
Archives of Mechanics • Arcbiwum Mechaniki Stosowanej • 16, 1, pp. 95-104, Warszawa 1974 

Lower bounds on bearing capacity of shells and plates loaded at 
the edges by distributed moments 

W. SZCZEPINSKI (WARSZAWA) 

PRESENTED here is the theory which enables finding the lower bounds on the bearing capacity 
ofthin-walled shells and plates loaded by continuously distributed bending and twisting moments. 
By way of illustration, three particular problems are solved. 

Podano teori~ dla wyznaczania dolnej oceny nosno8ci granicznej cienko8ciennych powlok i plyt 
obci~nych na kraw~i rozlownymi w spos6b ci~ly momentami zginaji\(:ymi i skr~jllcymi. 
Jako ilustracj~ przedstawiono kilka rozwil\ZAD szczeg61owych. 

,UaeTC.R TeOpWI ~JUI onpe~eJieHIDI HH>KHeH O~eHKH npe~eJibHOH Harpy3KH TOHI<OCTeHHbiX 
o6onot.Iei< H WIHT, HarpymeHHtiiX no I<pa.RM pacnpe~eneHHbiMH, HenpepbiBHbiM o6pa­
aoM, H3rH6aiO~HMH H CI<pyqHBaiO~HMH MOMeHTaMH. ,UJI.R HJIJIIOCTp~ npe,ll;CTaBJieHO 

HeCI<oJILI<o no~po6HLIX pemeHHif. 

1. Introduction 

THE COMPLETE solution to the problem of bearing capacity of shells and plates should 
satisfy all static and kinematic conditions. Such a complete solution consists in deter­
mining the statically admissible plastic stress field and the kinematically admissible collapse 
mechanism corresponding to this field. Since the system of equations of the theory of 
bearing capacity of shells and plates is complex, construction of complete solutions is 
in most practical cases very difficult. Therefore, only solutions to the relatively simple 
cases are available. Thus the main effort has been devoted to incomplete solutions, pro­
viding lower and upper estimates of the unknown true value of the bearing capacity. 
The practical importance of these incomplete solutions results from the two basic limit 
design theorems of plasticity [1, 2]. In more general cases the method of kinematically 
admissible collapse mechanisms providing upper bounds on the limit load has been proved 
effective. The upper estimate of the bearing capacity is, however, on the unsafe side and, 
therefore, construction of the statically admissible stress systems providing lower bounds 
is always expedient, since it makes it possible to obtain the estimate of the possible excess 
of the two bounds from the unknown exact value of the limit load. 

In the previous work [3] the concept of discontinuous piecewise homogeneous statically 
admissible plastic fields of moments was proposed for determining the lower bounds 
on limit load for plates of complex configuration subject to pure bending. In the present 
work, the concept of nonhomogeneous statically admissible continuous plastic fields 
of moments is introduced. Using such fields, we can find estimates of lower bounds on the 
bearing capacity for thin-walled shells of arbitrary double curvature loaded at the edges 
by distributed moments. As the particular case, the fields of moments for plates are obtained 
from the general theory. 
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2. Plastic fields of moments for shells 

Consider a thin-walled shell of arbitrary double curvature. The shape of the shell 
is described in the Cartesian coordinate system by the parametric equations: 

x = x(r~., {3), y = y(r~., {3), z = z(r~., {3). 

The two parameters r1. and f3 can be considered as the curvilinear system of coordinates 
on the shell surface. In our considerations, this system will coincide with the lines of 
principal curvatures of the shell. 

Assume that the external loading of the shell is limited to the continuously distributed 
moments acting at the edges. We may assume, therefore, the internal forces to be reduced 

FIG. 1. 

to the bending moments m~~., mp and the twisting moment ma.p acting in any cross-section 
along an r1. = const or a f3 = const line, respectively (Fig. 1 ). 

The conditions of internal equilibrium are expressed by the equations 

oA omp oB oma.p 
(mp-ma.) op +A ol +2ma.p or~. +B---aa.- = 0, 

oB oma. oA oma.p 
(m~~.-mp) or~. +B or~. +2m~~.p ofJ +A-ap = o, 

(2.1) 

where A and B are the coefficients of the first quadratic form. This means that the length 
ds of an infinitisemal element on the shell surface is determined by the equation: 

ds 2 = A2dr~. 2 +B2d{J2
• 

We discuss below separately the theory of statically admissible plastic fields of moments 
for the Huber-Mises and for the Tresca yield criteria. 

2.1. Fields of moments for the Huber-Mises yield criterion 

According to the Huber-Mises yield criterion, the plastic state of a cross-section of 
the shell is reached if the following equation is satisfied: 

(2.2) 

where m0 denotes the limit moment for pure bending. For shell of thickness 2h, the limit 
moment is equal to m0 = (J pl h2

, where (J Pl is the yield locus of the material. If a sandwich 
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plate is considered, and if the distance between the two layers each of the thickness <5 is 
equal to 2h, the limit moment has the value m0 = 2GP1 ~h. 

The two equations of equilibrium (2.1) and the yield criterion (2.2) constitute a system 
of three equations with three unknowns functions mQ,, mp and ~· Let us introduce an 
auxiliary function w( IX, p), defined by the following relations: 

(2.3) 

m1 and m2 are the principal bending moments. The subscript notations have been so chosen 
that always m1 ~ m2. 

If the angle which makes the normal to the cross-section where the greater principal 
moment m 1 is acting with the local direction of the IX = const line is denoted by ffJ (Fig. 2), 

FIG. 2. 

the moments mrt, m1h mrtfJ may be expressed in terms of the two auxiliary functions w{IX, p) 
and ffJ( IX, {J) by the relationse) 

ma. = ;; (y3 cosw-sinwcos2ffJ), 

(2.4) mp = ;;-; (y3 cosw+sinwcos2ffJ), 

mo . . 2 
mrtfJ = -y'J smwsm ffJ· 

Introduction of the relations (2.4) into the equations of equilibrium (2.1) leads to 
a system of two quasi-linear partial differential equations with sought for functions w 

and ffJ, and two independent variables IX and {J. This system is hyperbolic ifn/6 < w < Sn/6, 
or 7n/6 < w < ll.n/6. Differential equations of the characteristics of that system are 

(2.5a) 

for the lines of the first family, and 

diX B 
dp = A tan(f{J-1p), (2.5b) 1 aB 1 aA 

dffJ-dx = --dP- --diX 
A 81X B ap ' 

e) These relations are similar to those used in the plane stress analysis of the theory of plasticity [41. 

7 Arch. Mech. Stos. nr 1/74 

http://rcin.org.pl



98 W. SZCZEPINSK 

for the lines of the second family e). For the sake of brevity two auxiliary notations 

cotw 
21p = n-arccos y3" , 

QJ 

=- _!_ J y3-.4cos2w dw, 
X 2 smw 

n/6 

used by V. V. SOKOLOVSKII [4] in the plastic plane stress theory, have been introduced. 
Equations (2.5) are identical with the equations of characteristics obtained in the author's 
previous work [5] for the quite different problem of the plastic flow of a thin layer resting 
initially on the surface of a rigid block of arbitrary double curvature. 

For particular cases, statically admissible plastic fields of moments can be obtained 
by solving appropriate boundary-value problems for the equations of characteristics 
(2.5). In general, the well known numerical Massau procedure has to be used. 

2.2. Fields of moments for tbe Tresca yield criterion 

If the Tresca yield criterion is used, two different cases have to be distinguished. 
Consider first the case where the principal bending moments have opposite signs. The 
plastic state of the cross-section is reached if the following equation is satisfied 

(2.6) (m11 -m~)2 +4m~) = m 2
0 , 

where m0 represents the limit bending moment defined identically as in the previous 
Section. 

The difference and the sum of principal bending moments can be expressed by means 
of the new auxiliary function x and the limit moment m0 : 

(2.7) m 1 -m2 = m 0 , m1 +m2 = 2m0 x+m*. 

m* is a constant to be chosen arbitrarily. In most practical calculations we assume m* = 0. 
For the moments mo., m1 , m~11 , the following expressions can be written: 

1 
mrx = m* +mo(x- 2cos2q:>), 

(2.8) 
1 

m1 =m* +m0 (x+
2

cos2q:>), 

1 . 2 mrxft = 2mosm q:>. 

They satisfy identically the yield criterion (2.6). If the expressions (2.8) are introduced in­
to the equations of equilibrium (2.1), a quasi-linear system of partial differential equations 
of the hyperbolic type is obtained. The equations of characteristics of this system have 
the form: 

1 aB 1 aA 
dq:>+dx =--d/1---da. 

A aa. B ap ' (2.9a) 

e> The equations of characteristics can easily be generalized for shells of non-uniform thickness. In 
such a ~eneral case the limit mom!ot m0 is not constant over the shell surface, but is a given function 
mo(rx, P> of the coordinates. Thus in equations resulting from introducing the relations (2.4) into (2.1), 
the derivatives omoforx and om0 /oP will appear, and equations of characteristics will take a more complex 
form. 
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for the characteristics of the first family, and 

da. B ( n) 
df1 = Atan q;- 4' (2.9b) 

1 BB 1 BA 
dq;-dx = --df1--- da. 

A aa. B ap ' 

for the characteristics of the second family. 
The characteristics form an orthohonal mesh on the surface of the shell. The mesh 

of characteristics and the field of moments can be found by solving respective boundary­
value problems for the Eqs. (2.9). 

If the principal bending moments have the same signs, the plastic state of the cross­
section of the shell is reached provided that the following equation is satisfied: 

(2.10) (mp-maY+4m~ = [2mo-lmp+mariY· 

Let us introduce the new variable A, determined by the relationse): 

(2.11) m1 -m2 = 2mo, lm1 +m2l = 2mo(I- A). 

Now for the moments m«, mp, m«fl we can write 

m« = m0 [u(1- A)- Acos2q;], 

(2.12) mp = m0 [u(l-A)+Acos2q;], 

ma.p = m0 Asin2q;, 

where u = signm« = signmp. 
Substituting (2.12) into the equations of equilibrium (2.1), we obtain the system of 

equations: 

Asin2q; ~; -B(u+cos2q;) ~= = sin2q;~! +(u+cos2q;) ~~' 
a In A . a In A Bq; 

(2.13) -A(u-cos2q;)ap +Bsm2q;--a;- -(u-cos2q;) ()a. 

. BB BA 
= -sm2q; aa. +(u-cos2q;) ap· 

This system is of the parabolic type and has, therefore, one family of characteristics 
determined by the equations 

df1 
(2.14) 

da. 
- B(u +cos2q;) 

dq; 
. BB ()A . 

sm2q; a a. + (u +cos2q;) ap 

3. Working examples for shells 

Consider a thin-walled shell of the shape described by the parametric equations 

a2cos2{1 
x = -rcosa.cos{1, ya2cos2{1 +b2sin2{1 

b2sin2{1 
y = -rcosa.sin{1, 

y' a2cos2{1 +b2sin2{1 
(3.1) 

z = rsina.. 

e> The procedure used here is similar to that used in the plane stress theory of plastic bodies [4]. 

7* 
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The orthogonal system of coordinates ex, {J coincides with the lines of principal curvatures 
of the shell. The coeffcients of the first quadratic form are 

A= r, 

Let the shell be clamped at the edge ex = n/2, and loaded by the uniformly distributed 
bending moments m0 = a Pl h2 at the edge ex = 0 (Fig. 3). 

For the Huber-Mises yield criterion (2.2), along the edge ex = 0 we have m 1 = m0 

and m2 = 0, if the plastic statically admissible field of moments is to be found. Thus, 

FIG. 3. 

according to (2.3) and the definition of the angle q;, introduced in Sec. 2.1, the two auxiliary 
functions co and cp have the following constant values 

(3.2) 
1r 1r 

CO= 3' cp = T 

at any point of the loaded edge ex = 0. The Cauchy boundary value problem for the 
equations of characteristics (2.5) is, therefore, uniquely defined, and the plastic field of 
moments can be found for the entire shell. Figure 4 shows the mesh of characteristics 
for a quadrant of the shell calculated for the particular case, where a = 1.0, b = 0.6 
and r = 0.2. Thus the statically admissible field of moments for the entire shell has been 
constructed. The shell is able to carry the loading by uniformly distributed bending moments 
equal at least to m0 • 

As the next example, the hyperboloidal shell described by the parametric equations 

(3.3) 
cos{J 

x=a--, 
cos ex 

. = b sin{J 
y coscx , z = ctancx, 
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z 

Q1 QP as 

FIG. 4. 

is considered. The coefficients of the first quadratic form are: 

y 

A = - --~1 ~ ~/sin2 a(a2cos2P +b2sin2P) +c2 , 
cos2 a 

y 

FIG. 5. 

101 

X 

)( 

Assume that the shell is loaded at the edge a = 0, as in the previous case, by the 
uniformly distributed bending moments m 0 = uP1h2 (Fig. 5). Now, however, the problem 
will be solved by assuming the Tresca yield criterion. 

If the plastic field of moments is to be found, along the edge a = 0 the principal 
bending moments must have the values m 1 = m0 , m2 = 0. Thus from (2.8) we obtain 
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that the auxiliary function x and the angle fP have the constant values 

n 1 
fP=T, x=2, (3.4) 

along the edge ex = 0. The constant m* appearing in (2.8) is assumed to be equal to zero. 
The field of moments for the entire shell can now be found by solving the Cauchy boundary­
value problem for the equations of characteristics (2.9). The mesh of characteristics for 

FIG. 6. 

a quadrant of the shell calculated for the particular case, where a = 1.0, b = 0.6 and 
c = 1.0, is shown in Fig. 6. Our solution indicates, therefore, that the shell is able to 
carry at least the loading shown in Fig. 5. 

4. Plastic fields of moments for plates 

The equations of plastic fields of moments for plates can be obtained from the cor­
responding equations for shells by assuming that A = B = 1, and replacing the coordinates 
fJ and ex by x and y respectively. 

http://rcin.org.pl



loWER BOUNDS ON BEARING CAPACITY OF SHELlS AND PLATES 103 

For the Huber-Mises yield criterion, the equations of characteristics result directly 
from (2.5). Thus we have 

(4.1a) : = tan(cp +1p), cp + x = const, 

for the characteristics of the first family, and 

(4.lb) 
dy 
dx = tan(cp-1p), cp- x = const, 

for the characteristics of the second family. 
These equations are identical with those of the plane stress theory derived by V. V. So­

KOLOVSKII [4](4 ). In the Eqs. (4.1) cp denotes the angle which makes the normal to the 
cross-section where the greater principal bending moment is acting with the x-axis (Fig. 7). 

As a typical example of application consider a rectangular plate clamped at the edges 
(Fig. 8). The plate of the thickness 2h has a central elliptical hole, whose edge is loaded 

y 

X 

FIG. 7. FIG. 8. 

by the uniformly distributed bending moments m0 = aP1 h
2

• If the equations of !the ellipse 
are written in the parametric form 

(4.2) 

ya2sin2y +b2cos2 y ' 

the boundary conditions for the functions cp and w along the edge of the hole are 

(4.3) 
n 

cp = T+y, 
n 

W=T· 

Thus the Cauchy boundary-value problem for the equations of characteristics (4.1) 
is defined, and the statically admissible field of moments can be numerically calculated 
for the entire plate. The mesh of characteristics is identical with that given in Sokolovskii's 

(
4

) Equations (4.1) can be generalized for plates with non-uniform thickness in the same manner as 
in the case of equations for she11s. 
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book [4] and has not been shown here. The present solution shows that the bearing ca­
pacity of the clamped plate is not smaller than that assumed above. 

In the same manner, numerous similar problems for plates can be solved providing 
lower bounds on their bearing capacity under loading by distributed moments at the 
edges. 

5. Concluding remarks 

Solutions presented in this work can provide complementary data if more practical 
problems including simultaneous loading of shells and plates by distributed moments and 
membrane forces acting at the edges have to be considered. Assume for example that the 
edge of the shell shown in Fig. 3 is loaded by uniformly distributed membrane forces p 
and uniformly distributed bending moments m. The limit states corresponding to various 
combinations of the two loading parameters p and m can be represented in the m-p plane 
as a limit curve. The procedure presented in the previous sections can be useful in estima­
tion of this curve in the vicinity of the m-axis where p = 0. 
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