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On nonlocal continuum theories of elasticity

D. ROGULA (WARSZAWA)

THis PAPER is concerned with examining various possible approaches to nonlocal linear theory
of elasticity of continuous media. As the governing equations of the theory an equation of the
form

Lu=f

is assumed, where u and f are some tempered distributions and L is a linear operator. Apart
from some general assumptions, no particular form of L is required. For homogeneous media,
a classification of the operators L is given in terms of singular order which is either real number,
or +co or —oo, The fundamental solution is discussed and a theorem relating its singularity
to the operator L is proved. The energy and interaction of point defects, modelled by force
centers is analysed for various L.

Praca dotyczy badania rozmaitych form nielokalnej liniowej teorii osrodkéw ciaglych. Przyijeto
podstawowe réwnanie w postaci

Lu=f,

gdzie u i f sa pewnymi dystrybucjami temperowanymi, a L jest operatorem liniowym. Operator
ten spelnia pewne ogolne zalozenia, nie zada si¢ jednak jakiej§ jego szczegdlnej postaci. Dla
osrodkow jednorodnych podano klasyfikacje mozliwych operator6w L wprowadzajac pojecie
rzedu osobliwosci operatora; rzad osobliwosci wyraza sig badz liczba rzeczywista, badz tez
réowna si¢ +00 lub —o0. Przedyskutowano rozwiazanie podstawowe i udowodniono twierdze-
nie wigZzace osobliwoé¢ tego rozwiazania z rzedem osobliwosci operatora L. Dla réinych
operator6w L przeanalizowano energi¢ i oddzialywanie defektoéw punktowych, modelowanych
przy pomocy odpowiednich centréw sit.

B paGote MccleAy0TCA pasiiuHble GopMbI HEMOKAILHON TEOPHH CILTOMHBIX cpefd. OcHoBHOE
ypaBHEHHEe TIPDHHATO B BHJE

Lu=f

TAe u H f ABIAOTCA HEKOTOPEIMH 0000IeHHBIMA DYHKLMAMH MeJICHHOT'O POCTa, a L ABAeTcA
JIMHEHHBIM ONepaTopoM. JTOT ONEPaTOp YAOBJIETBOPAET HEKOTOPHIM OGLIHMM IPeATOTOIKEHHAM,
He TpebyeTcs, ofHaKo, KaKoii-nubo ero cnemmduueckoii dopmel. Jana xinaccudukanma no-
IyCTHMBIX OTEepaTopoB L 1A OMHOPOAHbIX Cpell, OCHOBaHHAA HA BBECHUM MOHATHA NOPAMKA
ocoDeHHOCTH oNeparopa; MOPAJOK OCODEHHOCTH ABIAeTcA MO0 AeMCTBHTENLHBIM YMCIIOM,
mbo paBeH +00 WK —oco. OBCY:IEHO OCHOBHOE pellleHHe M JI0Ka3aHa Teopema, CBA3bIBA-
1011151 0COGEHHOCTR 3TOTO pelleHHA ¢ HopAaKoM ocobeHHocTH oneparopa L. JiA pasmMuHbIX
omepatopoB L TpoM3BefleH aHATHM3 HEPTHH M BaaumofedcTBHA ToueuHkix Aeddexros, mo-
JIETHPYEMBIX C TIOMOIIbI0 COOTBETCTBYIOLMX LEHTPOB CHIL.

1. Introduction — the integral theory

ONE MAY hope to achieve a pretty fair description of effects arising from nonlocality of
atomic interactions in real bodies without giving up the idea of a continuous medium,
if one chooses an appropriate integral equation as a governing equation of the theory.
This is the way in which the nonlocal theory of elasticity is usually formulated (KRONER &
DATTA, 1966, KRONER, 1967).

g
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The governing equation can, in this case, be written as a linear integral relation between
external forces fi(x) and displacements u;(x):

(1.1) [ @0, x)uxya2x = fi),

with an appropriate kernel @;;(x, x’) which is a second order tensor function depending
on two points x and x’. In the important case of a homogeneous medium, the kernel @;;
depends on the difference x—x' only,

(1.2) Qij(x, x') = (D;j(x—x').

Alternatively, instead of (I.1) we can postulate an integral stress-strain relation

(I .3) U;,-(x) = fC;J-“(x—x’)uk.;(x')d:‘x’,
subsequently making use of equation
(1.4) oy, +fi = 0.

In this formulation, we have to choose the kernel Cjj,(x—x') which is a fourth order
tensor.

Roughly speaking, under additional conditions which must be incorporated into the
theory, in order to make it sensible, these two formulations are equivalent. The disadvantage
of the Eq. (1.3) is that it makes use of the concept of the stress tensor which, for long
range interactions, has rather vague physical meaning, if any. The disadvantage of the Eq.
(1.1), on the other hand, is that it makes no sense for dislocated bodies, when the displace-
ment field is multi-valued. The last topic we shall discuss separately.

The use of the integral continuum theory may be justified by the following arguments:

a. let a typical interatomic distance be a4, and a typical range of interatomic forces
in a given material be /. The idea of a continuous medium may be expected to work at
distances A which are much greater than a,

(1.5 A>a,
and validity of classical elasticity should be restricted to distances much greater than /,

(1.6) A L
Thus, in the case
(1.7) 1> a,

there can exist an intermediate range of distances at which the idea of a continuous medium

is applicable but classical elasticity is not.
b. The general form of the Eq. (1.1) is quite similar to that of the fundamental equation

of the lattice theory. The latter can be written as
(18) E gﬁij(xm’ xm') uj(xm') = ﬁ(xm)s

where X, x,, denote the equilibrium positions of the corresponding atoms, (f’ij(x,,, Xp)
represent the corresponding force constants, and ﬁ(x,.,) is an external force acting on the
m-th atom.
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This similarity leads one to expect a close relation between the force constants and
the kernel of the Eq. (1.1). Even more, provided that the functions involved are sufficiently
smooth on the atomic scale, one may expect to estimate the kernel @;;(x, x’) in terms
of force constants and, in this way, to derive the integral continuum theory from the
lattice theory.

c. Provided that the displacement field u;(x’) is sufficiently smooth it can be developed
into Taylor’s series:

(1.9) u;(x') = ui(x)+ 2 —11--6"uj(x)- (x'—x)*+ the remainder,
1<iulsN

where

(1.10) pl =t pa! sl

If for any reason the terms of orders higher than », with n € N, are not important, they
can be dropped. Substitution of the remaining terms into the Eq. (1.1) yields a differential
equation of the form

(1.11) a1, 0"u;(x) = fi(x),
the coefficients being equal to
1
“ .12) Qijiy = _;.;!_ f Q}U(x, x') (x’ -x)"d’x'.

This seems to justify the view that strain gradient theory can be looked upon as an approxi-
mation to the integral continuum theory.

However, as we shall see later, more thorough mathematical discussion does not complete-
ly support the above views. The range of applicability of the integral continuum theory
is a more delicate matter and its relation to crystal lattice theory, on the one hand, and
to strain gradient theory, on the other, will show themselves to be more complicated.

We shall begin from discussion of an example which has been given by BARNETT (1969).
It will illustrate some difficulties which may be encountered in the integral continuum
theory.

2. A troublesome integral equation

Consider an integral equation of the form (1.1) with the kernel
(2.1) D;i(x, X') = Citjm 0, 0 P(x—X'),
where Cyjn is the classical isotropic tensor,
(2.2) Citim = (0:j01m+ Oim0;1)+ 46110,
and the function @(x—x') is given by

Y (20 R ——
o-f e

We can also put this equation in the form (1.3) with
(2.9 Ciju(x, X') = ¢;juP(x—x).
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For this form of @, the parameter S~ can be interpreted as the range of interactions.
The numerical factor in (2.3) is chosen so that when f~! — 0, then

2.5) D(x—x') » 6D(x—-X),

and the corresponding equations become purely classical.
Now, let us try to find the fundamental solution G;;(x):

(2.6) D;(x—x)G(x') = 0(x) bjp-
Making use of the Fourier transformation, we obtain the equation
@7 B,y (k) Gn(K) = B

for the corresponding Fourier transforms. The Fourier transform of @; can easily be
calculated,

@3) By)= [ dxe-xPy(x) = [uk?0y+ (h+p)kik,Je~140%,
and from the Eq. (2.7), we obtain:

& = 1 & kikj l k;k_, 2;4}52
(2-9) Gij(k) _[?(kz - K+ )+ 4:-+2ﬁ * ¢¥ .

For 1/8 = 0, this is the classical result. Otherwise, however, G‘\U(k) has an exponential
growth at infinity and cannot be retransformed in a usual way. Therefore, we have to
conclude that, in the example considered, a Fourier-transformable fundamental solution
does not exist.

From the mathematical point of view, the meaning of the last statement is not quite
clear. It can be made precise in terms of tempered distributions. The tempered distributions
are defined (see e.g. HORMANDER, 1964) as continuous linear forms on the space S which
consists of infinitely differentiable functions @(x) such that

(2.10) sup|x*0”¢| < o

for any two multi-indices u, ». It can easily be proved that, if ¢ € § and « is a tempered
distribution, then the convolution of ¢ and  exists, and is again a tempered distribution.
Moreover, the Fourier transform of this convolution equals the product of the Fourier
transforms ¢ and #, and is a tempered distribution, too. Thus, by observing that the kernel
defined by the Egs. (2.1)-(2.3) belongs to the space S, we see that the Eq. (2.1) becomes
meaningful in the sense of convolution for any u; which is a tempered distribution. In this
case, the Fourier transformation method we have just applied to solve this equation is
entirely justified. The result (2.9), being itself no tempered distribution, cannot be retrans-
formed into a tempered distribution. Therefore, the rigorous conclusion is that there is no
tempered distribution which, in the example considered, could serve as a fundamental
solution.

Intuitively, the class of tempered distributions consists of those distributions which
do not grow too fast at infinity. Thus, even if we were able to find a solution in the class
of all distributions, it would not be physically acceptable because of its behaviour at
infinity.
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Non-existence of a good fundamental solution, being a disadvantage from the point
of view of calculational efficiency of the theory, might however be thought to be due to
too singular a character of the J-type forces. For smooth forces, the theory might still be
expected to work and yield smooth solutions.

To see that this is not exactly the case, let us consider an example of forces

where
3
2.12) Y= ( f‘:) e—air?
V=

is a function similar to @ but with a different parameter «. These forces are central, with
no resultant force or moment, and their magnitude as a function of the distance r is

2.13) f= 2a=re—ﬂr’(i_)3.
Va

The force field (2.11) is infinitely differentiable and, if «=! > a, describes perfectly smooth
distribution of forces on the atomic scale.
Now, applying the Fourier transformation, instead of the Eq. (2.7) we obtain:

(2.19) By Wity (k) = — ik P (K),
the solution of which is

= — ek p—k[dy?
(2.15) u T+ B e N,
where
l 1 1
(2.16) ‘;—2'- = -‘&'-{ o, 'Ei-.

If « < §—i.e., the forces are diffused over a distance greater than the range of interac-
tions — then y? > 0, and there exists a smooth solution which, by retransformation
of (2.15), is equal to

1 1 erf (yr)

(2.17) ui(x) = =& "“ﬁ_‘i;;a; b

where erf denotes the corresponding error function (see e.g., LUKE, 1969). If o = £, there
exists a singular solution

1 1 P 1
T Ao
which coincides with the classical solution corresponding to u(x) = ().

In the case of a > f, there is no solution in the class of tempered distributions. There
exists, in fact, a solution given by the Eq. (2.17) with imaginary y derived from (2.16).
It can be checked by direct computation, the integral being, provided that «~! # 0, very
well convergent. This solution, however, grows up exponentially at infinity.

This is not what can be expected on physical grounds. Although a good solution exists
when the forces are sufficiently diffused, the necessary degree of diffusion is determined

(2.18) ui(x) =
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by the range of interactions instead of by the interatomic distance. The range f~! can in
principle be made very large so that the inequalities

(2.19) a<at<p

can be satisfied very well. In spite of that, no acceptable solution exists in this case.

What has been said in this paragraph refers directly to a particular case of an integral
equation. Nevertheless, it shows that in formulating nonlocal continuum theories, due
attention to the mathematical side of the problem is necessary.

3. Nonlocal fundamental equations

Now, we shall try to investigate nonlocal theories of continuous elastic media in a slightly
more systematic way. The very first question we meet here concerns the kind of governing
equation we should choose. The almost automatic answer that it is an integral equation
is in many respects not satisfactory. From the mathematical point of view, such an answer
tells us almost nothing, unless we specify in what sense the integrals involved are to be
understood. Classical integrals are usually too restrictive, since many singular functions
of physical interest cannot be integrated in a classical way. Even if we choose some gener-
alized notion of the integral, we cannot guarantee that a non-differential equation, if
acceptable on physical grounds, has to be an integral one or, at least, can be reasonably
written by means of such integrals.

The whole question is not unimportant, because the governing equation can forejudge
physically important features of its solutions. Bearing this in mind, we shall discuss a wide
class of linear governing equations which, apart from restrictions of direct physical meaning,
we submit to some methematical assumptions of rather general character only.

More specifically, we are going to investigate equations of the form

(3.1) Lu=f

or, in index notation,

3.1 Lij“i =fj,

where u and f are the displacement and force fields, respectively, and L is a certain linear
operator. Where the fields u and f are concerned we shall consider them tempered distri-
butions on the three-dimensional Euclidean space. The operator L will, as a rule, be defined
for a certain class U of tempered distributions, not necessarily for all of them. This class
will depend on L, so we do not specify it in advance.

The basic assumptions on L and U are the following:

a. The operator L is continuous on U. The continuity we assume here is a sequential
one in the following sense: whenever a sequence u,, u,, us, ... U is convergent to u € U,

(3.2) u,u,,u3,...—=>U,
then
(3‘3) fl. L] fz: f:h e e 4 f’
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the arrows indicating the convergence in the space of distributions. The symbols f, ,f;
f,, f5, ... denote the force fields that correspond to the displacement fields u, u;, u,, u,, ...
by the Eq. (3.1).

b. The medium is homogeneous. In order to express precisely the homogeneity assump-
tion, we make use of the translation operator T, whose action on an arbitrary field con-
sists in translating it by a constant vector ¢, e.g.,

(3.4) Teu(x) = u(x—c).

We say that the medium is homogeneous if the operator L commutes with the translation
operators,

(3.5) LT. = T.L,

for an arbitrary ¢. Thus, the above implies that if u € U, then Tcu e U.

For the sake of simplicity, we assume also that the medium is centrosymmetric.

This assumption can be expressed in a form similar to (3.5) by writing the inversion
operator in place of T.

¢) The class U, on which the operator L is defined, contains all the functions of the
form

(3.6) u(x) = Reaelkx

with arbitrary real wave vectors k and complex amplitudes a.

The above assumptions determine the general form of the operator L. The fields u and f
are Fourier-transformable into some tempered distributions # and f, so that the Eq. (3.1)
can be equivalently written in the form

G.7) Li =1,

where L is another linear operator. The operators L and L uniquely determine each other.
On the other hand, the homogeneity assumption implies that, for u given by the Eq.
(3.6), Lu must be of the form:

(3.8) Lu = Rebelkx
with another amplitude 4. This amplitude, in turn, must depend on a linearly, so that
(3.9) b = Ay;(K)a;,

the matrix A;;, together with its dependence on k, being completely determined by the
operator L.

Now, we make use of continuity condition. This we do in three steps:

1. Consider a sequence k,, k,, k;, ... which converges to a certain wave vector k.
Then

(3.10) eflix gikax pikox 5 olkx,
and, because of the continuity of L,
@3.11) Aij(Kky), Aijkz), Ai(K3), ... = Ai;(K).

Thus the matrix A;; is a continuous function of k.
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2. Consider u(x) of the form

(3.12) u(x) = (2_;)-, f d3k e ii(k),

where (k) is a continuous function of bounded support in the k space.

In this case, u(x) is given by a Riemann integral which, by definition, is a limit of
finite sums. These sums are finite linear combinations of e*m* with different k,’s and
converge to u(x). Hence, if u(x) € U, then, by the continuity of L,

(3.13) (L), = AR (k) ,
— i.e., the operator 1 acts as multiplication by the matrix function 4;;(k).

It follows, in particular, that all the fields u whose Fourier transform u are continuous
and of bounded support can be included into U, which we assume to be done.

3. Consider an arbitrary u = U. Since any distrubution is a limit of a sequence of con-
tinuous functions with compact supports, so is 4, the Fourier transform of u. Therefore,
again by the continuity of L, the extension of this operator from the functions specified
in 2 onto U is unique.

Hence we arrive at the conclusion that the matrix function A;;(k) determines the oper-
ator L on U uniquely.

Thus, under the assumptions a, b and c, the general form of the Eq. (3.7) is

(3.14) A8 = fi(J),
where /;;(k) has to be a continuous function of k.

The distributions u(k) and i’(k), being the Fourier transforms of real distributions
u(x) and f(x), must satisty the following relations:

(3.15) i*(k) = i(—k), f* (k) = f(—K).
Hence

(3.16) Afk) = Ay;(—k)
and, because of central symmetry of the medium,

(3-17) Au‘(*k) = A,-_;(k).

Thus A;;(k) is a real and even function of k.

4. Energy and stability

The expression for the total deformation energy of a nonlocal elastic medium can be
derived from the form of the governing equation. The energy corresponding to displace-
ments u(x) produced by forces f(x) equals

@.1) W=—l—-fd3xuf=—l-fdquu,
2 2
which follows from integrating the elementary work

@2) oW = [ axouf,
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making use of linearity of the Eq. (1.1). In Fourier representation, the expression (4.1)
can be written as

4.3) W = 2 (23:)3 fd3k *(k) A (k) (k).
Now, consider a cyclic deformation process of the form
u® (x)
AN
P (x) « 0

with some displacement fields u®’(x), u*’(x) and the corresponding force fields f’(x),
f®(x). The medium being elastic, the work done in this process has to be zero:

(4.4) 0= Wo+Wi+Wy = % f PxP D —uD D),

On transforming this relation to Fourier representation and making use of the Eq. (3.14),
we obftain:

@3) [ ki) 14,00 - A Wi (k) = 0

Let us note that the expression (4.3) is well defined for sufficiently many u(k): at least
for all the continuous functions of bounded support. Therefore, from the relation (4.5)
it follows that

(4.6) A;j(k) = AK(K).
Taking into account the Egs. (3.16) and (3.17), we have then
4.7) Aij(k) = Aij(‘k) = ﬁ(k) =Aij(k)-

Moreover, we assume the medium to be stable. According to KUNIN (1968), the stabil-
ity condition requires the roots w?(k), w?(k), w%(k) of the characteristic equation

4.8) det(4;;(k)—w? ;) = 0

to be positive for any real k # 0. Thus the matrix A;;(k) must be positive definite for
k # 0 and, in particular,

4.9) det(4;;(k)) #0 for k#0.

So far we have made no assumptions concerning the relation between nonlocal and
classical elasticity. We assume that the Eq. (3.14) agrees with its classical counterpart in
the limit k — 0. Thus

(4.10) A,-j(k) = C,‘U,,,k,‘k,.,-l-()(kz) when k- 0.
This completes the list of assumptions concerning the operator L.

5. The singular order of the operator L

Let p be a real number. We define the following quantity

(.1 1Ll = (23)3 fd’k{l+k’)' 2r Ak),
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where

(5:2) trA(k) = Ay, (k) + A2, (K) + 453 (k) = 0f (k) +03('k)+oik) > 0.

From the definition (5.1) it follows immediately that

(53) Ly < ILll, for p' > p.

Therefore, the set of numbers p, for which the inequality

(5.4) LI, < o

holds, can conveniently be characterized by the quantity s(L) defined as

(5.5) s(L) = inf p: ||L]], < .

With that we understand that, if |[L||, < co for all real p, then s(L) = —c0. In the case

in which [|L|], = oo for all real p, we define s(L) = +o0. The quantity s(L) will be called
the singular order of the operator L.
If s(L) = 5, where s is finite, then either

=ow for p<sy,
59 ”L”’{ <ow for p>s,
or

=ow for p<s,
G0 HL“’: <w for p=s.

If we want to stress the difference, we shall say that the singular order of the operator
L is “exactly s” in the first case, and “almost s” in the second.
By definition,

(5.8) almost s < exactly s.
One can easily observe that, if L = L'+ L" and s(L') > s(L"), then
(5.9) s(L) = s(L").

If L is a (positive definite) differential operator of order m, then

(5.10) s(L) = exactly m+3.

Hence the singular order can be regarded as a generalization of the order of differential
operators, shifted by 3 for convenience.

6. The convolution equations

Consider first the case in which the matrix function is a tempered distribution (i.e. all
its components are tempered distributions). Then we have

(6.1) (k) = Dy(K),

where &55 j(k) is the Fourier transform of a tempered distribution ®;;(x).
The fundamental equation (3.1') can now be written in the convolution form

(6.2) Di*u; = F,
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with the kernel @,;(x). The class u;(x), for which this equation is defined, still depends on
a particular form of @;;. In any case, we consider the Eq. (6.2) equivalent to the Eq. (3.14)
with A;;(k) given by (6.1).

We have the following

THEOREM 6.1. In order that A;;(k) be a tempered distribution it is necessary and sufficient
that

(6.3) s(L) < + .

Proof. If 4;;(k) is a tempered distribution, then, by (5.2), trA(k) is a positive tem-
pered distribution. According to GELFAND and VILENKIN (1964), such a distribution is
given by a tempered measure, which implies inequality (5.4) for a certain real p. In conse-
quence, we have inequality (6.3). To prove the converse, let us note that, the matrix A,;(k)
being at least positive semi-definite for all k, the inequality

(6.4) 145 ®)] < 2tr A(k)

holds for any pair of indices i, j. Thus, if the condition (6.3) is satisfied, then there exists
a real p such that

6.5) [ k(1 +5)77214,0)| < 21ILI, <

which shows that 4;;(k) is a tempered distribution.

The singular order of a convolution equation provides a measure of the singularity of
the kernel @;;. The following theorems reveal the corresponding relation.

THEOREM 6.2. The kernel @;;(x) is a continuous function, if and only if,

(6.6) s(L) < almost 0.

Proof. If the inequality (6.6) is satisfied, then the inequality (6.5) holds for p = 0 —
i.e. the function A;;(k) is summable. By the Rieman-Lebesque theorem, the kernel @;;(x),
which is the Fourier transform of A;;(k), is continuous. Conversely, if @;;(x) is a contin-
uous function, then

6.7) tr® = @,;(X)+ P, (x) + P33(x)

is a positive definite continuous function and, according to Bochner’s theorem (GELFAND
and VILENKIN, 1964), its Fourrier transform is given by a finite measure.
This implies the inequality (5.4) for p = 0 and, in consequence, the condition (6.6).
THEOREM 6.3. If

(6.8) s(L) < almost —m,

where m is a positive integer, then @ (x) has continwous derivatives up to order m.
Proof. Condition (6.8) implies the inequality (6.5) for p = —m. Taking into ac-
count the inequality

(6.9) k| < (1+K*)™  for  |u| = m,

we conclude that the derivatives ¢ @;;(x) with |g| < m have summable Fourier transforms,
and therefore, by the Riemann-Lebesgue theorem, are continuous.
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Remark. For even integers m, the theorem converse to (6.3) is true. This can be
shown by considering the kernel

(6.10) = (1=A)"*D,;,
which defines an admissible operator L’ with the matrix Aj;(k) given by
6.11) Ay(®) = (1K) 4,8

If the derivatives 8" @;; are continuous for || < m, then the kernel @}; is continuous and,
by Theorem 6.2,

(6.12) s(L) = s(L")—m < almost —m.
From this remark and from Theorem 6.3, the following theorem follows immediately:
THEOREM 6.4. The kernel ®;;(x) is an infinitely differentiable function, if and only if,
(6.13) s(L) = —o0.

Moreover, we have

THEOREM 6.5. If tr®(x) is a bounded function in a certain neighbourhood of x = 0,
then the kernel @;;(X) is a continuous function everywhere.

Proof. If the assumption of the theorem is satisfied, then tr@(x) can be represented
in the form:

(6.14) trd = f,+/,
where f; is a bounded function,

(6.15) lfix) < C

and f; is a tempered distribution such that

(6.16) fx)=0 for [x|<e,

where C and & are certain positive constants. Let ¢, denote the function defined by the
Eq. (2.12) for a certain value of the parameter «. Then

6.17) [(fi,va)l < C
and there exists a polynomial P(a) > 0 such that
(6.18) [(f25 Ya)l < € P(ag).
Thus
(6.19) lim sup |(tr @, y,)| < C.
On the other hand,
(6.20) (tr D, po) = (trd, ) = Tz;?fdaktrA(k)e'*"‘“’
and
(6.21) lim (tr®, ys) = ||L]lo < C,
-]

where the last inequality follows from (6.19). Thus s(L) < almost 0 and, by Theorem 6.2,
the kernel @;;(x) is continuous.
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THEOREM 6.6. If
(6.20) s(L) < almost m,
where m is a positive integer, then the kernel ®;;(x) can be expressed as a finite sum of con-
tinuous functions and their derivatives of order not greater than m.

Proof. We shall prove this theorem by the construction of corresponding represen-
tations of the kernel @;;.

Let
m
Cw for even m
(6.21) =] 4
——— for odd m.
m+1
Let ¥;;(x) be a tempered distribution whose Fourier transform is
(6.22) Pyx) = (1+k2)"14;(K).

The distribution ¥;;(x) represents the kernel of an admissible convolution operator M
of singular order

(6.23) s(M) = s(L)+q < almost m—2q.
If m is even, then by Theorem 6.2 the kernel ¥;;(x) is continuous and
(6.24) ¢U = (l '—A)q'}.’u

is a representation of the desired form. If m is odd, then by Theorem 6.3 the kernel ¥;;
is continuously differentiable, so that ¥;; and

(6.25) Kij = Oy
are continuous functions. Hence the representation we are looking for can be written as
(6.26) Dy = (1=Ay" 0+ (1 =AWy,

It follows from Theorem 6.5 that whenever the singular order of a convolution operator
is negative (or exactly 0), i.e.,

(6.21) s(L) < exactly 0,
then at x = 0 the corresponding kernel has a singularity which cannot be represented by
a bounded function.

This singularity, however, can be represented by derivatives of continuous functions,
and Theorem 6.6 gives the dependence between the singular order of the operator and the
necessary order of these derivatives.

The following Table | gives a few simple examples of singularities of admissible kernels
at x = 0, and specifies the singular order of the corresponding operators.

Table 1.

0<a#2,4,..
~ —logr " 6P (x) —Ag;

s(L) —a 0 o 3 5

All the singular orders listed in this Table are of the “exactly” type.
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7. The fundamental solution and the singular hardness of an elastic material

Consider now the inverse matrix ;" (k). According to (4.9), this matrix is well defined
at any k # 0. Considered as a function of k, this matrix is continuous for k # 0 and has
a singularity at k = 0.

However, as follows from the condition (4.10), this singularity is summable. Hence
A;;(k) uniquely defines a locally summable function on the k-space, and it will be under-
stood in this sense.

By the equation

(7.1) (k) = 45" ®7;0),
the function 4;;'(k) defines an operator from L[U] into U which will be denoted by L=':
(12) L' f; %)= u(x).

In the case in which Aj;'(k) is a tempered distribution (and this depends solely on its
asymptotic behaviour for k — o), there exists a tempered distribution G;;(x) whose
Fourier transform

(1.3 Gii(k) = 45" (k).
In this case, the distribution G;;(x) satisfies the equation
(7.4) LijGjm(x) = im0 (x)

and will be called the fundamental solution.

The function 4;;* (k) being locally integrable, the definitions (5.1) and (5.5) make sense
for the operator L~. Moreover, all the theorems of paragraph 6 apply to the operator
L-*, provided that the following substitutions are made:

q)ij FE Gu:
(7.5) Ay - 45,
s(L) = s(L™Y).
In particular, the fundamental solution
a exists,
b is continuous (bounded),
is infinitely differentiable,

if and only if,
(7.6) a s(L™') < 4o,

b s(L™!) < almost 0,

¢ S(L7Y) = —o,
respectively.

The quantity
(7.7 h(L) = —s(L™")

will be called the singular hardness of the corresponding elastic material.
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The idea here is that if the material is “singular hard”, the singularity of the displace-
ment field created by applying a concentrated force is weak. And if the material is “singular
soft”, a concentrated force creates a strong singularity in the displacement field. The
quantity (7.7) provides a numerical measure of this property.

8. The relation between s(L) and s(L™')

Now, we shall prove the following fundamental inequality between the singular orders
of the operators L and L™!:

(8.1) s(L™*) = 6—s(L).

The proof is based on the fol'owing inequality:
2

- _pip
(8.2) Jtr(Az}(l+k2)"’2d3k ftr(Bi)(l+!c2)""’*'zd3k:} (fltrABl(l+k’) 4+ d%k] ,

which can be obtained from Schwartz’s inequalities for traces and integrals and is valid
for any measureable matrix functions 4;;(k), B;;(k) and arbitrary real numbers p, p'.
By substituting 4 = A2 and B = A~/ into (8.2), we obtain

83 Ll 1Ll > 9Nlle22.

Thus, whenever

(8.4) Il <0 and [|[L7Y] < oo,

then

(8.5) p'>6-p,

the right-hand side of the inequality (8.3) being, on the contrary, divergent. Hence
(8.6) infp’ = sup(6—p) = 6—infp,

which proves the inequality (8.1).
By introducing the following convention:

(8.7) almosts = exactlys,

the validity of (8.1) is extended to singular orders labelled as “almost” or “exactly”.
COROLLARY 8.1. For the fundamental solution G;; to be bounded (continuous), it is nec-
essary that

(8.8) s(L) = exactly 6.
CoRrOLLARY 8.2. If the kernel @, is bounded (continuous), then
(8.9) s(L™") = exactly 6.

COROLLARY 8.3. If the kernel ®; is infinitely differentiable, then the fundamental solution
does not exist.

The last corollary explains the failure of the example discussed in paragraph 2: the
kernel @;; defined by the Egs. (2.1)-(2.3) is infinitely differentiable.

Generally, the smoother the kernel @;; of a convolution equation, the more singular

10 Arch. Mech. Stos. nr 2/73
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must be the fundamental solution G;;. The weakest possible singularity of G;; corresponds
to the value of s(L~!) given by the Eq:
(8.10) s(L™Y) = 6—s(L).

The following two examples illustrate how inequality (8.1) works in some particular
cases.

a. Consider an isotropic medium described by a convolution fundamental equation.
In that case, the general form of the kernel @;;(x) is

8.11) D;i(x) = —(46;;—0:0) ¥, (r)—0:0; ¥2(r),
where ¥, (r) and ¥,(r) are spherically symmetric tempered distributions.

Let ¥,(r) and ¥,(r) have singularities at r = 0 only, and let these singularities have
the form:

(8.12) Y(r) ~r*%,  ¥(r)~r*"%, for r-0

with some non-integer «; and «,. Then the singular order of the corresponding operator
L equals

(8.13) s(L) = exactly max(a,, a;).
The fundamental solution has the same form:
(814) GU(X) = '—(A(SU—agaj)Hl(r)—ajasz(r)

and, as inspection of the corresponding Fourier transforms shows, the strongest singu-
larity is again at r = 0, and

(8.15) H(r) ~r=*  Hy(r)~r=* for r-0.
Hence
(8.16) s(L™") = exactly 6 —min(a,, o).

Thus the present example Eq. (8.10) holds numerically if a; = «,. On the contrary, the
sharp numerical inequality in (8.10) is valid.

b. Consider an elastic medium described by a nonlocal stress-strain relation of the
form proposed by KRONER (1967):

(8.17) 0(%) = cyuen)+ [ huGx—x)eu(x)d>x’.
The corresponding fundamental equation has the convolution form (6.2) with the kernel
(8.18) Dii(x) = -a,‘a,(c‘u,am(x)+c;;,,-,(x)).

Let the function cf;(x) be absolutely integrable. Then, by writing the corresponding
Fourier transforms and making use of the Riemann-Lebesgue theorem, we obtain

(8.19) s(L) = exactly 5.

Hence, according to Corollary 8.1, the fundamental solution cannot be bounded or contin-
uous. In fact, an inspection of relevant Fourier transforms shows that

(8.20) s(L™1) = exactly 1.

Thus, in the case considered, the Eq. (8.10) is numerically valid. This also refers to the
classical case (¢fy = 0).
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9. The non-convolution equations

In paragraph 6, we have discussed the case in which A;;(k) is a tempered distribution.
Now, we shall consider the remaining case. If A;;(k) is not a tempered distribution, then
there is no distribution, even non-tempered, which would allow the fundamental equation
to be written in the convolution form (6.2). Nevertheless, such a function 4;;(k) defines
uniquely an operator L in the Eq. (3.1), and this operator has all the properties required.
We shall refer to this case as the non-convolution case. The corresponding singular order
of L is

(CRY s(L) =

In this case, the inequality (8.1) does not restrict the regularity of the fundamental
solution, which can be an infinitely differentiable function.

In fact, we have

ProrosITION 9.1. If for any real m the inequalities

(9.2) oik) > k", ik > k", ik >k"
are satisfied, provided that the vector k is sufficiently large, then
(9.3) s(L)y= 4+, s(L7Y) = —o.

This proposition follows directly from the definition of s(L) and s(L™?).
Consider an example. Let

(9-4) Agy (k) = [uk? 0i5+ (A+p)k; kjle¥ 142,

It has a form similar to (2.8) but with a positive exponent. The Fourier transform of the
fundamental solution, as (2.9), is

4, k;k,-) L %]

(95) Glj(k) = [_( k2 - k‘ & 1+2’1 k‘- e '»
Hence the fundamental solution equals
_ I B _erf'(ﬁr)
96 Gyx)=— = 0i; —

_11;(_:‘-_-}_:2‘“) ia,[ {(r s)erf(ﬂs)ds}

This solution is not only infinitely differentiable: it is an entire analytic function of x.

10. The energy of force centres

Consider a concentrated force of the Dirac d-type:

(10.1) fi(x) = F;6°(x).
The corresponding deformation energy equals
(102) W = Gy OFE,

10*
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where G;;(x) is the fundamental solution. Thus, if s (L~') < almost 0, this energy is finite
since the fundamental solution is continuous.

If s(L™"') = exactly 0, the energy (10.2) can be finite for some particular directions of
the vector F;, but not for all of them. In order to show that, let us consider the average
energy of three mutually perpendicular unit forces F{), F®, F®:

3

= %

(10.3) Wo = = —5Gy® D) FIOF® = 16, (0).
a=1

Making use of the Fourier representation, we obtain

(104) L2 lo = 6 Wo.

Thus, if s(L~*) > exactly 0, then W, = co and the energy (10.2) must be infinite for at
least one of the vectors F(®,

In the same way, we can consider concentrated forces of higher orders, described by
the Dirac derivatives. For example, for the force

(10.5) fi(%) = Aim 62 (%),

where A;, represents a certain matrix, the corresponding deformation energy is
1
(10.6) W= — ?G;,-(O)A,-,..A,-,,..

Let W, denote the average energy corresponding to nine matrices 4; ; such that
(10.7) ADAP = 5

Then we have

9
- 1 g I
(103) Wy = =5 G (@) D ARAR = — 15 4G, (0)
a=1
and
(10.9) LY, = 6 Wo+18W,.

Hence W, is finite, if and only if,
(10.10) s(L™") < almost —2.

Analogous results are valid for concentrated forces of arbitrary orders.

Now, let us briefly discuss the interaction energy of two force centres having the form
(10.5). Provided that the corresponding matrices 4L, and Al are symmetric, such force
centres can bz considered simple models of some point defects. Let r denote the relative
position of the centres. Then, the interaction energy of the centres equals:

1

(10.11) W) = -

Gij’mn (I’) (Al!m A.Jl'r'+ ‘4!'{' A}") =

If the defects are identical, then
(10.12) W) = —Gijomn (1) Aim Aja
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and, in particular,
(10.13) Wit 0) = 2 W,

where W is given by the Eq. (10.6).

By applying theorem (6.3) to the operator L™!, we conclude that the inequality (10.10)
ensures finite values of the interaction energy (10.11) at all distances including r = 0.
On the other hand, it follows from the inequality (8.1) that for the inequality (10.10) to
be valid, the singular order of the operator L cannot be smaller than exactly 8.
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