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Aerodynamic interference in a system of two harmonically
oscillating airfoils in an incompressible flow

J. GRZEDZINSKI (WARSZAWA)

CaLcULATION was made of the aerodynamic derivatives due to interaction of two harmonically
oscillating thin airfoils with chords situated on the straight lines parallel to the direction of
undisturbed flow. It was assumed that the fluid is inviscid and incompressible. Under certain
simplifying assumptions leading to the linearization of the problem, a system of two integral
equations for the pressure distribution on the airfoils was arrived at and solved by the method
of least squares. Numerical results concerning a biplane are presented.

Praca dotyczy obliczania wspblczynnik6w aerodynamicznych wynikajacych ze wzajemnego od-
dziatlywania dwéch harmonicznie oscylujacych cienkich profili, ktérych cigciwy leza na prostych
rownolegtych do kierunku przeplywu niezaburzonego. Zalozono, Ze przeplyw jest nielepki
i niecisliwy. Przy pewnych zalozeniach upraszczajacych, prowadzacych do linearyzacji zagad-
nienia, otrzymano ukiad dwéch réwnan catkowych dla rozkladu ci$nied na profilach. Uklad
ten rozwigzano metoda najmniejszych kwadratéw. Przedstawione wyniki obliczefi numerycznych
dotycza ukladu dwuplata.

Pabora Kacaerca pacuera a9poMHAMHYECKHX KO3 dHIHEHATOB, KOTOPEIE BLITEKAIOT H3 B3aHMO-
MeHCTBHA ABYX apMOHHYECKH OCHHJUIMPYIOIIMX TOHKHMX mpodmieif, XopAaBl KOTOPBIX HAXO-
JATCA Ha NPAMBIX NapajUle/bHBIX HAMPABJIEHHIO HEBO3MYLleHHoro Teuerms. [Ipeanonaraerca,
YTO TE€YEHHE ABNAETCH HEBASKHM W HeCOKuMaeMbIM. IIpH HEKOTODBIX YIPOIIAIOIIHX IPENIIo=
JIOMHEHHAX, MPHBOAALIMX K JIMHEapH3allMH 3aJa4d, MONydeHa CHCTEMAa JBYX HHTErpPATHHBIX
ypaBHeHMil 1A pacnpefie/ieHus AaBiieHmil Ha npodmiAx, 3Ta CHCTEMa pellieHa METOHOM Hau-
MeHBIIMX KBanpartoB. [IpencTaBieHHBle pe3yNbTATEl YHCICHHBIX PACYCTOB KACAIOTCA CHCTEMBI
Oumnana.

1. Introduction

THE AmM of this paper is to investigate the influence of the vortex wake due to unsteady
flow on the aerodynamic interference without effect of finite wing aspect ratio. It is
assumed that all parameters are harmonic functions of time characterized by the reduced
frequency coefficient. The problem has been formulated from the numerical point of
view. The advantage of the method is that calculations can be performed in a wide range
of frequency coefficients without decrease their accuracy.

2. Formulation of the problem

The problem consists of calculation of forces and pitching moments acting on two
harmonically oscillating thin airfoils in a plane inviscid incompressible fluid flow which
has a uniform velocity U at infinity (Fig. 1).

The chords of the airfoils are situated parallel to the direction of undisturbed flow.
The position of the airfoils is described by two coordinates L and H of the chord center
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of the second airfoil with respect to an orthogonal axis system x, —z, fixed to the center
of the first airfoil. The semi-chords of airfoils are denoted by &, and b,, respectively.

In order to solve the problem, all assumptions are the same as in the case of computing
forces acting on a single isolated airfoil [2]. Under these assumptions, the equations of
flow and the boundary conditions are linearized.

1. The flow velocity at any point of the plane is the sum of undisturbed velocity U and
of small perturbation velocity components u and w along the x, and z; axes, respectively.
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The flow is irrotational — there exists acceleration potential of the perturbation
y(x, z, t) satisfying the Laplace equation.

3. The linearized boundary condition may be assumed on each airfoil.

4. The Kutta condition is satisfied at the trailing edges.

That means that the reduced difference of pressure y(x, ¢) on each airfoil defined by
the relation

y(x, 1) = dy(x, 1)/ U?,
where Ay(x, t) denotes the difference of acceleration potential between uper and lower
surface of the airfoil, must drop to zero at the trailing edges.

5. Both airfoils oscillate harmonically with circular frequency

w(x, 1) = w(x)e'™.
Hence the acceleration potential and reduced difference of pressure have the same form.

The complex component of velocity w(x) on the airfoil is determined taking two
degrees of freedom for each airfoil.

The angle a(f) between velocity vector U and chord line of the airfoil and non-
dimensional displacement k() of the chord center are chosen as the generalized coordi-
nates (Fig. 2).
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Under these assumptions and for harmonic motion of airfoils
aft) = ae,
h(t) = ye™, j=1,2,
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the non-dimensional velocity is given by
wi(x) = —ikjh,—(1+ik;x)e;, j=1,2,
where k denotes frequency coefficients
kj = wb;/U.

3. Equations of the boundary-value problem

Usually, the solution of such a boundary-value problem is obtained using an equation
of the Possios type [3]. The unknown reduced difference of pressure is given in this
equation in an explicit form. The main inconvenience of this equation is the necessity of
isolation of all singularities of the kernel before performing computations. Furthermore,
it is necessary to integrate numerically the functions of fast oscillations which leads to
a decrease in accuracy for large values of frequency coefficient.

To avoid these inconveniences, a different method of formulating the problem has
been chosen. Under the assumptions already indicated, the boundary-value problem for
the acceleration potential may be formulated as follows:

4 =—7L-f v ® Ky, OdE, j=1,2,

(3.1) 7

joncy

where the integration is carried out along the chords of airfoils ¢; and c,, respectively.
The functions K,, and K, , are singular kernels.

Next Egs. (3.1) were transformed by the operator which defines the integrated acceler-
ation potential ¥(x, z) as follows:

Wx,2) = [ (€, 2)dE.

Thus the integral equations have the form:

2 X -1 2
B2 D Bu(x) = wit)+ik; [ wi®de+ike™ [ D Opxpetrudyy, j=1,2,
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where ®;(x;) are given by
1 1
Out) = 5 [ 7O K, O,
-1

and the kernels are given as follows:

—DL=b;
( ])Lb b x; +&
Kl O = T e, TV
L0b e[ 4(2)
(3) [ 5 ] b
1
K;i(xj, &) = ¥

In these equations, the velocity components of airfoils are referred to the velocity U
of undisturbed flow. The last integrals in the Eqgs. (3.2) depend on reduced differences of
pressure p;(x;) and must be found as a part of the solution.

4*
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4. Numerical solution

The unknown reduced difference of pressure y;(x;) on each airfoil is represented by
a series:

T X 11
4.1) vi(x) = yi(x) = 2]/—14——2{_ gaf"’l’(z 2)(xj),

)

where P;*" %/(x;) are the Jacobi-polynomials which are orthogonal in the interval (—1, 1)

with weighting function o(x;)
=1/1=%
Q(xj) - l/ 1 +x; ;

Only two terms of the series (4.1) are needed to calculate the forces and moments

acting on each airfoil.
The resulting integral equations can be written in operator form:

Ky(x) = w(x),

where y(x) and w(x) are two-dimensional vector functions and K is a matrix operator
defined by the kernels (3.3).

The unknown coefficients af/) of the series expansion (4.1) are calculated from the
system- of linear equations obtained by using the method of least squares to minimalize
the square of the norm

1
|| Ky*(x)—w(x)||* = f]/ ii; [Ky* (x) — w(x)|2dx.
1

Most of the integrals deal with during computations, arising from the operator K,
can be solved analytically and the result is given in a closed form.

For this problem, the application of the method of least squares seems to be more
effective than the well-known collocation method. The method of least squares gives
satisfactionary results using four-terms series expansion for difference of pressure on
each airfoil. The collocation method needed far more terms to achieve the same accuracy.

5. Results and remarks

The aerodynamic properties of the system of airfoils analyzed are described by
aerodynamic derivatives for each airfoil and, after GARRICK [3], defined as:
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-1 center of a chord,
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where subscript / indicates which of the airfoils is oscillating and subscript m is equal
to one or two for bending and torsional oscillations, respectively. These coefficients are
functions of the geometry of the model and reduced frequency. The numerical calculations
have been performed for various configurations of airfoils in a wide range of the frequency
coefficient.

As an example, we presented results of computations for the following values of
parameters: chord’s ratio b,/b, = 1, the distance between chord’s centers along x-axis
L = 0, the ratio H/b; = 2. These data represent a biplane. In this case, the forces and
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moments acting on the first airfoil are the same as those acting on the second airfoil due
to the symmetry of the biplane.

Disregarding for the moment the presence of the first airfoil, the aerodynamic forces
acting on the second one are characterized by four standard lift and moment coef-
ficients connected with bending and torsional oscillations. These standard coefficients are
modified when the first motionless airfoil is present in the fluid flow. The effect of this
modification is shown is Fig. 3 and Fig. 5.
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The first curve (Fig. 3)-represents a modulus of a ratio of a lift coefficient connected
with bending oscillations of the second airfoil to the respective standard coefficient,
i.e., to the lift coefficient 4,, (Fig. 4) connected with bending oscillations of single isolated
airfoil. On the x-axis there are values of the frequency coefficient. The one maximum of
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this curve is characteristic for a biplane. For the other configurations, this curve has an
oscillatory form,

The phase shift of this ratio is shown in Fig. 4.

When the first airfoil is oscillating, the aerodynamic coefficients on the second one
are more complicated. It is convenient to show these coefficients on the complex plane
(Fig. 6). The values of the frequency coefficient corresponding to the points of the curve
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are written alongside. The curves show successively: the lift coefficient connected with
bending (4i?) and torsional (412) oscillations, the moment coefficient connected with
bending (43}) and torsional (433) oscillations. The modulus of the coefficients connected
with bending oscillations increases monotonically with increase in the frequency coefficient.
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The behaviour of the remaining coefficients is more complicated. There are a few
ranges of frequency coefficient where aerodynamic coefficients increase or decrease.

The form of these curves is also characteristic for a biplane, because a small change
of the distance between the centers of the chord of the airfoils along x-axis imply
a qualitative change of it.

It is useful to divide values of these aerodynamic coefficients by a square of the frequency
coefficient. Such aerodynamic coefficients (shown in Fig. 7) are used in a flutter analysis.
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It can be seen that only the lift coefficient connected with bending oscillations tends to
infinity in the same manner as a square of frequency coefficient. The other coefficients
tend asymptotically to linear functions of the frequency coefficient.

The numerical results show that the aerodynamic forces arising from the aerodynamic
interference have the same order of magnitude as forces acting on a single isolated airfoil.
Thus, when we calculate forces acting on a system of airfoils, the aerodynamic interference
must not be disregarded.
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