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Thermal stresses in a semi-infinite body with a cylindrical hole
J.B. ALBLAS, A.A.F. VAN DE VEN, W.J.J. KUYPERS (EINDHOVEN)

IN THIS PAPER the rotationally symmetric problem of a semi-infinite body with a cylindrical
hole, with prescribed heat input along the boundary of the hole and on the plane bounding
surface, is investigated. The temperature distribution in such a body may easily be obtained
and from it a particular solution for the equations of linear thermo-elasticity may be derived.
This solution does not satisfy the boundary conditions and the problem is reduced to the solu-
tion of a residual problem in linear elasticity, The results are obtained by applying integral
transfon)n techniques to the displacement equations of equilibrium over the region (0, ) x
% (1, o0).

W pracy rozwaza si¢ obrotowo-symetryczne zagadnienie dla péinieskoriczonego ciala z otworem
kolowym przy danym przeplywie ciepla wzdluz otworu kolowego oraz na plaskiej powierzchni
ograniczajacej osrodek. Rozkiad temperatury w takim ciele, fatwy do wyznaczenia, pozwala
uzyskaé rozwiazania szczegblne ukladu réwnan liniowej ten‘nosprd:ystoica Rozwigzanie to nie
spelnia jednak warunkéw brzegowych i problem sprowadza si¢ do rozwigzania uzupekiajacego
zagadnienia liniowej teorii sprezystosci. Wyniki uzyskuje si¢ droga zastosowania transformacji
catkowych do przemieszczeniowych réwnan réwnowagi w obszarze (0, c0)x (1, c0).

B pafore obcyxgaercid KPYroBO-CHMMETpHYHAA mpobieMa A MmoMyOecKOHEWHOro Tena
C KPYTOBBIM OTBEDCTHEM IIPH 3aJaHHOM TEYEHHH TeIUIa BIO/b KPYIOBOIO OTBEPCTHSA, & TAKIKE
Ha IUIOCKOM IOBEPXHOCTH OrpaHMYHBalollel cpedy. PacmpeneneHue TeMmepaTypsl B TaKOM
Tene, KOTOPOE JIEFKO ONPEAEITHTE, MO3BOJIAET HOIYYHTE YACTHEIC PEMECHAA CHCTEMEI YPaBHEHIH
JNUHEHHOH TEpMOYOPYrocTH. JTO PeIeHHEe He YAOBIETBOPACT OHAKO FDAHHYHBIM YCIOBHAM
M mpobiiema CBOIHTCA K PElICHHIO JOIMOJHHTENILHOM mpoliieMbl JTHHeHHON TEOPHH YIPYTOCTH.
Pe3syJIbTaThl MOJNMYYAIOTCA NyTeM IPHMEHEHHA HHTErPaTbHBIX Ipeo0pa3oBaHuil K YpaBHEHHAM
paBHOBecHs B mepemeuteHusx B obmactx (0, o) %(1, o).

1. Introduction

IN A RECENT papzr [1], one of the present authors investigated the problem of the three-
dimensional stress concentration around a cylindrical hole in a semi-infinite elastic body,
subjected to a uniform plane field of stress that is parallel to the bounding plane. He found
the solution by decomposing it in the form of a plane strain solution, holding for the in-
finite body, and a solution of a residual problem that holds in the halfspace. The boundary
conditions of the residual problem were so selected that the bounding surfaces became
free from stress. Owing to the complicated geometry of the body —it is bounded by two
surfaces of infinite extension and different type, upon which boundary conditions have
to be prescribed — the residual problem appeared to be very difficult. However, as a conse-
quence of the existence of suitable integral transforms — the FOURIER and the WEBER —
it was possible to reduce the residual problem to the solution of one integral equation for
an auxiliary function and so to put it within reach of numerical analysis.

Techniques similar to those used in [1] are developed by YOUNGDAHL and STERNBERG
[2] in their treatment of the same problem. YOUNGDAHL and STERNBERG give an extensive
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motivation for their investigation together with a review of papers dealing with the three-
dimensional aspects of the plane problem.

In [1] it is pointed out that a similar method might be used for the solution of a large
class of corresponding boundary value problems in linear elasticity. This class is further
extended by taking into consideration problems from the theory of thermo-elasticity for
the same body. This extension is based upon the possibility of decomposing in linear
thermo-elasticity a solution in the form of a particular temperature-dependent solu-
tion and a residual one. The residual problems are of the same type as that discussed in
[1 and 2].

In this paper, we consider the rotationally symmetric problem of a semi-infinite body,
with prescribed heat input along the boundary of the hole and on the plane bounding
surface. We reduce the problem to the solution of a Fredholm integral equation of the
second kind for an auxiliary function and solve this equation with numerical methods.
All the quantities of interest may be expressed in the auxiliary function.

The results of this investigation may be of some use for the calculation of the stress
distribution that exists in a long thick pipe, conducting a hot fluid. In particular the circum-
ferential stress on the pipe near the plane bounding surface is of interest.

We note that in most practical problems — e. g., the heat transfer problem of a fluid
in a thick pipe — the wall temperature and heat input are unknowns and have to be de-
termined. Although it is beyond the scope of the present article to enter into the details
of problems of this kind, we shall derive an integral equation for the wall temperature,
The solution of it may give the boundary value of the heat input for the present problem.

The analysis to be presented is rather complicated, while in a later stage of the investi-
gation numerical methods have to be used to obtain the final results. Therefore, one might
wonder whether a direct numerical analysis would not be preferable. There are two reasons
for answering this question in the negative. First, it may be expected that a direct numerical
treatment of the equilibrium equations of elasticity will be much more laborious than the
corresponding treatment of the Fredholm integral equation. In addition, the analytical
treatment is more general and can be applied to a number of different boundary value
problems.

2. Statement of the problem

In the Cartesian coordinate system (x,, x,, x3) we consider the region of space charac-
terized by

2.1 20, r=yx3+xiz1,

occupied by an elastic solid body. The body is deformed by the action of a stationary in-
homogeneous temperature field. We shall confine ourselves to an isotropic homogeneous
body, with respect to both the mechanical —i. e. the shear modulus G and Poisson’s
ratio » — and thermal properties, the coefficient of internal heat conduction » and linear
expansion «. If there are no heat sources, the stationary temperature field is determined
by the Laplace equation

(22) T,ur = 0,
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where T represents the increment of temperature from the initial stress-less state in which
T = 0. We assume that the change of temperature is small, and therefore it has no influence
on the mechanical and thermal properties of the body.

According to the linear theory of thermo-elasticity, the displacements u; satisfy the
equations of equilibrium:

” _#2(]—1-)
T, TRt T

for the case of vanishing body forces, while the stresses g;; are given by

(23) u;, n‘+

O‘.'T_; =0

(24) gij = G[ﬂ.‘.j'f‘uj.i'i‘ (1—3“’2; u,,_k-—gl(—l_——-;?aT) 6,1],
where d;; is the Kronecker symbol.

The temperature field is completely determined if we prescribe the flow of heat —xT",,
where T, = 0T/én denotes the outward normal derivative of the temperature on a surface
element, at all points of the bounding surfaces r = 1 and x; = 0, and take T = 0 at
infinity.

The body is free from stress at infinity and at the boundaries. This may be expressed by

(2.5) 0; =0, for Vri+z?= o0,

and

(2.6) 05 =0, for x3=0,

@.7) oyn; =0, for r=1, i,j=12,3,

respectively.

Assuming T to be known, we find the solution S of the problem (2.3) to (2.7) by decom-
posing it in the following form:
2.8) 5 =545,

where S is a particular solution, derived from a thermo-elastic displacement potential
according to (cf. 1ef. [3])

(2-9) U = Xiis

and S is the solution of the residual problem that will be formulated later on.
Substituting (2.9) in (2.3), we obtain:

1 2(14») _
(2.10) Lt {25 X, kki 1=3y al,; =0,

and these equations can be integrated with respect to x;. We find:

(2.11) Lok = mT,
where
@2.12) s

4*
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From (2.4) and (2.11) we calculate the stress field, belonging to the solution S, as
(2.13) Gij = 2G(%,ij= 0y X, k) -

For the representation of S and §, cylindrical coordinates (r, @, z) defined by the mapping
Xy =rcosg, X =rsing, Xx; =1z,
2.14) 1 2 3
0<r€<w, 0Lp<2n, 0<5z< ),
are more convenient.
Since the problems under discussion are rotationally symmetric, (2.2) takes the form

#T 19T 0T _

13 e e T 0
and (2.11) may be written as
Py . Loy . &y

The stresses derived from the thermo-elastic potential are given by

G, = —2G(x.,,+%x.r). Gy = —2G(t s+ Xor)s
.17

0, = —ZG(% x:r+x.r’)’ Tp=T,p=0, Tre = 2GY, 1z

The solution S does not satisfy the boundary conditions (2.5), (2.6) and (2.7). There-

fore, we superpose a solution S of (2.3), with 7' = 0, so that for S defined by (2.8) these
boundary conditions are met.

3. The temperature field

A solution for (2.15) in the region (2.1) which satisfies the boundary conditions

T _ 4@) _
(3.1) —27”"5" = —'—"‘c""', at r= 1,
aT AR
3.2 ¥ "R 0, at z=0, and T=0, for )/J"2+z2 = o0,
is assumed in the form:
(3.3) T(r,2) = [ A()Ko(Ar)cosAzda,
0

where the heat input g(z) is a given function that is continuous and integrable in [0, co).
In (3.3) K,(Ar) is the modified Bessel function of the second kind of order zero.
From (3.1) and (3.3) we find an expression for ¢(z):

(3.4) EZ%= f AK,(2) A(A)cos AzdA.
0
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Inverting this result, we have:

(3.5 AK (D) A(A) = -

1 J
3 q(z)cosAzdz.
X é

It follows from the representations (3.4) and (3.5) that AK,(4)A(4) is ultimately de-
creasing, bounded and integrable in [0, c0). We derive from these properties that the in-
tegral (3.3) exists and represents indeed a bounded function T(r, z), as

" Kolir)
J K

(1]
(3.6) J AN Ky (Ar)dA = [AK (D) A(A))dA < .
0

Note that we have suitably restricted the function ¢(z) in order to obtain simple condi-
tions for the existence of the integral representations. Of course, some of the restrictions
may be weakened. Further we can formulate the problem for the case of prescribed tem-
perature at r = 1 under appropriate conditions.

For future reference we give the inversion formula of (3.3):
1

(3.?) A(;\-) = J'I,'_ —;(1)- f T(l, Z)COS Azdz,
0

4. The particular solution

The temperature field being known, we first derive a particular solution of (2.10). The
function %(r, z), represented by

@.1) 2(r, 2) = J;- f A=2 A(A) [Ar K, (Ar)cos Az— AK, (A)}dA,
0

satisfies (2.16), and may be used for the derivation of the stresses of S by (2.17). We obtain
the following expressions:

@2) 51(-;-&, --2 ‘)f A(Rycos Az{Ko(Ar)+ Ar K, (Ar)} dA,
4.3) “2165’ = ~% f A(A) Ko(Ar)cos AzdA,
0
(4.4) _ZLG 0, = “% f A(2)cos Az{2K,(Ar)— ArK,(Ar)}dA,
0
1 3 .
4.5 B W %rof AA(A)Ko(Ar)sindzdA.

We note that the integrals (4.1) to (4.5) converge forz> 0 and r > 1.
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It is obvious that the decomposition (2.8) is not unique. But now we have chosen the

function y(r, z) by (4.1), the residual problem S can be formulated and it has a unique
solution. We proceed with the discussion of this problem.

5.  Reduction of the residual problem

In cylindrical coordinates the displacements # and w are governed by the equations:

5.1

- u 1 dfou u ow — 1 o [ou u ow
di—mti=5 a(ﬁ;‘*?*a) =8 A’”*ma(ﬁrﬁ 62) L
By means of Love’s function L (cf. [3]), that satisfies
(5.2) AAL = 0,
we can represent the solutions of (5.1) in the following form:
= 8L - 32L

(5.3) U=—>>, W= 2(1- v)AL—-
If we take L in the form
549 L= P+za—Q
with
(5.5) AP = 4Q =0,
the displacement equations (5.3) become:

- é [6P dQ 0*Q = oQ 62Q
5.6 = e | e ol —= .
) ar(az+az+zaz2)’ o [ @)+

From (5.6) we derive by means of (2.4) the stresses of §

I = 18 &\opr 1 o # z o2 i KLY
26% < (r o T FE*[r o +(l+2)62 Y e +z'a_?]¥’
1= __100 (1o , 0 z & )i
2G °°? r or oz T o 2 ar ¥ r oréz) oz’
1 - 8> op a2 | o0
N P GO = 9Q
GCD g o7 oz [( ~W) ot 63]62’
1= __ 0 o [ & " L)f&
26 " ordz oz Y oroz 2 oroz? | oz
1 =
it l =0
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It appears that the displacements and the stresses are only dependent on the derivatives
JdP|¢z and 0Q/dz. Therefore, we may confine ourselves to giving only the integral represen-
tations for these functions:

(5.8) g—‘: = clogr+(1 —Zr)f A2 B(A) [Ko(Ar)cos Az—Ko(A) + AK, (A)logr]dA
0

+ f =2 B(A) [Ar Ky (A)cos Az— AK, (A)]dA+z f A= B(A) Ko(Ar)sin AzdA
0 0

- f AT2C(A)Ky(Ar)cos AzdA+va f A72G(A) [050(:', }.)e“"+% (1- Zz)] dA,
] 0
and

(5.9) T?;Q": f 2=2 B(A) [Ko(Ar)cos Az— Ko(A) + AK, (W) logr]dA

-7 f A-2G(h) [éﬁo(r, Ne ¥+ % (- J.z)]a‘ﬂ..
0

In (5.8) and (5.9) have been introduced the unknown coefficient functions B(4), C(4)
and G(4). Further, a new function @,(r, 4) is used, defined by

(5.10) Do(r, A) = AY,(A)To(Ar)— A1 (2) Yo(4r),

where J, and ¥, are Bessel functions of the first and second kind, respectively.
For the function @,(r, 1) the relation

(5.11) Do(1, 3) = —%.

holds.
We also shall make use of the function @, (r, 1), related to the derivative of @q(r, 1)
with respect to r

1

(5.12) Dy, A) = — -g; Dy(r, 3) = AY (W), (Ar)— ATy (W) Yy (Ar),

that satisfies
(5.13) @d.(1,4) = 0.

The coefficient functions B(1), C(4) and G(4) are assumed to behave in such a way that
the integrals in (5.8) and (5.9) may be differentiated a sufficient number of times under
the integral sign. Formulation for the conditions is postponed.

The representations of dP/dz and dQ[dz are broken up into separate integral forms
in order to obtain simple expressions for the stresses at the boundaries. An elementary
solution is added to (5.8) to meet the boundary condition (2.7).
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We derive from (5.7) to (5.9) the following formulae for the stresses:

GH] i w20

2G o= e J A~2B(A) [ArK (Ar)cos Az — A K, (A)]dA

o0

- f B [Ko(Ar)+ Ar K, (Ar)]cos AzdA+ 712 f A-2C(A)ArK, (Ar)cos JzdA
0

L]

+J C(A)Ko(Ar)cos AzdA+ %! ATYGA) [(1—29)— A2) D (r, A)e~*2dA

43 - Az
= of GA) (1 — A2)Bo(r, Aye*di,

AT QLT QUG S ol

r r?

f A=2B(3) [ArK, (Ar)cos Az — AK, (A)]dA

+(1-29) ﬁf B(O)K,(Ar)cos Azd -% f A1 C(A) K, (Ar)cos Azdh
0

L] o0

o | DI -2)-10,r, Dt —rm [ GAPo(r, DeHd,
0

1 - ]
(5.16) —0 = B(2)[Ar K, (Ar)—2Ky(Ar)]cos AzdA
2G !
—f C(?.)Ko().r)coslzdﬁ.—%f G(A (14 A2)Dy(r, L) e~ *dA,
0 0
and
iz o . 3 .
(5.17) 5G T = —f B(A) ArKy(Ar)sin AzdA+ f C(A) K, (Ar)sinAzdA
6 0

o
nz -
_ch AGA)B,(r, Ne~dA.

6. Boundary conditions at r = 1

The boundary conditions (2.7) require the vanishing of the stresses o, and 7,; atr = 1.
We can derive from (4.2), (4.5), (5.14) and (5.17) formulas for these stresses. Before doing
so, we introduce the function g(4):

(61) e =5 [ Gy 16,
0
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With (6.1) we are able to transform the Laplace integral in (5.14) into a Fourier integral,
using the relation:

(6.2) [ (1=n2)eGpdn = [ A-*g(A)cos Azda.
0 1]

The proof of (6.2) is provided by substituting (6.1) in (6.2) and interchanging the order
of integration.
By means of (6.1), we arrive at the following expressions for the stresses at r = 1:

63) ?15 il )= of i."cosiz{ 2 A KON K (D AG)
— [2(1 %)+ 22 + AK()] AK, (D) B() + [1 + AK() AK, (A C(R)
+ 1g(ﬂ.)}d].+2(l —5) f A K () B()dA+c,

0

and

(6.4)

2G 7,2(1, 2) = f sindz {— ’—; AK(A)K (A A(A)— AK(DK (DB +K, (i)C(ﬁ.)} di,
0

where the function K(4) is defined by

Ko(4)

(6.5) K = O

We can satisfy (2.7) for each value of z by putting equal to zero the coefficient of cos iz
ip (6.3) and of sin Az in (6.4) and by taking — c equal to the last integral of (6.3). This leads
to the following expressions for B(A), C(A) and ¢, formulated in terms of the known func-
tion A(4) and the unknown g(4):

AR

©9) B(2) = — 5 A -KXAAD AD+ . - €,
6 c) = (-NmE@A@D AR+ XD g2,
and
(6.8) ¢ = —2(1-») [ -1 B(A)K,(D)dA.

o

In (6.6) to (6.8) a new function A(4) is introduced, defined by

A

&3 AN = s E—rrg)
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This function is monotonic and lies between zero and one. In fact we have
A

(6.10) A(1)=2—(1—-_-;)+0(12), A=0,
while
(6.11) A(R)—=1, A-o0.

7. Boundary conditions at z = 0

From (4.4), (4.5), (5.16) and (5.17), we find for the total stresses o, and t,. at the
boundary z = 0:

O 50 =5 [ RKG)-irK@AD - [ RKoG)
] ]

— ArK,(Ar)] B(A)dA— f C(A)Ky(Arydi— -;E- f G(A)do(r, X)dA,
0 0
and

(1.2) % 7,4(r, 0) = 0.

Eliminating B(4) and C(4) from (7.1) by means of (6.6) and (6.7), and substituting in
the boundary condition (2.6), we obtain the integral equation:

A(2)

(13) —(1-%m f -Agi{[2+;.K(A)}KO(Ar)—ArK,(Ar)}A(;.)d;{— f R
0 0

x {[2+ AK(A)] Ko(Ar)— Ar Ky (Ar)} g (A)dA— % f G(A)Po(r, Hdi = 0.
0

As will be shown later on, the function G(2) behaves at infinity as

7.4 G(A) - e, A7 +0(47%), A-o0,
while, as follows from (6.1)
(1.5) g(A)—>c;+0(A™), i-oo,

where ¢, is a constant.
As a consequence of (7.4) and (7.5) the integrals

o0

[ 6 ®o(r, a2
0

and

" AW
of KD {24 AK (D)) Ko(Ar)— ArK,(Ar)} g(A)dA,
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taken separately are divergent at r = 1. However, it appears that the integrals taken to-
gether converge, as can easily be seen.

For the solution of the Eq. (7.3), we use the following inversion theorem for the Weber
integral (cf. [4], pp. 86-88): If

(= 4]

(1.6) [ s(y@o(r, Har = 2,
0
then,
.7 AW+ YIS = [ r20) o, Ndr,

1

under the condition that
(7.8) [ 120 rdr < .
1

To be able to apply this theorem we first write (7.3) in another form. The integrals
(cf. [5])

3 _ 2 KX
1.9) ;f rBo(r, Ko(irkr = =10
and
d 2 BPK(h) 4 PKD)
(7.10) f r@o(r, s) ArKy (Ar)dr = — — G+ ) " @ T

are considered as Weber transforms and after inverting them we can derive the relation:

IK
1) R+ KD Ko(hr)— 2K, (i) = f T T },;;3}2 Bo(r, 7)dn.

We introduce (7.11) into (7.3) and obtain:

7.12) —-(l—v)mf igﬁ{[2+M(A)]Ko(ﬂ.r)—hm(z,—)}/x(z)dz
0

1
_J A(Z)g(’)“ G G O

oo

f G(A)Do(r, dh = 0.
0

mla
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The order of integration in the second term of (7.12) may be interchanged for r > 1,
whereby (7.12) takes the form:

(113)  —(1-»)m f ﬁgl{[2+AK(A)]Ko(xr)—Arxl(zr)}A(A)dz
0

J n 4 2 © Ame() B
+J. Dy (r, 1)=—'§'GU»)+'; Jf(;.)-{-]"f(ﬂ) 3 (12"'7?2)2 d?},d; =0.

We note that in the limit for r—1 the integrals in (7.13) converge, so that we can
consider (7.13) as an integral equation in the whole interval. To proceed, we multiply
this equation by r@y(r, s) and integrate over r from 1 to infinity. We again apply Weber’s
inversion theorem and find:

iz s : F_s A(A)g(A)dA
014 TE Ui+ rEI6E = of T A

0 2
0

Substituting (6.1) in (7.14) and interchanging the order of integration, we arrive at
the following definite form of the integral equation for the unknown G(s):

2 5 B 3 g s3A3A(A) |
@15 2 6+ YHEI66) = of nG(n){ .,f T e T A

T

v

s3 4
(1=9)m of ey AVKDARDEL.

8. Discussion of the integral equation (7.15)

We may consider our boundary value problem (2.3) to (2.7) to be solved if we succeed
to obtain a solution for the Fredholm Eq. (7.15) that leads to convergent integral represen-
tations for the stresses. Because of the complicated character of this equation, an analytic
solution is out of the question. However, a numerical solution can only be obtained if we
can find some general data as to the behaviour of the function G(s). To this end, we write
(7.15) in the form:

o

8.1) G(s) = nf R(, 5)G(n)dn+a(s) D(s),
where
8.2) ’(s) = 2 '

7 S [J3(s)+Yis)’
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3 s3A3
R(n, s) = “(5)73! (F+ 222 (P + 22)? A(A)da,

(8.2)

[cont.]

D(s) = 5 m(1—7) Df '(?—ijﬁ AWK, (A A(DdA.

In the neighbourhood of s = 0, these functions behave as follows:

(8.3) a(s) = %+0(s’), D(s) = -?—g—mA(O)+0(s),

while it can easily be seen that the integral in (8.1) tends to zero. We conclude that
(8.4) )= -} mA(0)+0(s).

If s tends to infinity we have:

(8.5) a(s) = ;tg_ % +0(s~?),

from which we derive:
(8.6) a(s)D(s) = 0(s~2).
From this result we conclude that the function G(s) goes to zero as

@®7) G(s) <L +0(52),

because only in this case we have

(8.8) f R, $)G(n)dn — c—; +0(s~2).
0

From the definition (6.1) we find for g(1)

®9) o, -i_ A+0(A3), A0,

(8.10) gA)—=e,+0(A™Y), A-oo.

With the data (8.4) and (8.7) we were able to solve the integral equation (8.1) on the
computer. We note that ¢; was an unknown and had to be determined in the course
of the process.

For the numerical calculations we have rewritten (8.1) in the form:

8.11) G(s) = 2(s)+a(s)D(s)
with

€10 20 = [ RG.9Gd = 520 [ G ADeL
0 0
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from (8.2) and (6. 1) We now write (6.1) as

::o

4 .
4 A3 4 )
S f GZtn7)? '?G(n)d%—;—'zp., N),
0
with

a 73 n 1 N NAi
@14  Z(AN) = J TR " = pghitn (T) T2NTERY

In (8.13) and (8.14) we have introduced the number N, such that

(8.15) N> 1.
With
(8.16) M>1,

we write for Q(s):

B17)  Q6)=Ta) f (2+ 157 AW+ G (e, f (2_,_;{2)2 di

a(s)f G +22)2 A(Z){ f (22 2)2 nG‘(n)dﬂ+iZ(2 N)}d;t

7 B 5323
+ 5 a)es Zs, M) = as) J G(n){qoj o A(;t)da}dq

M
+cy K(S)f (s—z::—W A(A)Z(/‘, N)dj.'i' —E—Ci a(S)Z(S, M)
0

N
= f Ru(n, $)G(m)dn+c, rx(s)[V(sH%Z(s, M)],
0

with

8.18 i £

(8.18) Ru(, s) = a(s)7 J Gy A0
and

M

(8.19) V(s) = f o 21)2 AR)Z (A, N)da.
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We have now reduced the integral equation (8.1) to an integral equation with finite
bounds:

N
(8.20) G(s) = [ Ruln, )G@n)dn+Es),
with
(8.21) E(s) = a(s) [D(s)+ ¢ =V(s)+~3‘— Z(s, M)”.

We note that the contribution of E(s) to G(s) can not be neglected. In our derivation
we have used the asymptotic formulas (8.7) and (8.10) and as a consequence our result
depends on the choice of N and M. Considering our G(s) found from (8.20) as a first
approximation, we may improve our result by calculating further terms in the asymptotic
expansions. However, we cannot get rid of truncation errors due to the infinite bound
in (8.1).

The constant ¢, in (8.7) is found from (8.20) by continuity considerations. In fact,
we have in this process:

N
(8.22) G(N) = [ Ru(n, N)G(r)dn+E(N),
0

determining c,
We can give an explicit expression for ¢, by writing (6.2) in the form:

"

) e
(8.23) [G(A)e 4 Lcoszz]da =z | AG(AeHdA.

If we take the limit z— 0 in (8.23) we arrive at:

(8.24) ¢ = f {G(A)«« E%Q dj,
0
for which derivation we have used the asymptotic expression (8.7). For our numerical
results the Eq. (8.24) is of great value.
From the behaviour of the functions G(4) and g(2) at -0 and A- o0, according to
(8.4), (8.7), (8.9) and (8.10), follow the limit values of B(A) and C(2) by (6.6) and (6.7).
We have

B(3) =0(7%), -0,

8.2
= AK((A)B(2) =0(1), A-c0,

(8.26) C(A) = 0(A*logh), 4-0,
K,(HC(A) =0(1), A-oo.

From the results of this paragraph it can easily be seen that the relevant integrals contain-
ing the coefficient functions do converge and may be differentiated under the integral sign.
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9, The stresses

From (4.2) to (4.5) and (5.14) to (5.17) and by means of (6.6) to (6.9), the following
relations for the stresses can be deduced:

Ko(4r)

©.1n 2G o (r,z) = —m(l —y)fA(l) A(d) {[I—ZK(X)]

A

+[Ar2 = A—K(A) + AK2(D)] K‘—gr)-} cos AzdA— f TANS ![1 — AK(A)] Ko (Ar)
0 1

+[2(1 =)+ A2r2— AK(R)] K‘—;f’l} cos AzdA+ % f -G—gﬂ [(1—-2»)

— 410y (r, Do f G(A) (1 - A2)Bo(r, Aye~=dA,

©9.2) -1 oXr, 2) = —m(1—v) f A(A)A(Z){[H}.‘ 2K - K°(’1’)

A(4)

‘Amg(l) !(1 — )] Ko(4r)

+IK()+ A— AK* ()] K‘(b)}coslzdl+ f
0

K, (4r) x [ G(4)
+[2(1-9)— AK(A)] ;= }cosﬂ.zdl-— i?of —2-—[(1—2@
—Az) D, (r, Z)e"i'd),—vnf G(D)Do(r, Ne~i2di,
"]

03 g ot = —m-» [ ABLD 11k (in
0

A(2)

TR 5 EP(R+ AR Ko(ir)

— K, (Ar)} cos AzdA— f

— rK,(Ar)} cos Azdd— = f G(A) (1 +42) Bo(r, A)e~2dA,
and

©.4) -2157,,(.-,2)= e =) f ﬂ’pf—“)_{Arxo(;u)—AK(A)chzr)}sinAsz
0

YA : ;
- Hé &) g(%) {ArKo(J.r)—AK().)KI(Ar)}smAde—-g—of 12G(HPy(r, Need.
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It can be shown that the stresses satisfy the boundary conditions for z =0, r > 1
and r = 1, z > 0. In the cornerpoint z = 0, r = 1, the stress component 7,; also meets
these conditions.

If we approach the cornerpoint along z = 0 from r > 1, the stress component o, also
satisfies the prescribed boundary condition. A similar behaviour is shown by the stress
component o,, provided we approach the cornerpoint along r = 1 from z > 0. There
is a jump in these stresses if the cornerpoint is reached along any other path. The values
of these jumps are proportional to c; .

10. Numerical results
We have solved the integral equation (7.15) for the special case
_ 0
(10.1) q(2) = A+

where Q is the total heat input:

(10.2) 0= [ q@d.
0

For this choice (3.5) gives

(10.3) AA) = x%

from which follows by (8.4)

(10.4) G(0) = ;’ﬁ .

In Fig. 1 is shown the graph of G(s). For Poisson’s ratio » the value 0.3 is taken.

érgaois)

10
09
08
07r
06
05
04T
03
02r
01

0 T 7 3 4 5 6 7 8 8 0 N 123 L% 618 _Ls
F1G. 1. Solution of integral Eq. (7.15) for g(z) according to (10.1) and » = 0.3.
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The most interesting stress component is the circumferential stress o, especially along
the pipe. We have from (9.2):

(10.5) %.:,(1,@: ——"%?f[u%(zmzmn-xm)
0

—AK“(Z)]A(J)KI(Z)cosiszJr f g(%g(_b [AK?(A)—2vK(%)
0

— Alcos AzdA+ f G(A) [(1 +2v)— Az]e~*=dA.
0

Fic. 2. Circumferential stresses along the pipe as a function of z.

In Fig. 2, (E?g—:?lz—)) is represented as a function of z. We see from this figure that

the stress concentration at the pointr = 1,z =0

fw(l'o) e mQ
(10.6) G 0.993 T ™

To show the influence of the free surface z = 0 on the circumferential stress o, we
have also calculated this stress for the infinite body with a cylindrical hole under the same,
symmetrical heat loading. The solution of this problem is obtained in a trivial way from
our more general equations. In Fig. 2 we have plotted this stress by a dotted line.

11. Extension of the problem

We have discussed a special problem associated with the temperature field (3.3), since
a general discussion is impossible. However, on the same lines, many temperature fields
may be treated for the region (0, o) x (1, c0). The following possibilities may be noted:
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1. The loading need not to be rotationally symmetric. We may expand the boundary
values in Fourier series with respect to ¢. Each of the terms is treated similarly. Weber’s
formulae have to be adapted correspondingly.

2. We may prescribe stresses at the bounding surfaces. Only the residual problem will
change accordingly.

3. We may prescribe zero temperature at z = 0. In this case we use a sine integral
instead of (3.3). The residual problem can be treated by taking sine integrals in (5.8) and
(5.9).

4, Other temperature fields, corresponding to mixed boundary value problems, may
be considered by expanding in the associated Fourier transform and formulating the sur-
face bounding values by the appropriate Weber transforms.

5. We may even admit some classes of body forces.

12. The boundary values

In the problem under consideration, the heat flow at r = 1 was prescribed and we
were especially concerned with the stress field that occurs in the solid body. However, in
many problems of practical interest the heat flow at r = 1 is not given a priori, but has to
be determined, whether by calculation or by measurement. In such a problem, we consider
the heat-transfer problem of a hot fluid, flowing in the pipe z > 0, r < 1. We denote the
temperature increment by  and assume that it is governed by the equation

o 1 06 20 5 00
(12.1) i +?E-——ﬁ---(l—r )—a—z—-O, r<l,
where v is the mean velocity and f is the coefficient of temperature conductivity of the
fluid. The coeflicient g satisfies

=

(12.2) g= e

where x, is the coefficient of internal heat conductivity, ¢ is the specific heat and o the
density. The boundary conditions for (12.1) are:

(12.3) =f0, for z=0,r<l,

(12.4) 0=f(z) for r=1,z>0.

In this problem, f(z) of (12.4) has to be identified with [ A(4)Ko(A)cosAzdA and is an
0

unknown function. We further have the continuity of the heat flow:

(12.5) 5 =% atr=1,z>0.
To simplify the analysis we suppose 0, to be constant. We transform (12.1) into an equation
for the Laplace transform 6, defined by

a0

(12.6) b= [ ez,

0

5=
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by multiplying it by e~** and integrating over z from zero to infinity. We obtain:

% 18 20k, .5 2, ,

The solution of (12.7) can be written:
(12.8) b = 9— +D(A)p(A, r),

where (4, r) is defined as the solution of

02 19 204
s e =0

which is bounded at r = 0 and is normalized according to
(12.10) p@A, 1) =1,
while D(2) is a factor which has to be determined.

If we represent the function f(z) in the form! A(A)Ko(A)cos AzdA, where A(4) is

now an unknown function, and apply Laplace’s transform, the boundary condition (12.4)
becomes:

iy ot f _du

(1211) THIW =1 ] AWK 7
Repeating this procedure we find from (12.5):

ap(a, 1 d,

(12.12) by XL _ f AWK ) 5

Eliminating D(4) from (12.11) and (12.12) yields the integral equation for A(u):

op(h, l){ J du }
12.13) % L34 | A Ko(w) o
(12.13) = of WKo) o

d dp(d, 1) 6
+l J AGK () Frr = Lcbd
With
(12.14) ®[x, = p,

this equation takes the form:

(12.15) 22 A(u) Ko (1) =3v(ﬂ., 1) —pj(-(‘u),dp —0, 61;;(62!., 1) ,

J T or
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which can be written as an integral equation for f(z) from (3.7)
(12.16) A ff(z)S(z, Adz = 0, 6-'&(;;:’—1),
g

where S(z, A) has been defined by

cos uz {61;1(1, 1)

2 _
(12.17)  S(z, 4 = ";f FLIR S e —PKU‘)}JP
0

1 oY) 2 [ Kwoosuz
3T e Tw) A
For numerical purposes, (12.15) seems to be_preferab]e to (12.16).

In (12.15) and (12.17) an abbreviation K(u) has been introduced, defined by

(12.18) K(u) = —pﬁ—;gj}—.
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