.

Rozpatruje si¢ kinematyke i dynamike wielosktadnikowego ofrodka niedysypatywnego o ener-
gii swobodnej, zaleznej od gestosci poszczegdlnych skladnikéw oraz ich gradientow. Ze wzgledu
na znaczna idealizacj¢ modelu sens fizyczny przypisuje si¢ giéwnie przypadkowi granicznemu —
réwnaniom réwnowagi. Otrzymane réwnania rbwnowagi wykorzystuje si¢ do badania réwno-
wagi dwufazowej o$rodkéw wieloskladnikowych. Wyprowadza si¢ m. in. wyrazenie na napigcie
powierzchniowe oraz bada si¢ rObwnowage roztworu idealnego z jego para nasycona.

PaccmaTpuBalOTCH KMHEMATHKA W [JHHAMWKA MHOTOKOMITOHEHTHBIX HEIMCCHIIATHBHBIX Cpef
co ceobo[HOIl 3Heprueil 3aBHCHMOM OT IUIOTHOCTEH KOMIIOHEHTOB OT HMX I'pDaJHeHTOB. BBROY
JajieKo Mayllleidl MOeaM3alMHM MOMAENH, (PH3HYECKOH CMBICI, NOBHAMMOMY, CBOHCTBEH JIHIIL
NpeAebHOMY CJIYYal0 T. €. YpaBHeHHsAM paBHOBecuA. IlonyueHHBle ypaBHEHHA paBHOBe-
CHAl HCHOJB3YIOTCA [IJIA HCCIENOBaHMA [ABYX(asHOr0 PpaBHOBECHA MHOTOKOMIOHEHTHBIX
Cpell, U TaK, BLIBOOAWTCA BhIpaX{Ke€HHe HA IIOREPXHOCTHOE HATSYKEHMEe H HCClle[yeTcs paB-
HOBECHE HIEANLHOINO0 PACTBOpPA C €r0 HACHILEHHBIM MAPOM.

1. Introduction

In PAPERS [1, 2] was described a simple model of a liquid with the elastic energy depend-
ing on the density gradient. The model was shown to allow for the existence of two-phase
equilibrium with shearing stresses occurring in the transition zone and producing the
effect of surface tension.

The model mentioned here was able to describe the behaviour of single-component
substances only, thus giving the possibility of considering the surface phenomena on the
interface between the “pure” (without admixtures) liquid and its saturated vapour. Both
from the practical and cognitive points of view, much more interesting is the problem
of surface effects in multicomponent systems involving such questions like action of
surface-active substances or the interface tension at the interface of two media with limited
solubility (of the liquid-liquid or liquid-gas type).

In this paper we shall propose and consider a certain more general gradient model
for multicomponent substances, followed by an example of its realization in the case,
in which the long-range interactions may be reduced to binary central interactions. The
model will also be applied to the determination of surface tension of a low concentration
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solution remaining in equilibrium with its saturated vapour, and to the evaluation of the
proportionality factor in the Henry law.

The mathematical model proposed yields the complete system of equations of motion
and constitutes a certain closed logical structure. From the physical viewpoint it
represents a generalization of the elastic fluid model described in [2] to multicomponent
media; both models are concerned with perfectly elastic substances in which all pro-
cesses may be considered as reversible. Such an approach makes it possible to introduce
the isothermal potentials and to consider the isothermal balance laws. In this manner,
the relation of the theory considered here to the real behaviour of bodies is similar to
the relation of the barotropic fluid theory to the real behaviour of viscous fluids, or of
the theory of hyperelastic bodies to the viscoelastic character of real solids. However,
its applicability to the description of real motions seems to be much more limited in com-
parison with the models mentioned above, since it would be rather difficult to indicate
the definite substances or situations in which the processes accompanied by diffusion
might be treated as reversible. On the other hand, as long as we are interested in the
states of equilibrium, we may expect all the theories to lead to verifiable physical conclu-
sions. The cognitive value of the present theory consists, in author’s opinion, in the fact
that it may be treated as a starting point for formulating the constitutive laws of more
complicated models, taking account of dissipation and thermomechanical coupling. Having
this in view. and also aiming at a better physical interpretation and trying to avoid the
perils connected with the variational formalism (its application requires special care in
the case of gradient theories), the formalism of non-linear mechanics will be applied in
our considerations. However, in the present paper we shall be interested mainly in the
final conclusions following solely from the conditions of equilibrium which might also
be obtained by the virtual displacements technique, analogously to the numerous statical
theories.

2. Kinematics

Let us consider the substance consisting of n+1 components distributed in a continu-
ous and sufficiently smooth manner in a certain region of a three-dimensional Euclidean
space. g,, & = 1,2, ..., n denote the densities of individual components. Density of the
medium will be called the value of p,

n
@1 o= Do
a=0
Following the example of GURTIN and VARGAS [4] let us moreover introduce the notions
of mean velocity v and diffusion fluxes h,. v, denote the velocities of individual com-
ponents. Let us observe that theses magnitudes play here the role of primitive notions,
the material coordinate systems of the components being not defined, though they have an
immediate physical interpretation as mean velocities of molecules of the definite com-
ponent a averaged over a sufficiently large domain to eliminate the Brownian components
of the motion. Furthermore it is assumed that no chemical reactions occur in the medium,
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i.e. in an arbitrary region D with immobile boundaries and at an arbitrary instant ¢, the
equality holds true

(2.2) -;t—fg,dV= — fg,n-vads,
b D

n being the unit vector normal to the boundary of the region. Velocity of the medium:
is defined by the formula

GZ; Vala
2.3 V= — .
(23) =
Further notations [4] are the following:
24 U =V,—V, b, =g.u,.

@ a
Let a(x, t) denote a certain scalar field, and b(x, ) — a certain vector field. @ and b
denote the convective derivatives with respect to the velocity field v,,

« _da e _db
2.5 a= ¥T3 +v,*Va, b= ¥T3 +v,- Vb,

Here V is the gradient operation, and the dot denotes contraction of a pair of indices.
Convective derivatives with respect to the velocity field v are defined in a similar manner;

they will be called quasi-material derivatives and denoted by a4, b.

.. O . . b
(2.6) a= a1 +v Va, =-§+Y Vb.

The convective derivatives obey the rules known for the one-component substances:
the assumption (2.2) is thus equivalent to the relation

(27) Eﬂ. = —0.V" Ya.
We may also obtain (cf. [1])

-3

(2.8) %: = —Vv,* VQG“VQ¢(V * Vn)_gﬂv(v = ‘u)-

On using the definitions (2.1), (2.3) through (2.8), we easily obtain
0s = =0V V=V hg,
0
Voa = — Vv Vo~ V(7 ) Veo(V - V)~ V(V - ),
Vo = —Vv- Vo—Vo(V - v)—eV(V" ¥).

Il

s V. s
2.9) guiR

Due to the interpretation of v, assumed, a natural definition of acceleration a, of
the component « is

(2.10) a, =V.
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Equations (2.5), (2.6) yield now

@.11) Vo = 8,—U,* Vo, —u, - Vv.

Let the field v(x, 7) satisfy in a certain region (X, ¢) the Lipschitz condition with

respect to X. The trajectory of an arbitrary point carried by the field
ax

(2.12) e v(x,t)
has the property that through each point (x,¢) passes exactly one integral curve [5].
Each selected surface may, at a certain instant ¢,, be treated as the position of (exactly
one) quasi-material surface S(¢) (i.e. the surface conveyed by the field v) and such that
for each of its points x its normal velocity U is equal to the normal component of the
velocity field

U(x) = v(x) - n(x).

Here x e S(1,), and n(x) is the unit normal vector. Fulfilment of the Lipschitz condition
ensures the preservation of the topological properties of the quasi-material surface in
motion, and hence we may consider closed quasi-material surfaces. The mobile regions
bounded by quasi-material surfaces will be called the quasi-material regions. In the case
of one-component media the Eq. (2.12) defines the trajectory of a material point, while
the notions of quasi-material surfaces and regions are then reduced to the known
notions of material surfaces and regions.

If D were a certain time-variable region bounded by the moving surface 4D, it would
be easy to determine from the Eq. (2.2)

d [ J‘
EJ 0.4V = — | g.n(ve— Un)dS
D éD
but for D being a quasi-material region n* (Un) = n-v and

@13) -%f&W=wa£.
D éD

Performing the summation in (2.13) over all « and taking into account that 2 h, =0

a=0

we obtain, as it could be expected,
(2.19) 2 f edV =0
’ dt 3 o

It follows that if u is the density with respect to the measure of g, the formula known
from the kinematics of one-component media holds true:

Z .
@.15) EIWW=ﬁMK
D D
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3. Simple multicomponent medium

Our considerations are aimed at the derivation of equations of the gradient theory
in which the free energy density depends on all densities and their gradients. To make
the derivations as clear as possible let us first tackle the simpler problem of a simple
multicomponent medium, i.e. such medium in which the free energy is independent of
the density gradients; the derivations will then be generalized (disregarding those which
are identical in both cases).

Let us consider the function of density of free energy, w = w(p, g1, ..., 0,), satisfying
for each quasi-material region (at constant temperature) and for each set of velocity fields
Yo, ¥y, ..., ¥, the following equation of balance (valid only for isothermal transformations)

fi’n-(h,"";')dé

¥ a=0

O df ) Yi* ¥ v
+J2‘ Ty vagadV_EV ggu 2 st

a=0

G.1) -%f@ﬁdlf =a!n-1-vds-a_£§n- (bees)dS—

L

T is the stress tensor, the first right-hand integral represents the work done by contact
forces, the second and third right-hand terms represent the energy convection due to the
mass exchange of the components across the boundaries of the quasi-material region. The
kinetic energy convection is singled out in the third term, while the second term contains
the magnitudes e, characterizing the energy exchange caused by the changes of con-
centrations of the components. Further terms represent: the work done by body forces
acting on individual components (r, are body force densities), and the change of kinetic
energy. It is easily observed that the approach applied differs from that used by GURTIN
and VARGAS [4] who did not consider the body forces (together with the inertia forces)
separately for each of the components, but globally. The set of independent variables
consists of g,, by, (¢ = 1, ..., n), v and p, what evidently is equivalent to taking v,, gy,
(i=0,1,...,n) as the independent variables. Suitable selection of the set of in-
dependent variables is important from the point of view of simplicity of further trans-
formations as also their physical interpretation. Including here the magnitudes v and p
yields, in a natural manner, the notion of stress tensor, while h, yield the relative chemical
potentials.

The right-hand side of the Eq. (3.1) contains, however, both v, g, and h,, ., g., in
particular for a = 0. Before approaching the further transformations we must eliminate
all the dependent variables. First of all let us observe that

(.2) ho = — D) by,
a=]1
and hence
33) Dhee, = D h(e—eo),
a=0 a=1

4 Arch, Mech, Stos. or 2/75
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as also

(3-4) Zra Va0 = Zra(ha sz) == Z(l’a‘—ro) ll,-l—\fZl'aQ‘.

a=0 a=0 a=1

Variation of the kinetic energy may be represented in the form

d Oa Vg~ Vq "1 Oz Vo' Vg
(3.5) ——IZQ(-——) dV:ng(_——)dV.

dt? a=0 e 2 v a=0 e 2
Differentiating with respect to time and using the Egs. (2.5), (2.6), (2.10), (2.9) and (3.2),
we obtain the identity

(3.6) Z (9“7" )* ZV( ) Z(aa 2) h¢+vza¢9¢.,

a=1 a=0

and so

a1, — f[%?h Yot s 2 ;:yfg "é"“]dV
- f [Z(a,—ao) ho+v- Z 8.l V.

Now the'surface integrals in the Eq. (3.1) are transformed into volume integrals, the
Egs. (3.3), (3.4), (3.7) are used, and account is taken of the fact that the Eq. (3.1) should
hold true for each quasi-material region; then we obtain for every set of fields v, h,

(x=1,..,n
o, N\ oW, o
(38) 9(3—99+% a—gueﬁ)“—_ v-(T-v)—V-(;h,e,)
+2_ic'ha+v'2ragu“zﬁa'h¢"vzarx9¢-

a=1 a=0 a=1 a=0

Here T, =r,—ry; 8, = a,—1¢; €, = ¢,—€;. On using the Egs. (2.9);, (2.9); and per-
forming the differentiation we obtain

3.9 —Q(Z—jgv-v+v-v23 0+ Z——V h,) (V-T)'v
+T:Vv~2V-h£, Zh, Ve, +Zr, Za, h,+v-* 29‘(r’ a,).

a=1 a=1 a=1
Similarly to the Eq. (3.8), also the Eq. (3.9) must be satisfied for each set of fields v, h,
(e =1, ...,n), though a well grounded doubt may arise whether each such set can be
realized, provided the function w = W(g, g, ..., 0,) and the density fields o, 0.
(ax =1, ..., n) are prescribed. The positive answer is ensured by the presence of terms ry,
provided the latter can be arbitrary. Thus let us assume the possibility of applying in-
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dependent body forces to each of the components (if we assumed two different particles
to react identically to. all possible force field configurations, then they would be indiscern-
ible and thus they should belong to the same component). This implies that the Eq. (3.9)
may be split into four independent equations

[V'T+ Z‘ea(ra—aa)] V=

a=0

D (Ve +7,~8,) b, =

a=]

o S o
[“Q(a—e‘-’*az,l ‘aaﬁ’“)‘}"’”“’
Z" W .

(Q 90a _ec)v =0

a=]

which, owing to the independence of v, h,, Vv, Vh,, yield the following 2n+2 relations

(3.10)

V-T-!-Z":gar, = jg,aa, —Ve,+T, = &,

a=0 a=0

= aw
T—“IQ Q+2 39 9:): eﬁ“gae"

Substituting now (3.11); into (3.11), and (3.11), into (3.11), we obtain n+1 vector
differential equations representing one of the possible forms of the system of equations
of motion of the simple multicomponent liquid.

[(3 9+23 9‘)] 29«1': Zeuaa,

a=0

@3.11)

(3.12)
¥

ow
9 ae‘) +ra L aﬂ'

Equations (3.12) together with (2.7) yield the complete set of 4n+4 equations of the
simple multicomponent liquid.

The former considerations were based on the assumption that w is a function w(g, g,)
of the variables p, o, (¢ = 1, ..., n) what enabled us to introduce the stress tensor (in
the case considered it was reduced to pressure); using the objective magnitudes h, was
also convenient. In further considerations it will be more convenient, however, to pass
to the variables g, (i = 0,1, ..., n). Let us write

W= ;v(eﬂs swey Ql)'
It may easily be shown that

aw 5 8 w  ow  ow
3.13 + e = » = e e
(3.13) 9 2, 0. 2 e 0

=]
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Using the Eq. (3.13) and the definitions of r and a, we may rewrite the Eq. (3.12) in
the form
n n n
ow
"V(Q 23—&) + 29:1'[ = 29:31:
= =0 =0

ow  ow
—V[Q‘a—gl-—a"e'—;)] +rg—l'o = a;—4Aag.

On multiplying each of the Egs. (3.14), by g;, adding and subtracting from their
sum the Eq. (3.14),, and dividing by ¢ we obtain

(3.14)

aw ow
(3.15) V( 39 ) 5'9 Voi+r, = a,.
Equations (3.15) are now substituted in (3.14)2 and multiplied with g, to yield a system
symmetric with respect to g, and consisting of n+1 vectorial equations of motion

(3.16) -0V —("e;T)*)+E’ll'l = 018
foreach i=0,1,...,n

In the case of simple one-component media in which w = {[p(p)/o*]do (cf. [2]),
the Eq. (3.16) is reduced to the known equation

(3.17) ~VP+pr = pa.

The magnitudes 3(;3:) =y, will here be called chemical potentials. Usually, in

chemical thermodynamics, the name of chemical potentials is attributed to the magni-
tudes uf = dG(my, V)/dn; (cf. [5, 6]), with G(n;, ¥) denoting the Gibbs free energy for
the system containing n; (i = 0, 1, ..., n) mols of individual components and occupying
the volume V. It may be shown that in a homogeneous system
- M

(3.18) Wy = M,
Here M, is the gram-molecular weight of the n-th component.

If the density of free Helmholtz energy is represented as a function of specific volume
v = 1/p and concentration ¢,

w=w*v,c,) (xe=1,..,n)

with ¢, = p,/g, then the following relation may be established:

ow*
(3.19) ——-QZ 20, O

The left-hand side of that equation coincides with the definition of pressure in chemical
thermodynamics; it may also be found from the Eqs. (3.11),, (3.13), that the right-hand

side equals — %UT = P and thus represents pressure in the mechanical sense. This
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implies that, in absence of body forces, the Eq. (3.14) yields the following known equations
of equilibrium
(3.20) VP=0, Vu,=0,
in which gz = p,— o is the reduced chemical potential (cf. [4] where this magnitude is
denoted by u,).

The problem of physical interpretation of the equations of motion was discussed
earlier and so let us now observe that in passing to the equilibrium equations we have
obtained the results possessing unquestionable physical meaning.

4. Gradient theory

In the previous chapter we have demonstrated the method of derivation of the com-
plete set of equations of motion under the assumption that the density of free energy
w is independent of the density gradients of the individual components, Let us now repeat
the reasoning for the case in which such dependence exists. Assume that

4.1) w = W(Q, 01, s 0ns VO, V01, ..., VOu)

and that the following isothermal balance law holds true for each quasi-material region
and for each velocity field

42) di f . f n T ydSE f Q(V - v)dS— f Zn (hee)dS

¥ a=0
fz h,"' L] dS+f2n 0.V h,)ds+f29.r. vedV
o= a=0
4 St
V a=

Generalized contact forces Q and q, are introduced here; they perform work on the
fields Vv and Vh,, like in the papers [2, 8] and other sources dealing with gradient theories;
their physical meaning does not immediately result from the Eq. (4.2), however from the
considerations to follow it will be clear that by putting them equal to zero we would
obtain (contrary to our assumption) the function w to be independent of the variables
Vo, Vo,. Introduction of those magnitudes proves then to be necessary in order to keep
the theory non-trivial.

The left-hand side of the Eq. (4.2) may be written as

“.3) —%JgﬁdV=Jg(g g+23&' a(Vg) Vot Z S é,)dV.

The further procedure is similar to that used in the preceding section, i.e. we apply the
formulae (2.9) to the left-hand side as presented by the Eq. (4.2) and change the surface
integrals appearing at the right-hand side into volume integrals; the magnitudes r,, &, and
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Gz = Qo —9qo are introduced. Since the Eq. (4.2) holds true for every quasi-material
region and every velocity field, we finally obtain

V-T+ 29,1', = 29«&:,

a=0 a=0
n
aw \) oW ow
r= [9 Te T8 L 0. Vg V0T Za(v g VetV Q]

aw ow
~0 50~ ®Vo—0 ), s~ ®Ve.,
¢ave ®v ‘-’; ave) ©'°

, oW ow
4.4) Q=-p W—th Ve &

and

L= "0

_VE¢+Fg ‘_'in: 6’ _Qg

valid for each « = 1,2, ...,n

Inserting now the Eq. (4.4), and (4.4); into (4.4); and passing from the variables p, g,,
Vo,Vo, (¢ =1,...,m) to g, Vo, (i =0, 1, ..., n), multiplying the Eq. (4.4), by g, and
summing from 1 to », and subtracting the result from (4.4); we obtain, like before, the
expression for a, to be substituted into Eq. (4.4),. The further procedure is also similar
and yields

a d(on .
@.5) ;v(g‘-’g“’))+e.V(V-3(($:)) tori=om, i=0,1,..n

Here ‘}(90! 919 seey an VQ()!VQJ.’ ---;Vgn) — ‘_9(9? 91! ALY ] Qns VQ! VGu seey Vell) =W.

Thus the system of equations of motion of the gradient theory (4.4), being a generaliza-
tion of the Eqs. (3.11), is reduced to a more compact form (4.5), symmetric with respect
to the variables g;, Vg, and constituting a counterpart of the system (3.16). The equations
(4.4) or (4.5) yield, together with the Egs. (2.7), the complete set of equations of the gradient
theory.

The value of T expressed in terms of the variables g;, Vo, has the form

% __[Seen _ .- (a(eﬁo ] _ N R oo
@o T [ P Z ¥ \Tven )|~ 24 aved O

‘-J 39,

From that equation it is easily found that the tensor T is symmetric in isotropic materials.
Symmetry of the first term is obvious and we have to investigate the second term. Since
in isotropic materials w may depend on Vp, exclusively through the invariants, we can
write

@7 w = W(oy, ).
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Here Iy = Vo, Vo, Ix form a triangular matrix due to the identity Ijy = Ii;. Then
we have

O 3(ow) O o X (aﬁ ol )
48 L S, L NP lx_gy
GO L avey B @§ ave) ®V 9; ”Zo 9T, 2 ®*®

> W[ & 0 Gw
e [3—,;(6,,\79,+6uv9k)®v@o]=2e D 51 Vei@ve)

i=0 j,k=0 i,1=0

Y oW
=g 2’ -~ (Vei®Ve, +Va,®@Va).

i1=0 9l
Here dy; is the Kronecker delta. In this form, the symmetry of the expression is also obvious.
Everything what was established with respect to the physical interpretation of the
model discussed here applies to the Eqgs. (4.4), (4.5) as well. Therefore it should be ex-
pected that the equations of equilibrium obtained from the Eqs. (4.5) (in absence of body

forces) and written in the form
W) | ¢ (v- @ ) _,

3 “V( et o)) =

represent an adequate description to a certain class of physical systems. It should also
be expected that once the Eqs. (4.9) are satisfied, the formula (4.9) will describe real stresses
sufficiently well.

In [2] it was proved that in the case of a one-component medium, fulfilment of the
Eq. (4.9) did not have to imply the uniform density distribution. It is not difficult to
construct the examples which may be used to demonstrate the same property with respect
to a higher number of components. Examining the form of the Eq. (4.6) we may easily ob-
serve that, if the form of w allows for non-trivial solution of the system (4.9), the tensor T
need not necessarily be a spherical tensor in the state of equilibrium of a multicomponent
gradient medium (similarly to the conclusion of [2] concerning one-component media),
contrary to the case of a simple multicomponent medium considered in the preceding
section in which the tensor T was always reduced to pressure.

5. Surface tension in multicomponent media

Let us consider the one-dimensional case in which the form of w allows for the ex-
istence of solution with non-uniform distribution of density g, = p.(x), corresponding
to the existence of a single phase transition in a multicomponent medium. Let the values
of g, at x — + 0o tend asymptotically to certain finite limits (different, in general, for
+ o0 and — ), the derivatives do,/dx, d%p,/dx* tending at infinity to zero. Such condi-
tions may correspond e.g. to the equilibrium of two liquids of finite solubility, or to the
solution being in equilibrium with its saturated vapour.

Let us use the Eq. (4.4); which at equilibrium takes the form

(5.1) V-T =0,
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T being defined by the Eq. (4.6). From the conditions at infinity we obtain, similarly to
[2], the relations

(5.2) Te =T = —1P,,.

Let us apply the “force” definition of surface temsion o,

a0
(53) o= [ (T,,— 5 er,,,)dx
-

(cf. [9, 2]) in which y is an arbitrary direction perpendicular to x. Integration of the Eq.
(4.9) yields in the one-dimensional case

_dew) W)\ _ . _ W)
39: d(ei) o 90

Primes denote differentiation in x. Introduce the notation

3(9"’)
T A

On multiplying the Eq. (5.4) with g; and summing over all values of i/ we obtain

Za(ew) ,+2A‘9‘_Zk,.-- ""fg:’) "2""-’

(5.4)

:t:w.

(5.5) A,

=0 i=0 i=0
n ’ n ’
+ Z (400 ~Kiad = —(eﬁ’)’+[ A:ei] -[ Zkte:] =0
i=0 i=0 =0
whence
(5.7 —ow+ 2 401 = 2 ko +k,

im0

k is the integration constant.
Consequently, multiplying the Eq. (5.4) by g, and summing over all i, and then sub-
stituting together with the Eq. (5.7) in the Eq. (4.6) we obtain

(5.8) = - [k= > a0l 1- D) 4igi(e:®e),
i=0 i=0

where e, is the unit direction vector of the x-axis. From the conditions at infinity kK = P,
whence

(5.9) Tyy = —Pu+ ), Ai0i.
i=0
Since
T, e
(5.10) ZAiQ: -2 YO e
oL,
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inserting (5.9) into the Eq. (5.3) we have

o n
G.11) o= [ D ®,0l0jdx,
—00 i,j=0
where @,; is the symmetric matrix constructed in the following way:
(D‘J:a(em for f#j, ¢u=2i@ for i=J.
alyy ol

In the case of a one-component medium and under the additional assumption that
®,, = &5 = const, the Eq. (5.11) is reduced to that derived in [2], i.e.

w0
o =0, [ .
—0
It was derived under much more specific assumptions which are thus shown to be not
necessary.

6. Simple nonlocal interactions

In this section we shall demonstrate a certain realization of the theory derived in
Sec. 4 which, under rather general assumptions concerning the non-local interactions,
may substantially be simplified. These considerations will clarify the physical interpreta-
tion of the gradient theory which may be considered as an approximate description of
nonlocal interactions.

From the expression for the free energy w = W(p,, Vo) we may separate the term
wo = Wo(o;) defined as the value of W(g;, Vo;) at Vg, = 0 for every i, and it may be
written formally that

(6.1) w = wole)+wi(e:, Vo), i=0,1,...,n.

In considering various physical systems the interactions are divided into long-range
and short-range types, and in spite of a rather conventional character of that division it
has a definite physical meaning with respect to certain definite systems. In our case the
short-range interactions will be considered as such interactions which do not contribute
to w;.

In other words, the free energy connected with those interactions remains independent
of the density gradients. All the remaining interactions will be considered as long-range
ones. Our next assumption is the possibility of representing the free energy w in the
form w = w'+w", w' being the result of short-range interactions, while w" — due to
long-range interactions. Since w,, according to the definition, does not depend on the-
short-range interactions, we have

(6.2) W= wo+wo +w,

with wo+wg = wp and wy = w'.
In [2] the long-range interactions were assumed to be central and expressible in terms
of potentials (e.g. the Lennard-Jones type potential). This approach may easily be gen--
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eralized to the case of many components. The density of force f; resulting from the
long-range interactions and applied to the component i at point x may be expressed in
the form

©3) =0 [ D) enwu® 5 dv,.
J=0

Here R = y—x, R = |R|, and the functions v,; are assumed to be bounded, symmetric
in their indices and have bounded supports, the integration being performed over a certain
ball of radius R, containing supports of all the functions y,;. Under certain assumptions
concerning the smoothness of g; they can be expanded into series in the neighbourhood
of the point x. Performing now the integration of consecutive terms and confining
ourselves to the first five terms of the expansion we obtain, similarly to [2], the result

(6.4) 100 = a®) D) v Ve,(®) +vPVAg;x)].
Jj=0

Here

Ry
4
wip =% [ puRReaR,
6.5) °

Rt
2

v = 22 pu(RR%dR.
0

On the other hand, according to the Egs. (4.5), (6.1), (6.2) we should have

3(9»".;)) ( 3(9“’1)) ( d(ewy)
(6. fi(x) = —o,V -0,V +o,V|V- :
(6.6) (%) 01 ( dor (4] o0 01 (Vo)
It is easily verified that the Eq. (6.6) yields the Eq. (6.4) provided

i X ", VeV
6.7) Wo = ZAU —Qigl, W, = ZBU Sl Sl .

ij=0 e ij=0 e

Here

1

AU = A_", AU = !PS) for i #j, Au = Tpf}) for i .:j;

o=

Bu = Bﬂ, BU = 'PE}) for !#}, BU = ‘lp;(}} for i =J

By means of the Eq. (6.2) we finally obtain

: " - 1 H"T (3) . 1 3 3 )
69 Hauve) = weed++ > vt (ve, v@;—?;v@ Von dym).-

ij=0
‘The equation (4.9) takes then the form

n

3(9"‘0)) E '
(6.9 -V DVAg, = 0,
( ) agl + — 'I’ih Ok
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while for ¢ we obtain

(6.10) o= v [ olojax.
UFKO —o0
In the considerations to follow the notion of pressure P will be understood as
aw
(6.11) P=g ) 2y,
o doy

which is not, in general, equal to — T tr'T and coincides with the latter expression only
in the case in which Vg; = 0 for every i. Similarly, the potential g, will be understood as

(6.12) = i(g—“’)

Magnitudes defined in this manner coincide with the classical ones. Using such notations
the Eq. (6.9) may be written in the form

(6.13) — Vi + Z yiVag =0
k=0
and by multiplying the Eq. (6.9) by ¢, and summing over i we obtain
(6.14) ~VP+ D) yPoV g = 0
k=0

The equations obtained (6.13) constitute one of the possible realizations of the general
equations of equilibrium (4.9) corresponding to the form of interactions assumed in this
section, while the Eq. (6.14) is the counterpart of the Eq. (4.4); (with substitutions of the
Egs. (4.4), and (4.4);) for the case of equilibrium and vanishing body forces.

The case presented obviously does not exhaust all the possibilities and it should be
expected that the class of interactions which can be, in a good approximation, described
by the equations derived in Sec. 4 is much wider.

7. Low concentration solution; surface tension and Henry law

In this section we shall apply the Egs. (6.13) and (6.14) to the investigation of the
problems of phase equilibrium and surface tension in a two-component solution of low
concentration. Assume that for a certain substance 4 we know the one-dimensional,
two-phase solution gq4(x) of the equation

(7.1) ~VP(e)+9y@V A0, = 0.

Let us investigate the changes in go,4(x) and the form of gg(x) produced by introducing
such an amount of the component B to the system that its equivalent asymptotic con-
centration (i.e. the concentration measured far enough from the transition zone) reaches
the value of gz (05 < g4).
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The two-component equilibrium will be governed by the two Egs. (6.13) or, what is
equivalent, by one of the Egs. (6.13) together with the Eq. (6.14).

It is known from experiments that in perfect solutions the chemical potential of the
solvent is expressed by the formula

RT 04/M, )
7.2 = 1 .
(2) Ha = pot n(94fM4+enlMs

lo denoting the chemical potential of pure solvent [7]. For a pure substance we have
w = [ (P/*)dg, and hence

_ (9Poleod) 1
° 00oa  Qoa

Index 0 is used to denote all values referring to the pure solvent. As the second equation
let us consider the Eq. (6.14). Thus we have

(7.3) dooa.

3P0 1 ’ RT QAIMA ) i (3) 100 ( e
(?'4) 394 04 04 MA [in (QA;!MA +QB)"MB +'PA Q4 +'PA=393 - 0$
aP ] ’ aP ] ’ L e e ree
- (534 e 04— (323 2 0 +9D 0404’ +9PB(0a0s’ +04'0s) +95 0805 = 0.
Function ¢, = p,(x) may be represented as
(7.5) 04(x) = go(x) +0*(x).

Here po(x) is the solution of the Eq. (7.1) under the conditions
lim go, 6 = 0.

X=+4c0

As it was mentioned before, pp may be assumed as small in comparison with p,;
in what follows we shall consider gp and g* together with their derivatives to be small
enough to disregard their products. A more accurate analysis (omitted here) requires the
equations to be written in dimensionless variables; it is fairly easy owing to the fact that
the theory contains certain characteristic lengths (e.g. the magnitude / introduced in [2])
which facilitates the introduction of derivatives evaluated with respect to dimensionless
variables x// instead of x.

Disregarding therefore the expressions mentioned above and taking into account that
go(x) satisfies the Eq. (7.1) we obtain after integration

7.6) - ( i 3~) o+

T " "
00 2o o8 +ySa0*” +vPos: = ki,

2o Mp

P,

900

Here P(go), 0o, 00, 00 are known functions of x, and ¢(o,) is a known function of its
argument defined as

(1.7 @(go) =

o*—@(eo) s +v$2(e0 0™ +000* — 000*") + v 4 (00 08 +0008—0008) = K2,

dP (o4, 08)

a@ﬂ' qs-ﬂ’
ﬂA“o
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while k,, k, are integration constants. Multiplying the Eq. (7.6); by g, and subtracting
from the Eq. (7.6), we obtain

(7.8) (w(eo)+“—)es+w P00 0* —0oe*') + 5800 08— 0b08) = ka—gok,
Let us introduce the notation
(7.9) 0 = —p5(000* —000*") —¥$3(05 05— 000B)
whence
(7.10) 8— = — 20y Pe* + (D™ + v k) - —-—wﬁ"’ﬁes
Qo )
However, from the the Eq. (7.1) written in one-dimensional form we have
(7.11) 2" o _ 9P 1

e * dgo o
Substitution of the Eq. (7.11) in the Eq (7.10) and then in the Eq. (7.6); yields

RT Py 1 v
e + k.
0o Mp @ 0 = 900 00 YT G

The Eqs. (7.8) and (7.12) may be written as

(7.12)

RT
(‘P(Qo)+ ‘E) es+0 = ky00—k2,
(7.13)

0o (¥} &P, RT) ; ’

== * + +0' = k, 05-

2 (wi&*’ 00 © Mz)®® ke

Of interest are such solutions which at x — + co yield the density distributions asymptotic-
ally tending to certain constant values, and thus we shall seek the solution of the Eqgs. (7.1)
under the conditions p*’, g3, o*”, o5 — 0 at x — =+ oo, since also go, pg = Oatx - + ;
hence

(7.14) lim 6,6’ = 0.
X—=4-
The Eq. (7.13), is now differentiated, inserted into (7.13), and divided by pp to yield
3 0Py = RT )
'Pf;!f 71"' W ) (?’(@o)+ ;
(7.15) Qo \ Y4 Qo Mp _ 3_8 =0.
B

RT
(?’(90) + E)

To simplify the considerations let us assume that gg(w) > 0o(—) and so we shall be
interested in the distribution of gp at a fixed density ppwy of the component B in the
liquid phase. Solution of the Eq. (7.15) leads to

RT v§3 0Py | RT
+2— @ LS

#(20)(x0) M, &l - f 1 v@ oo Mg i

0

7.16 =
(7.16) 08 = 0B(w) ( )+£ p 0 ( )+£
Q 90 MB ? 90 Ms
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The functions dPy/dp,, ¢(g0), 00o(x) being known, we can determine the function gp(x)
effectively.

Complicated form of the expression makes the discussion of the Eq. (7.16) rather difficult
although the value of gz may be determined comparatively easily to yield the following
condition of extremum of the function

op l(xvffé P, RT)

dgo B %”53’ 900 E

It is seen that gp(x) is not necessarily monotone and may assume extremal values in the
transition zone what may, e.g. in the case of a maximum, correspond to the known effect
of higher concentration of surface-active substances in the sub-surface zone.

From the Egs. (7.13); and (7.16) 6 is calculated,

RT
(7.17) 6 = ki00—k:—08() (‘P (90)@)"‘"347) F(oo),

with the notation

3 0P,  RT
IR 39: L,

Floo) =exp| — | — o doo

e G d@o?’(@a)"‘m

From the Eq. (7.16) we may determine gp—w) as a function of gpwoy and then, taking
the limit x - + oo in Eq. (7.18),, two equations are obtained enabling us to determine
k, and k,.

Let us now observe that substitution of the Eq. (7.5) into (6.10) yields

(1.18) o= [ (et +2000* +(e*)?) + 2053 (o0h+0* 0h) + v (o5) 1dx,

or, the terms involving the products of derivatives of o* and pg being disregarded, the
formula is found

w0
(7.19) ¢ = ao+2 [ (W0oe™ +ySoo0s)dx,

-0

oy denoting the surface tension of pure solvent.
Let us now observe that

(=]

(7.20) [ bax = [ bR +vRenydx— | 05w Pe* +vBos)dx.
—00 —00 -

Integrating the second right-hand integral by parts and bearing in mind that gy — 0 at
x — =+ 00, we obtain

(7.21) [ bax =2 [ Peoe* +yDosos)dx
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and thus
o0
(7.22) ¢ =0o+ [ Bax.
—m

The value of 6 from the Eq. (7.17) and the values of k,, k, evaluated by the method
described before are now inserted into this formula to yield

RT
(723) o= Uu+95(oo}(‘P(90)(m)+ M )K
B

X f [ (20— 00¢-c0)) * (Q0e0» = 20) F(20) (-0 == F(Qo):l .

L Qo(o0) ~Q0(~00)

The surface tension is expressed here as a linear function of gp., at low concentrations
of the component B in the solution. Linearity of that relationship is an obvious result
of linearization of the initial set of equations, the essential feature of the result consisting
in the fact, that the corresponding coefficient of proportionality is expressed in terms of
known (at least formally) magnitudes and material functions.

It should also be stressed here that tha Eq. (7.16) leads directly to the Henry law
which is usually expressed in the form

Cs = sz

with Cp denoting the concentration of component B in the solution, and Pg — its partial
pressure in the gaseous phase as determined from the Dalton law. Also here the mere
fact of obtaining the Henry law is not surprising, the law being practically postulated
earlier by assuming the chemical potential in the form of (7.2) another fact is important
here: the proportionality coefficient kK may effectively be determined from the Eq. (7.16).

8. Conclusions

All the equations derived within the framework of the model considered, gradient
terms being disregarded, reduce in the case of equilibrium to known, classical relations.
The asymptotic values of concentration at x — =+ co coincide with those obtained by
the methods used in thermodynamics of solutions. The advantage of the model pro-
posed over other methods consists in the fact that it creates the possibility of con-
sidering spatial distributions of components within the transition zones and, consequently,
of determining e.g. the surface tensions. A certain drawback of the method is due to the
necessity of knowing the values of certain material constants and functions, which were
not known so far; more than that, the values can not be determined by means of the
known experimental techniques within the entire region of their arguments, i.e. at certain
values of the arguments they must be evaluated by extrapolation or by theoretical
methods of statistical mechanics.

In the case of a single component the model is reduced to that described in [2], and
in that case of practical value may be not only the equations of equilibrium but also the
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equations of motion which can be utilized in all cases in which the viscosity and thermal
coupling are neglegible, like e.g. in barotropic liquids.

In the case of two components, the equations of motion derived may easily be gen-
eralized by introducing the terms due to viscosity and assuming that the dissipation
connected with diffusion depends on the diffusion flux only through the modulus h;,
since in this case hy = —h,.
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