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A contribution to the generalized Noether’s theorem

D. S. DJUKIC (NOVI-SAD)

I~ THIs paper the following theorem is proved: If the Lagrangian of some physical system expres-
sed in Lagrange's variables is gauge-variant under a certain class of infinitesimal transformation,
then the same Lagrangian, expressed in Hamilton's form, is gauge-variant under the same class
of infinitesimal transformations in which Lagrange’s variables are replaced by Hamilton's
canonical variables. The corresponding first integrals, which follow from Noether’s generalized
theorem, are equal but expressed in terms of Lagrange’s and Hamilton’s variables, respectively.

W pracy udowodniono nastgpujace twierdzenie: Jesli funkcja Lagrange’a pewnego ukladu
fizycznego, wyrazona w zmiennych Lagrange'a, nie jest niezmiennicza wzgledem transformacji
cechowania dla pewnej klasy transformacji infinitezymalnych, to ta sama funkcja Lagrange'a
przedstawiona w postaci hamiltonowskiej ma t¢ sama wlasnos¢ wzgledem tej samej klasy infini-
tezymalnych transformacji, w ktorych zmienne Lagrange’a zastapiono kanonicznymi zmiennymi
Hamiltona. Odpowiednie pierwsze calki wynikajace z uogélnionego twierdzenia Noether sa
sobie rowne, lecz wyrazaja si¢ odpowiednio za pomoca zmiennych Lagrange’a lub Hamiltona.

B paGoTe moxasaHa clefiyiollas Teopema: eclly JIarpaHyKHaH HEKOTOpPOH (PH3MYECKOH CHCTEMBI,
BBIPAYKEHHBIH B JIATPAHKEBBIX KOOPAMHATAX, ABJIAETCH KanMOpOBOUHO-BAPMAHTHBIM IO OT-
HOLICHHIO K HEKOTOPOMY KJIACCy BECKOHEUHO MalIbIX NMpeobpasoBaHMil, TO STOT JKe JarpatykHaH,
BbIPaYKEHHBINA B TaMHJIBTOHOBOH (opme, ABIAECTCA KanHOPOBOYHO-BAPHAHTHBIM 10 OTHOLLE-
HHID K TOMY e Kjaccy DecKOHeuyHOo Manbix npeobpa30BaHHii, B KOTOpPOM nepemeHHble Jla-
rpaHyKa 3aMeHAIOTCA KAHOHHYECKHUMH NepemeHHbIMH [amunsrona. CooTBeTcTBYIOUINE NIEPBLIE
HUHTErPABI, KOTOPEIE caeayieT u3 obobienHoi Teopembl Hatep, paBEBI Apyr Apyi'y, HO BbI-
payKeHBbI COOTBETCTBEHHO B TEPMHHAX JIATPAHYKEBLIX H I'aMHJIBTOHOBBIX KOODIHMHAT.

1. Introduction

NOETHER’S theorem has an important role in classical mechanics, contemporary physics
and variational calculus. In fact, in some of the most significant cases, Lagrange’s function
remains invariant or gauge-variant under certain continuous changes in the physical
variables. The existence of these transformations enables first integrals to be found. The
proofs of Noether’s theorem and Noether’s generalized theorem, and applications for
obtaining the basic laws of conservation, can be found in [1-7]. In these papers, all con-
siderations are based on examination of Lagrange’s function and the corresponding
infinitesimal transformations expressed in terms of Lagrange’s variables.

The purpose of this note is to show the connection of the invariance and gauge-variance
properties of Lagrange’s function in Hamilton’s form (see for example [8], p. 59), subject
to infinitesimal transformations as functions of Hamilton’s variables, and the corresponding
properties of Lagrange’s function under transformations as functions of Lagrange’s varia-
bles. In this manner, the concept of Killing’s generalized equations [5], whose solution
yields transformations under which Lagrange’s function is invariant or gauge-variant,
will be developed.
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2. Noether’s theorem and Killing’s equations in terms of Hamilton’s variables

Let ¢ = {g', ..., ¢"} be the generalized coordinates which specify the configuration
of a holonomic mechanical system with n degrees of freedom at time ¢, and let p = {p,, ...,
..., Dn} be the generalized momenta. Let us suppose that the motion of the system is such
that it is possible to construct the Lagrangian function L in Hamilton’s form:

(2.1) L = pig'~H(, q,p),
and the corresponding action integral

(22) J= [ (ma*-H,q,p)dt,

where: f,, t, is an arbitrary interval of time, and H is the Hamiltonian. Repeated indices
are summed.

The objective of these considerations is to find the elementary transformations for
which the Lagrangian (2.1) is gauge-variant.

Let us consider a continuous r-parameter transformation of the time, generalized
coordinates and generalized momenta in the form:

(2.3) t X+t g, p),

(2.4) q' = ¢+ e90(1, q,p),

(2.5) P = pi+ePv,(1, q, p), s=1,..,r

in which the &®(s = 1, ..., r) are the r independent parameters of the transformation,

and (), {5, and v are functions of time, generalized coordinates and generalized
momenta. Hence, corresponding to (2.3)-(2.5) there exists an infinitesimal transformation
of the form:

(2.6) 8t m £9); 0" ~ €904,); Op & D).
From (2.3) it follows that
_ dt
~ () 25(5)

2.7 dt~dt(}+s o ),
and from (2.7) and (2.4), we have:

3t = ﬂi_ _E = dqi"'smd‘:s) -4

e dt o &

By developing this expression in series and retaining only members linear in the small
parameters é*, we obtain:

) dct,  ..dt )
i o) ) _ i 4509
(2.8) 6q' ~ ¢ (dr )

Now, the action integral (2.2) transforms into

(29) J= [ '~ H(, g, Pldr.

Iy
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Further, let us suppose that the Lagrangian function (2.1) is gauge-variant i.e., is “invariant
up to an exact differential” in the sense that (see for example [4], p. 73 or [7])

(2.10) [Pig'— H(t, 3, Pdi—[p:id'— H(t, , p)ldt = 69dA(1, 4, ),

when it is the object of the transformation. Here the A, are known functions of #, g and p.

Combining (2.2), (2.6), (2.7), (2.9), (2.10), changing the domain of integration in (2.9)
(see [1], p. 173), developing the term p,g' — H(t, g, p) in series and retaining only members
linear in ¥ (s = 1, ..., r), we arrive at the following condition:

f
) dgis oH d s s
ey o f(pin My Wy yEe_da),

fo

which must be satisfied for mechanical systems with gauge-variant Lagrangians. Here in
the sense of Hamilton’s mechanics, generalized velocities are eliminated by the relations
4' = 0H|op;.

After simple manipulation, we have from (2.11)

]

0H L OH oH
(2.12) Bmf{-'--'(ﬂ: Lo —Hl— A(S))} dt = & )[{C"’ (p; ) C{s)( 04" toig op; }dt'

fo

Assuming that the motion of the holonomic mechanical system satisfies Hamilton’s equa-
tions of motion
oH ; 0H
'[ _— —— - —_— e
(2.13) Pmai b=
we see that the right-hand side of (2.12) vanishes. Since the &® are, by definition of an
r-parameter transformation, linearly independent, we have from (2.12) the following
theorem:
Noether’s Theorem: If, under the continuous infinitesimal transformation (2.6) the
Lagrangian (2.1) is invariant up to an exact differential in the sense of the Eq. (2.10),
then the r expressions

(2.19) pilis(t, g, p)— Hi(t, q, p)— A (t, g, p) = const,

are constants of the motion. This theorem is a generalization of the existing forms of
Noether’s theorem {compare (2.14) with [5, 7, 2 and 4, p. 73]}.

Taking into account that i, and £, are functions of 7, ¢' and p; and that the & are
linearly independent, we obtain by means of the first system of Egs. (2.13) and (2.11)
the necessary condition which must be satisfied for the Lagrangian (2.3) to be gauge-
variant:

215 pi

ath, oty OH 3Lk, .\ OH,
C()+ 40 o G )_ - C(s;

ot dq" dp, Op, ot

—H( a«:{,,+ ) OH | 0L - ) 04 ) + 04s) ilf+ aAme

& T og o o a " og o op O

5=
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If by assumption {,, and Cls) do not depend on the p’s, the condition (2.15) leads to
the systems of partial differential equations, obtained by equating terms in corresponding
degrees of p on the left and right-hand sides of (2.15) (see for example [3, p. 28 and 5]):

65:,, oH 6{{,, oH oH 6{'(3, OH 0
(2.16) p; ot +.9i7p‘: —aq.'_ _é'r_C[s)_"_a?C{sJ_H 3t "—H"“a; or
= i’itsa _'_3_4(9 oH
ot og" ap,’
[ -
(2]?) P aq{’) _H8C(3) = UA(S], L,v= l, s, 85 = l, s I

" ap, o

These r groups of the n+ 1 partial differential equations, which are linear in the r groups
of n+ 1 unknown functions {, and i, (i = 1, ..., n), are generalized Killing’s equations
(see [5]). When these equations, where the functions H and A, are defined, admit a solu-
tion in { and lls), then the equations of motion of the holonomic mechanical system
(2.13) admit first integrals (2.14).

Here, we may make one important remark. The solution of the Egs. (2.16) and (2.17)
and the first integrals (2.14) do not depend on the quantities »;,, which appear in the
transformation laws for the generalized momenta (2.5). At first it may appear that these
quantities may take arbitrary values. This supposition can be seen to be erroneous if we
recall that in Hamiltonian mechanics the generalized momenta p; are known functions
of 1, ¢ and §'. Hence, 7, §* and §' given by (2.3), (2.4) and (2.8) in terms of the functions
L(syand Lls), are completely determined and the transformed generalized momenta p; —i.e.,
the quantities .5, can be obtained as functions of {(,) and {{,). Thus the logic of Hamilton’s
mechanics is maintained.

3. Noether’s theorem and Killing’s equations in terms of Lagrange’s variables

Here will be given only the main results corresponding to the above problem considered
from the point of view of Lagrangian mechanics. This is done because the procedure used

in Sec. 2 is also used here.
If, under the continuous infinitesimal r-parameter transformation

(3.1) ot ~ e9n)(1,9,9); 04" ® e9ny(t, q, 9),
F= Lywsy B B2 Lgcony B

the Lagrangian L of the action integral

n
(3.2 J=[ Lt g d)ar,

to
is invariant up to an exact differential in the sense of the equation
(3.3 L(t,g,g)dt = L(t, q, §)dt+ eVdi (1, 4, 9),

then there exist first integrals of Lagrange’s equation of motion:

d oL L
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in the form:

;, OL oL
(3.5) nolL—4 = a + sy 22T Fr ~ Asy = const.
The quantities 7, and 7{s, are solutions to the n+1 generalized Killing’s equations:

oL oL [ on, ons My Oy e ] OL
GO iy = _}_%)a t_|_|: ) ’?()q sy a_ﬂi_l_qtq:l_

TR R R 3
My |, Oy 0hsy | Ohesy -,
+L[ar *w (|t e
‘3L 5’?@) 1 O s) My _ Ok

4. A connection between Noether’s theorem and Killing’s equations in terms of Lagrange’s
and Hamilton’s variables

In this section an important relation between Noether’s theorem and Killing’s equations
will be developed in terms of Lagrange’s and Hamilton’s variables, respectively.

Let us denote the functions ), { in the transformation laws (2.3), (2.4) and the
functions 4, (2.10), where the generalized momenta are replaced by generalized velocities
using

(4.1) pi= g—éL,.

by &lsys Eo) and A,

4.2) Lot 4.0) = Lo, 4, D)y Loyt 45 0) = Lioy(t, 4, D),
43) Aw(t, g, p) = A1, 4, §).-

Using (2.1), (2.13), (4.1)-(4.3) and the well known relations (see for example [8], p. 47)

oH JaL oH aL
s TS Tw s e

Killing’s Eqgs. (2.16), (2.17) and the first integrals (2.14) transform into:

- 2 d Bl is b  sviiObn
@45) C(s) < +¢mal |:Cm+ C()q Cisy 5% C()]

ot oq" ot oq"
3{'{;) vaC(-ﬂ 6/1(,) 5/]1,) e
”‘l: T4 o a T og 17
aq’
4.6 =
(4.6) . X; =0,

= oL . = gl =
4.7 [ (L—Eé—r‘-q‘)ﬂ;{,, ta — A5 = const,
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where

(4.8)

S Y 3¢’ A

Liiws= Dpnattedies Iy st

E_ [ 35&; i 55 (s) ] L 35{:) ‘aj{s}

The system (4.6) is a:system of algebraic homogeneous equations. The determinant of this
system

| 0g|

4.9) A = ‘ 4

{ | ap v |

is also the Jacobian to the reversible transformation ¢ 2 p and for this reason must be
different from zero. Hence, the solution of the system (4.6) is

(4.10) X; =0,

where X is given by (4.8).
Thus, Killing’s equations and the first integrals expressed in Hamilton’s variables
transform into the Eqgs. (4.5), (4.7), (4.8) and (4.10).

If we suppose that the functions ./T(,), given by (4.3), are equal to the functions A,
given by (3.3), then the solutions to the partial differential equations (4.5), (4.8) and (4.10)
are same as those obtained from Killing’s equations (3.6), (3.7) i.e.,

(4.11) ;;(s} = Tisy» C{s) = ?]‘Ex),
and for this reason the first integrals (4.7) and (3.5) are of the same form.

Now, we can formulate the following proved theorem: If the Lagrangian (p;4'— H)
of the holonomic mechanical system in terms of the Hamilton’s variables (2.1) is invariant
up to an exact differential of the functions A, [given by (2.10)] under an r-parameter
transformation (2.3), (2.4), then the Lagrangian L in terms of Lagrange’s variables (3.2)
is invariant up to an exact differential of the same functions A, under the same trans-
formations (2.3), (2.4), where Hamilton’s variables are expressed by Lagrange’s variables.
The corresponding first integrals (4.7) and (3.5), which follow from Noether’s theorem,
are the same when we use the reversible transformation 4 = p.
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