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Aerodynamic interference in a system of two harmonically 
oscillating airfoils in an incompressible flow 

J. GRZ~DZINSKI (WARSZAWA) 

CALCULATION was made of the aerodynamic derivatives due to interaction of two harmonically 
oscillating thin airfoils with chords situated on the straight lines parallel to the direction of 
undisturbed flow. It was assumed that the fluid is inviscid and incompressible. Under certain 
simplifying assumptions leading to the linearization of the problem, a system of two integral 
equations for the pressure distribution on the airfoils was arrived at and solved by the method 
of least squares. Numerical results concerning a biplane are presented. 

Praca dotyczy obliczania wsp6lczynnik6w aerodynamicznych wynikaj~cych ze wzajemnego od­
dzialywania dw6ch harmonicznie oscyluj~ych cienkich profili, kt6rych ci~iwy lei.cl na prostych 
r6wnoleglych do kierunku przeplywu niezaburzonego. Zalo:iono, :ie przeplyw jest nielepk.i 
i niescisliwy. Przy pewnych zaloi'.eniach upraszczaj~cych, prowad~cych do linearyzacji zagad~ 
nienia, otrzymano uklad dw6ch r6wnan calkowych dla rozkladu ciSnien na profilach. Uklad 
ten rozwiClzano metod~ najmniejszych kwadrat6w. Przedstawione wyniki obliczen numerycznych 
dotycz'l ukladu dwuplata. 

Pa6oTa I<acaeTca pac'leTa a3po;nmaMH'leCI<HX I<o3<l><l>Hin~eHTOB, I<OTOpbie BbiTCK&IOT H3 BsaHMO· 

~eikTBIDI ~yx rapMOIIWICCI<H OCI.UfJIJlHPYIOIInD' TOHKHX npo<lJHJieit, XOp~ KOTOpbiX H8XO• 
~CH Ha npHMbiX napaJIJiem.HbiX HanpaBJICHHIO HCB03MYIQeHIIOro TC'leBHJI, Ilpe~OJIQI'QCTCH, 
'lTO Te'leHHe HBJIHeTCH HCBH3l<HM H HCC>KHMQCMbiM. IlpH HCKOTOpbiX ynpomaronna Upe~o­
JIO>I<CHHHX, llpHBO~ I< 1IHHCBpH3QUHH ~allH, UOJIY'leHa CHCTeMa ,nsyx mrrerpam.HbiX 

ypaBHeHHii ~ pacnpe~eneBHJI ~asneHHii Ha npo<l>HJIHX. 3Ta CHCTeMa pemeHa MCTO~OM HaH­
MeHLIUHX KB~aTOB. Ilpe~CTQBJieHHbie pe3yJII>TaTbl llHCJieHHbiX paC'lCTOB I<QcaiOTCH CHCTeMbl 
6HUJiaHa. 

1. Introduction 

THE AIM of this paper is to investigate the influence of the vortex wake due to unsteady 
flow on the aerodynamic interference without effect of finite wing aspect ratio. It is 
assumed that all parameters are harmonic functions of time characterized by the reduced 
frequency coefficient. The problem has been formulated from the numerical point of 
view. The advantage of the method is that calculations can be performed in a wide range 
of frequency coefficients without decrease their accuracy. 

2. Formulation of the problem 

The problem consists of calculation of forces and pitching moments acting on two 
harmonicalJy oscillating thin airfoils in a plane inviscid incompressible fluid flow which 
has a uniform velocity U at infinity (Fig. 1). 

The chords of the airfoils are situated parallel to the direction of undisturbed flow. 
The position of the airfoils is described by two coordinates L and H of the chord center 

4 Arch. Mech. Stos. nr 3n4 

http://rcin.org.pl



384 J. GRZ~DZINSICI 

of the second airfoil with respect to an orthogonal axis system x1 -z1 fixed to the center 
of the first airfoil. The semi-chords of airfoils are denoted by b1 and b2 , respectively. 

In order to solve the problem, all assumptions are the same as in the case of computing 
forces acting on a single isolated airfoil [2]. Under these assumptions, the equations of 
:flow and the boundary conditions are linearized. 

1. The :flow velocity at any point of the plane is the sum of undisturbed velocity U and 
of small perturbation velocity components u and w along the x 1 and z1 axes, respectively. 

u 
c:::::> L 

Xz. 
U« U 
W<< U 

FIG. 1. 

The flow is irrotational - there exists acceleration potential of the perturbation 
'J'(X, z, t) satisfying the La place equation. 

3. The Jinearized boundary condition may be assumed on each airfoil. 
4. The Kutta condition is satisfied at the trailing edges. 
That means that the reduced difference of pressure y(x, t) on each airfoil defined by 

the relation 
y(x, t) = Lhp(x, t)JU2

, 

where Lhp(X, t) denotes the difference of acceleration potential between uper and lower 
surface of the airfoil, must drop to zero at the trailing edges. 

5. Both airfoils osciJJate harmonically with circular frequency 

w(x, t) = w(x)eirot. 

Hence the acceleration potential and reduced difference of pressure have the same form. 
The complex component of velocity w(x) on the airfoil is determined taking two 

degrees of freedom for each airfoil. 
The angle cx(t) between velocity vector U and chord line of the airfoil and non­

dimensional displacement h( t) of the chord center are chosen as the generalized coordi­
nates (Fig. 2). 

FIG. 2. 

Under these assumptions and for harmonic motion of airfoils 

cxj{ t) = CXJeirot, 

hJ(t) = h1eiwt, j = 1, 2, 

.. 
X 
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the non-dimensional velocity is given by 

wj(x) = -ik1h1-(1 +ik1x)a.1, j = 1, 2, 

where k denotes frequency coefficients 

k1 = wb1/ U. 

3. Equations of the boundary-value problem 

Usually, the solution of such a boundary-value problem is obtained using an equation 
of the Possios type [3]. The unknown reduced difference of pressure is given in this 
equation in an explicit form. The main inconvenience of this equation is the necessity of 
isolation of all singularities of the kernel before performing computations. Furthermore, 
it is necessary to integrate numerically the functions of fast oscillations which leads to 
a decrease in accuracy for large values of frequency coefficient. 

To avoid these inconveniences, a different method of formulating the problem has 
been chosen. Under the assumptions already indicated, the boundary-value problem for 
the acceleration potential may be formulated as follows: 

(3.1) ~~I = - 2~ f ')'j(~)Ktpj(Xj, ~)d~' j = 1' 2, 
on c1 

CJ 

where the integration is carried out along the chords of airfoils c1 and c2 , respectively. 
The functions K'P 1 and K"' 2 are singular kernels. 

Next Eqs. (3.1) were transformed by the operator which defines the integrated acceler­
ation potential 'P(x, z) as follows: 

X 

'P(x, z) = J tp(~, z)d~. 
-00 

Thus the integral equations have the form: 
2 Xj -1 2 

(3.2) };fl>11 (x1) = wj(x1)+ik1 J wJ(~)d~+ik1 e1kJ J}; f/>11(x1)e
1kixJdxh j = 1, 2, 

1=1 -1 -oo/=1 

where f/>11 (x1) are given by 
I 

f/>]l(xj) = ~;; f r~<~)K1 ,(x1 , ~)d~, 
-1 

and the kernels are given as follows: 
( -I)'L-b·x· 

J J +~ 
b, 

K11 (xh ~) = [ ] 2 ) 2 , j =I- I, 
--~-=-J__::_J + ~ + -( -1)1L-b·X· ( H 

(3.3) b, b, 
I 

Kjj(Xj, ~) = ~-. 
r;;-Xj 

In these equations, the velocity components of airfoils are referred to the velocity U 
of undisturbed flow. The last integrals in the Eqs. (3.2) depend on reduced differences of 
pressure yJ(x1) and must be found as a part of the solution. 

4* 
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4. Numerical solution 

The unknown reduced difference of pressure rixi) on each airfoil is represented by 
a series: 

(4.1) 

where pff -~)(xi) are the Jacobi-polynomials which are orthogonal in the interval ( -1, 1) 
with weighting function e(xi) 

e(xi) =V!~~~. 
Only two terms of the series (4.1) are needed to calculate the forces and moments 

acting on each airfoil. 
The resulting integral equations can be written in operator form: 

Ky(x) = w(x), 

where y(x) and w(x) are two-dimensional vector functions and K is a matrix operator 
defined by the kernels (3.3). 

The unknown coefficients aP> of the series expansion ( 4.1) are calculated from the 
system· of linear equations obtained by using the method of least squares to minimalize 
the square of the norm 

J1 .. ;-r+x 
IIKy*(x)-w(x)W = V l-x jKy*(x)-w(x)l 2 dx. 

-1 

Most of the integrals deal with during computations, arising from the operator K, 
can ,be . solved analytically and the result is given in a closed form. 

For this problem, the application of the method of least squares seems to be more 
effective than the well-known collocation method. The method of least squares gives 
satisfactionary results using four-terms series expansion for difference of pressure on 
each airfoil. The collocation method needed far more terms to achieve the same accuracy. 

5. Results and remarks 

The aerodynamic properties of the system of airfoils analyzed are described by 
aerodynamic derivatives for each airfoil and, after GARRICK [3], defined as: 

1 

., 1 r A{, = - Yi(~)d~ 
n . 

-1 

- lift coefficient, 

- moment coefficient about the 
center of a chord, 
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where subscript I indicates which of the airfoils is oscillating and subscript m is equal 
to one or two for bending and torsional oscillations, respectively. These coefficients are 
functions of the geometry of the model and reduced frequency. The numerical calculations 
have been performed for various configurations of airfoiJs in a wide range of the frequency 
coefficient. 

As an example, we presented results of computations for the following values of 
parameters: chord's ratio b2/b1 = l, the distance between chord's centers along x-axis 
L = 0, the ratio H/b1 = 2. These data represent a biplane. In this case, the forces and 
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moments acting on the first airfoil are the same as those acting on the second airfoil due 
to the symmetry of the biplane. 

Disregarding for the moment the presence of the first airfoil, the aerodynamic forces 
acting on the second one are characterized by four standard lift and moment coef­
ficients connected with bending and torsional oscillations. These standard coefficients are 
modified when the first motionless airfoil is present in the fluid flow. The effect of this 
modification is shown is Fig. 3 and Fig. 5. 
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The first curve (Fig. 3) ·represents a modulus of a ratio of a lift coefficient connected 
with bending oscillations of the second airfoil to the respective standard coefficient, 
i.e., to the lift coefficient A11 (Fig. 4) connected with bending oscillations of single isolated 
airfoil. On the x-axis there are values of the frequency coefficient. The one maximum of 

A11 
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~ ----------a os 

FIG. 5. 

this curve is characteristic for a biplane. For the other configurations, this curve has an 
oscillatory form. 

The phase shift of this ratio is shown in Fig. 4. 
When the first airfoil is oscillating, the aerodynamic coefficients on the second one 

are more complicated. It is convenient to show these coefficients on the complex plane 
(Fig. 6). The values of the frequency coefficient corresponding to the points of the curve 
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FIG. 6. 

are written alongside. The curvt: .:> show successively: the lift coefficient connected with 
bending (A~D and torsional (Ag) oscillations, the moment coefficient connected with 
bending (A~D and torsional {AH) oscillations. The modulus of the coefficients connected 
with bending oscillations increases monotonicaJly with increase in the frequency coefficient. 
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The behaviour of the remaining coefficients is more complicated. There are a few 
ranges of frequency coefficient where aerodynamic coefficients increase or decrease. 

The form of these curves is also characteristic for a biplane, because a small change 
of the distance between the centers of the chord of the airfoils along x-axis imply 
a qualitative change of it. 

It is useful to divide values of these aerodynamic coefficients by a square of the frequency 
coefficient. Such aerodynamic coefficients (shown in Fig. 7) are used in a flutter analysis. 

as 

FIG. 7 

L-0 H/bt=2 

btlbt-1 
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It can be seen that only the lift coefficient connected with bending oscillations tends to 
infinity in the same manner as a square of frequency coefficient. The other coefficients 
tend asymptotically to linear functions of the frequency coefficient. 

The numerical results show that the aerodynamic forces arising from the aerodynamic 
interference have the same order of magnitude as forces acting on a single isolated airfoil. 
Thus, when we calculate forces acting on a system of airfoils, the aerodynamic interference 
must not be disregarded. 
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