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Stability of non-parallel flows

A. H. NAYFEH, W. S. SARIC and D, T. MOOK (BLACKSBURG and ALBU-
QUERQUE)

Txe MeTHOD of multiple scales is used to obtain a set of consistent equations governing the
linear stability of slightly non-parallel, incompressible, steady flows. The numerical procedure
for obtaining the solution of the non-parallel problem is outlined. The complete solution contains
the solution of the Orr-Sommerfeld problem as the first approximation, the distortion of the
Orr-Sommerfeld eigenfunctions, and the local perturbation and streamwise variation in the
wave-number and spatial growth rate when the frequency of the disturbance and the Reynolds
number of the primary flow are fixed.

Dla otrzymania ukladu réwnan rzadzacych liniowa statecznoscia slabo nier6wnoleglych, nie-
Scisliwych, ustalonych przeplywéw zastosowano metode wielu skal. Oméwiono procedure
numeryczna stosowana przy rozwigzywaniu zagadnienia nieréwnoleglego przeptywu. Peine
rozwiazanie zawiera jako pierwsze przyblizenie rozwiazanie zagadnienia Orra-Sommerfelda,
opisuje zmiane funkcji wlasnych tego zagadnienia jak rowniez uwzglednia zaburzenia lokalne
oraz zmienno$¢ liczby falowej i wzrost przestrzenny, wystepujace wzdluz linii pradu przy
zatoZeniu, Ze czgsto$é zaburzen i liczba Reynoldsa przeplywu pierwotnego s stale.

Jlna nosryyeHHs cHCTeMbI YpaBHEHHMIt, OMUCHIBAIOIMX JHHEHHYIO ycroiuuBoCTh c1abo Hema-
paniesbHbIX, HECKMMAEMbIX, YCTAHOBHMBILMXCA TEYCHHI, IMPHUMEHEH METON MHOTOKPATHBLIX
mkan. OOcydaeHa 4YMCTEHHAA MNpoLeAypa MpHUMeHAeMasd MPH peLIeHHH Npobiaembl Hema-
pajUIesIbHOTO TedeHus. [lonHoe pellleHMe CONEPXHHT, KaK NepBoe MpHOIIDHEHHE, pelleHHe
3amayu 1A coberBeHHbIx dyHKumMi Oppa-3ommepdensia, Kak TOXKE YYMTHIBAET JIOKAJIBHEIE
BO3MYILICHHA, 2 TAKMe NePEeMEHHOCTs BOJJHOBOTO YHC/A M MPOCTPAaHCTBEHHLIA POCT, BHICTYIIA-
IOLLMI BOJIb JIMHUI TOKA, TIPH NPEANOIoYKEHHH, YTO YacToTa BO3MYLUeHuii 1 yucio PeifHonsa-
ca MepBHYHOIO TeUeHHWA IOCTOAHHBIL.

1. Introduction

THE LINEAR stability of slightly non-parallel flows has received considerable attention in
recent years. Some attempts to account for the non-parallelism of the primary flow involved
the retention of the normal component of velocity and some of the streamwise derivatives
of the primary flow in the stability equation [see, e.g., BOEHMAN (1971), BARRY and Ross
(1970), and MorkoViIN (1969)]. The disturbance was given the form of a streamwise-traveling
wave having an amplitude which is a function of the transverse coordinate. Streamwise
variations in the wave-number, spatial growth rate, and amplitude were neglected. Neglect-
ing these variations is inconsistent, however, because they are of the same order as some of
the terms retained. The same kind of inconsistency is also associated with attempts to deter-
mine the effects of blowing and suction [see., e.g., CHEN and HUANG (1972), KOBAYASHI
(1972), and CHEN, SparrOW, and Tsou (1971)], and of vorticity in the outer flow [WERLE
Mook, and TANG (1973)].

This inconsistency was removed by LING and REYNOLDS (1973), who correctly accounted
for some of the streamwise variations through a perturbation about the parallelflow
solution. The perturbation, which was effected by assuming expansions for all the
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quantities, was structured to provide local perturbations in frequency, temporal growth
rate, and Reynolds number for a given wave-number; however, the results also contain
the local distortion of the eigenfunction as well as the streamwise variation of the
wave-number. The spatial growth rate was taken to be zero.

In the present paper we develop an alternate approach which is based on the method
of multiple scales [NAYFEH (1973)]. The present approach is structured to provide pertur-
bations in the wave-number and spatial growth rate for fixed frequency and Reynolds
number; it also yields the local distortion and streamwise variation of the eigenfunction
as well as the streamwise variation in wave-number and spatial growth rate. The numerical
procedure is outlined.

2. Problem formulation

We take the streamfunction of the disturbed flow ¢ to be of the form

@1 P(x, 3, 1) = Y (x, ) +p(x, p, 1),
where ¥ is the streamfunction of the steady, primary flow, which by itself satisfies the
Navier-Stokes equation and the appropriate boundary conditions and is presumed to be
known, and y is the streamfunction of the disturbance. Substituting Eq. (2.1) into
the Navier-Stokes equation, neglecting non-linear terms in ®, and introducing non-
dimensional variables, we find that ¢ is governed by
o @ a dp ¥ 0 d ayp 1
—— (V) +— (V) ——— —(V)——— (V¥V) - = —
TR Ty e U e e e
where R is the Reynolds number based on some convenient length. Equation (2.2) is valid
for any two-dimensional primary flow and disturbance. In addition, ¢ and dy/dy must
be zero along a rigid wall, and if the transverse dimension of the flow field is infinite, y must
decay as the distance from the region where viscous effects are important increases.

When consideration is restricted to primary flows which are nearly parallel, it is con-
venient to introduce an additional independent variable in the streamwise direction. We
put

(2.3)1 x], = £X,

d
22) S (Vp+ Vi,

where ¢ is some measure of the non-parallelism of the primary flow; ¢ = 0 for truly parallel
flows (¢and R may be related). x and x, are the so-called fast and slow scales, respectively.
We assume that the streamfunction of the primary flow has the form

(2.3). ¥V =¥(x,y),
where y is the transverse coordinate. It follows that
o
(2.3)3 T U=U(xy,y)
and
oV oY
(2.3)s ——a = —g— =¢V(xy,)).

ax ax,
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Because the coefficients in Eq. (2.2) vary slowly in the streamwise direction and are
independent of time (they are functions of x; and y only), the disturbance streamfunction
can be given the form

(2.3)s p = [Po(xy, ¥)+ed; (xy1, ) +...]exp(if),
where
o6
(2.3)6 o = k(x,)
and
a0
(2.3),  Zauie a constant.

Hence, the fast scale is used to describe the relatively rapid, streamwise variation of the
traveling-wave disturbance, and the slow scale is used to describe the relatively slow
variation of the primary flow and the wavenumber, spatial growth rate, and amplitude
of the disturbance.

Substituting Egs. (2.3) into Eq. (2.2) and equating coefficients of like powers of &, we
find that ¢ and ¢, are governed by

(2.4) L(¢o) = {(D*—=k*)*—iR[(kU—-w) (D?—k¥)—kD*Ul}p, =0
and
(2.5) L(¢y) = H,
where
d
S L
_ o[ 0 za%) 5 ( 2 )ﬁ’
H = R[ﬂz ax, +a,D B, +ay Do+ VD o+ ﬂ4‘}"0—"§D Po %,
. .
a} = —3Uk2—DZU+2kCU+ ‘i;c“—‘, az o %_U, a3 = -DZV—kZV,
L2
dy = w_3kU+ !_6.‘Rk—" 2

The boundary conditions for ¢, and ¢, may be chosen from the following:
along a solid wall

$o = ¢ = Do = D¢, = 0,
along a plane of symmetry

D¢y = D¢, = D’po = D¢, =0,
along a plane of antisymmetry
bo=1¢ = D*p, = D’¢p, = 0.
If the transverse dimension of the flow field is infinite,
$oand ¢, — 0

as the distance from the viscous region increases.
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The eigenvalue problem defined by Eq. (2.4) and the appropriate boundary conditions
is the familiar Orr-Sommerfeld problem for parallel flows. Here, R and w are considered
(real) parameters and k(x,; R, w) is the (complex) eigenvalue. With this approach,
consideration is given to the effect of the non-parallelism on the value of k for given R
and w. ¢, may be written in the form

(2‘6) ¢D = A(xl)’?(xliyl

where 7 is the eigenfunction. At this point the amplitude function A4 is unknown; it is
determined to within a multiple at the next level of approximation. If the flow is considered
parallel, then 4 would be considered constant and Eq. (2.6) would be the complete

solution.
In order for Eq. (2.5) to have a solution that satisfies the boundary conditions, H must

satisfy the solvability condition:

2.7 [ Hep*ay = 0,

y2
where y, and y, are on opposite edges of the flow field and ¢* satisfies
(2.8) (D?*=Kk*)*p* —iR[(kU—w) (D> —k?)¢*+2kDUD¢*] = 0,

the adjoint equation, and the same boundary conditions as ¢,.
Equation (7) leads to

dA
sz‘ "'U!(xl)A - 0

and hence
A = Cexp [ a(x,)dx,,

where

~f [al +.erzﬂz(‘;a )+03Dq+VD o;-f-(a‘n-— iJD2 a;k ]gb*dy
29 a(x)=-2 ! ‘

f (a17+a, D*n)p*dy
Y1
o gives the desired correction to k; however, to evaluate o, one must first have #, dn/dx,
and dk/dx;,.
The following is needed to determine d%/dx, and dk/dx,. Because L({) = 0, differenti-
ating leads to

@100 L0 = Rjk— i[U(D?— 3k2)—D’U+2kw]+%(Dz—fcz)}n

+:k[-—(pz k“)—Dz( aU)]n,

0x,
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where { = dnfdx, and the boundary conditions on { are the same as those for #. Applying
the solvability condition to Eq. (2.10) yields

= [ ou
dk _kad'*[ax (Dz_kz)_Dz(gf)il¢0dy
(211) — Y1 1 1
dx

1

Y2

fqb*{i[U(Dz—Bkz)—D2U+2kw]+‘L—k(Dz —kz)}‘i’ody

3. Method of solution for a given ¥

First, we choose w and R and then determine k and ¢, from the Orr-Sommerfeld problem
[Eq. (2.4) and the appropriate boundary conditions], using either the procedure described
by LING and REYNOLDS or the one given by Mook (1972). Next, we determine ¢* using
Eq. (2.8). [One can vary this procedure, finding k and ¢* from Eq. (2.8) and the appropriate
boundary conditions and then ¢, from Eq. (2.4)]. dk/dx, is found from Eq.(2.11) and then
Eq. (2.10) is integrated to yield { and consequently D, It should be noted that Eq. (2.11)
does not insure a unique solution to Eq. (2.10). In fact, if , is a solution to Eq. (2.10),
so is {,+ C¢o, where C is arbitrary. We assume that ¢, term should be eliminated and,
following Ling and Reynolds, effect the elimination by subtracting directly the contri-
bution of the homogeneous solution.

o is determined from Eq. (2.9). The corrected wave-number, which includes the effects
of the nonparallelism, is

K, = k,+iea;,
and the corrected spatial growth rate is
K = —k;+ea,.

Finally, Eq. (2.5) is integrated to give ¢, .

4. Summary

The linear stability of slightly non-parallel flows is analysed by perturbing about the
parallel-flow solution. The method of multiple scales is used to effect this perturbation,
which is structured to provide the changes in k (wave-number and spatial growth rate)
for given w (frequency of the disturbance) and R (Reynolds number of the primary flow).
With the present approach, the solution of the Orr-Sommerfeld problem emerges as the
first approximation. Accounting for the non-parallelism requires the solution of a sequence
of problems.

The complete solution for the non-parallel problem contains the solution of the Orr-
Somerfeld problem (¢, k), the streamwise variation in k (dk/dx,), the local perturbation
in (), and the distortion of the eigenfunction of the Orr-Sommerfeld problem due to non-
parallel effects (¢,) for given w and R.

Neutral stability curves can be constructed by solving the complete problem for different
values of @ and for each w determining the R for which —k;+e¢a, is zero by iteration.
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1 1

For the Blasius boundary layer y = (x,)2f[y(x,) 2], where x, = ex = x/Rand R =
= U4, /v the Reynolds number based on displacement thickness. In this case, the calcula-
tions show a minimum Reynolds number of 396 and a maximum frequency F = av/UZ =
= 400 x 10~°® compared with R = 520 and F = 250 x 10~® for the parallel theory. The
non-parallel results compare favorably with the experimental results.

This work was supported by the Fluid Dynamics Program of the United States Office
of Naval Research and the United States Atomic Energy Commision.
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