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Jacek Maozyhski
Computing Laboratory

Papers on technigues of program design

Foreword

The group of papers presented in this volume is an account
of such methods as the concatsnation algebra, the Task Des-—
gription Language or a straightforward approach to Virtusal
Memory., As an additional featurs a numerical discussion eof
an integro-differential eguatiom is giwen.

The techniques mentiopned above have been in use for some
time in the Computing Laboratory and proved te be of advan=
tage when streamlining the proocess of design and implementa—
tion of programs involving many thousands of diversified
matrix entries resulting from analytical integration of ei=
genfunctions and their producta. Therefore the designing te—
chniques themaelves seem to have some intrinsic valua.

The language of the presentatian.is English, because pro-—
spective readers /at least some of them/ will prefer poor
English to Polish good or bad,

Warszawa, November 1982
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Ogblne zasady testowania pakietu programowego Tolos

Testowania programow sg nierozigcznie zwigzane z ich struk-
turg. Wynika stgd rola Jezyka opisu zadai programowych /TDL/,

a takize formalizaoji rachunku konkatenacyjnego dla operac)i
macierzowych. Jezyk TDL jest sbliZony w pewnym sensie do
jezyka LISP, lecz réZni sie od niego nietylko ortografig,
lecz rowniez wymogiem wyrainego definiowania zbioréw, dla kté-
*rych powtarza sie wykonanie segmentéw programowych. W zwykleJ-
praktyce programowania stosuje sie operacje powtérzenia, a
zbiory sg poédrednim wynikiem tej operacji.

Konkatenacja jednowymiarowa wektordw i dwuwymiarowa macierzy
daje sie /prazy dosé ogblnych zalofenimoh/ sformslizowaé, Dzig=-
ki temu tworzenie mekromacierzy % maclerzy=skiadnikéw przybiera
postaé rachunku, nie wymagajgcegoe odwolywania sie¢ do pomogy ry-
sunkéw, lub nieraz zawodnej wyobrasni. X

Testowanie gotowyoh programéw korzysta z ich atruktu:f i do=
datkowo z faktu, %e realizuja one odwzorowania pomigdzy abstrake
oy joymi przestrzeniami funkcyjnymi.
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JaGoparopus BwuucanrensHof TexHuru

Ocmme [puBOUMH [IpOBEDKH
lporpamuoro Iaxera TOIOC

lipoBepka nporpaM Hepa3ZellMO CBABaHA C MX CTPykTypoll
OTKyA& BHTEKAET DONH BBEAGHHOT'O fA3HKA ONMCAHHA npornanﬁux
sazau (TLN - f03) u GOpMaNBHOTO MOZXOLA K ROHRATSHANMUR
(cuennenuu) cnocOGCTBYDLEI'0 HEOOXOAWMHM M3TPMUHNM BHUMCHE—
arAM. fsug TAJ OIM30K NOAMHOXECTBY s3wxa JIUCH, OZHaKD OT-
JYY3ETCH OT HEro Oolee 4eM [pPOCTO NPABONKCAHHEM, HMEHHO
I'JIaBHHM 06pa3oM, TpeCOBAEMEM SBHOTO ONpesielieHNs MHOXECTE
AN KOTODHX NpPOTpPaMHHE OTDHBKM NOBT DANTCA. B STOM OTHO-
NeHUK OCLYHHE MDOT'DaMHHE A3WKM NOAB3YDTCH HMHCTDYKOUEH NOB-
TOPeHNHA.

Cueniienne MaTPYYHHX BEKTOPOB M GIOKOB NOABEpraeTes
¢OpMaIBHOll TPAKTHPOBKE NPMOCDETAR BHA MCYMCIOHMT, UTO Ha-
ZexHee YeM pUCYHKH MIM TPOCTO BOOGDEXEHHE.

llpoBepxa U3TOTOBAEHHX NMpOrpaM IAyGORO MCNONB3Y6T HX
CTPyKTypy ¥ BOOOHe DYKOBOACTBYETCH TEM CBOHCTBOM YTO mpor-
palii - D0 CyTH ZAela - OTOGpameRMs MeXLy a0CTPAKTHHME (yHR-
NMOHAJbENMY OPOCTDAHCTBAMH.
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4 TEST - BENCH PHILOSOPHY FOR PROGRANM
MODULES OF THE THOLOS PACKAGE

1. _Introduction

The THOLOS package is an implemsutation of the combined strutt, curved
beam and shell theory, for computation of displacements and forces in a
prestressed concrete versiom of a nuclear reactor secondary containment
buiﬁlding. The package consists of number of program modules designed to
perform mappings from one abstract space to another say, from a load
space to an internal force space or to a displacement space. In the pro-
cers of program design, requirements for the modules had to be specified
down t0 minor details. The formulae had to be put into & form suitabdble
for rapid computation, and this obviously tends to cbfuscate ths program
text, 80 as to make it, at times, difficult to read and interpret. Again,
the shear bulk of the programs necessitated some conceptually guided orga-
niging effort. To cope with this situation which might have easily resul-
ﬁed in undetected, or visually undetectabls errors, special methods for
program design and testing had to be devised and their pn:ll;lophy is des-
cribed below in some detail.

Pirst, a Task Description Language is introduced and explained. Its
purpose is mainly to break up a major task into its constituents in suc-
cessive /or rupe-tcd/. steps, so as to produce directly programmable enti-
ties. Metrix formulae when dealing with subblocks of various products of
matrices or concatenated vectors, are best handled by iptroducing some
foarmal concatenation operations. Thus, instead of making multiple refe-
rences to drawings and charts an automatic concatenation is formulated
and used. Pinally, the written programs have to be tested and debugged.
Therefore a two - method testiﬁg app och is used in most cases together
with ample use of ortogonal date vectors. Ap.plicability of the methods
is wide, particularly with reference to the abstract spaces used. Account
must be taken of the properties of the normswhich, however, in our case,
present no difficulty.

2o A Task scription Language /TD.

* The language for task description is a formal metalanguage and bears asome
structural similarity to the LISP? language /o f. WINSTON [19771; MARTINEK
{19803/,



This similarity stops when intelligibility would be impaired too strongly
and therefore texts in LISP and TDL do not look very much alike at the
surface. The TDL language has a formal grammsr, its definitions for “produ-
ctions™ in BNF/ are given below. The main idea of TDL consists in maine
taining the awareness of a hierarchy of tasks. There is theé obvious limi-
tation that names have to denote unigue tasks within a single descriptive
text.

A task is described in TDL by

/2.1/ <taskD ::= {name> (Lrask 1istdD); ' {predicate ({task lint))a'l
L name>

A name is highly arbitrary, although it is always advisable to use abre-
viations ;hieh bear some relation to the task involved, human first names
and other unrelated identificators should better be avoided.®

Next we write

Jéecef/ <task 1ist>::= {task> I ’(sagmnt)'l(t.aek list> , { task list)>
We notice that TDL uses a comma for separating tasks and differs from
LISP in this respect.

Further it may at times be useful to define an

/2.3/ <instruction >::= ' segment >’ | task >

A (segmnt) is usually identifiable with a program segment in some
suitable programming language., Since it usually contains names fhich are
not and may not be task identifiers use of string parantheses "“solves the
ambiguity. Evidently a <segment> is an "atom" of TDL. No further formal
description, other than a possible verbal comment, is needed s0 it is

a terminal symbol of the language. Obviously TDL is wholly ﬁnooncormd
with semantics of the segments used.

A < predicates > has 4 concatenated constituents:
/<+4/ predicate> ::= quantifier> < argument) < relation operatar)
& argument | {compound predicate)>

where reasonable predicates are farmed by careful picking the constituents
from the definitiors : :
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/2.5/ (quantitier> ::= A Y

J2.6/ <Krelatim> = € <[< =] 2] D>

/2.1/  <argumentd  ::= varisbled| set idemtifierd
/2.8/ <set identifier > :=name > | [{element ist>]

When TDL is used for program design and descriptien a predicate bears
some resemblance to its counterpart from the predicate calculus. The
msin difference is the sgme as in any programming language constraat - it
is more than a statemsent of fact, it is an action. We have further an
obvious definition of a <compound predicated :
/2.9/ <conpoum;l predicate) ::= {pradicated | void |
& predicate < logical operator > <prcdicuta)|n;o-t
predicate >-
where the binary logical operator is:
/2.10/ <logical operator> ::= gnd|er | ... &e.
Thers is no necessity to confine the set of logical operators to those
which are implemented on some ré-l computer, at least when TDL is used for
conveying ideas between human beings.
_ The use of predicates is perhaps cloac- to the usual mathematical
habit than LISP comstructions. By way of an example, a text in LISP:

1oor (conp ( (zerop ¥) (RETURN aCTION)

sETQ ¥ (suB1 ¥))

(eo xooP)
becomes somewhat more netural in TDL:

anef{m, (w>0)} (u:ev-1;" acrION) :
A similer construct:
AB € SE (acTION) {
is self - explaining with N being a name of a {variable», S¥ a
¢ set identifier ), ACTION a <{name)» Which is a task nams.

A characteristic feature of TDL is a closer conceptual approach to
conditional and cyclic imstructions. A strong quantifier /\ is used for
cyclic instructions which may be read: “perform the stated action for all
values of the control variable from the given set”.

Cautious consideration of the sets involved is essentlal to am early eli-
mination of possible errors, and perhaps a be tter habit then just a REPEAT
concept. Conversely, a weak gquantifier is used for conditional state-

ments since what ig meant is : "perform once if at least one value of
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the control variable is in the given set". Ordered sets are .denoted in
mathematical fashion, say[l, ... , nland N > n stops execution.
A text in TDL defines the task when elmj.nation of names produces

a sequence of segments interpersed with predicates, Implementation of
actual programs is not excessively restricted by.' 2 task description.
€0 TO statements may possibly be used, where applicable, for skipping
certain program actions but wherever possible comstructs:Yp /ACTION/
which do not impair program structure and are semantically equivalent
are preferable. It is widely accepted that program efficient operati-
on precludes recursion. When designing a program there is no need early
to dec ide whether subroutines have to be used or a homogeneous state-
ment sequence is semantically right. A repetition of the same task
name 1s conducive to subroutine implementation in many cases, A pro-
gram description in TDL is shown in Appendix 4.
A loop with an exit a very frejuent and fu.ndamental programming con-
struct, has a slightly artificial TDL representation. Namely, what is
programmed with two well located jumps and two labels :

labell :

<segment 1;>
if condition then go to labell;
< segment 2;>

£o to labell;

labelZ:

ceey

becomes in TDL :

/\kch,z. woo , upper] ( segment 1, Vcondition ( ‘upper : = 0'),
V not condition (a-egmnt 2))
It is subsumed that a break in an ordered set stops execution /this is
true for algol for, step, until constructs/ Avoldance of a special while
construct is deliberate since TDL is not just another form of structured
programming /cf. DIJKSTRA/. It mainly differs by its emphasis on formal
language properties. Again, TDL is conceived as a means of communication

between those who state problems and those who actually implement solu=
tions.

http://rcin.org.pl
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The particular field of application ie in the interface between theore~
tical mechanics /and other branches of mathematical physice/ and compu=
ter programs, i.e. in these domsins where algorithms arise naturally
from formula manipulation, ho'u:ur extensive, rather than in those where
numerical processes have to be conceived by skillful handling of op-era-
tions on ditn and states,es in the design of operating systems /executors/.
At vleasf,‘ th; impv.{lae comes from the former computer applications and an
extension af the latter problems of computer science is conceivable alt-
hough further investigations are nseded if applicability is to be deci-
ded upon, Nevertheless, the very possibility of a computer implementa=~
tion of the TDL language appears to be promising.

3. Concatenation algebra

Consider two concatenation operators €, ¢ . The first "&-" serves
to ocreate horizontal concatenations or rows of elements which may be
single entries, vectors /in matrix sense/ or compatible blocks, If con-

catenated parts are compatible we say that the concatenate exists and

we write:
n
3.1/ aeb 5 i
‘The other 'Q' produces columns of elements, again
/3.2/ ad b 6 . are colums
ol C

of compatible blocks or single entries. The requirement of campatibility‘
is to be understood in the sense of matrix definition i.e. the resulting
concatenate is a matrix conte~ining rows of equal length.

A matrix A of entries (Q;j}, i=1,2,444,n,
= 1_,2, ees , m may be simply defined by

] < a;. , = O Qe
A Lo J'-l 4 = j"‘ )
and
n g &
134/ .‘.?1 ST

is a linear vector of lexicographically arranged entries of A,
The concatenation operators satisfy the following axioms :

1. they commute with multiplication by a real or complex numbark H

L A n n .
1'.24 a; = Aa; , Aic‘p‘a; 3‘_?45\&-‘ .

2. They are asymetric: ;
abbtitpa, _ aeb + bea.

http://rcin.org.pl
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3. They are separstely associative:
aeobee: (aeblec - ae(bec)

@ db e = @db) de = a g boe)

but
(aeb) ¢ = a e (boe)

4. No sero element and no inverse operstion is defined far & or

/Althowgh there are theoretical means to do 2o cf. MAGGIOLO-SCHETTINI/
5. If /for the sake of elarity/ the aign X is used to denote matrix

multiplication, than

e‘a. X ¢b =Z(a :x by)
=4
where all the product terms leb; -ut exist and be matrix sum-

mables
6. Conversely

i=1 3=1 p=q =i
where existencé and compatibility of the products with regards to
aj X bj is subsumed. .
7. Left and right matrix multiplication is associative with horizontal
and respectively vertical concatenation :

(& a;)xb =06 (@ xb),
4 1=

5

n n
b X e Ci\ = G} (/&1! Cl‘)
i=
where & S are compatible -1th respect to the respective concatenations.

8. Horizental and vertical concatenation is commubative since we may

write

©-

i 4

bl J <

<
Thus a matrix is a column of rows or a row of columns.
9. Transposition rules hold:

(¢ 0= 5al,

T
Lo aiT = g0l
& T
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It is apparent that compatibility of contiguous arguments which produéen
a non-overlapping full coverage of the reamllting rectangular matrix is a
semantic property which transgresses the bounds set by the formal axioms
of formula manipulation and beers a similarity in this respect to the
exclusion of zero in the definition of arithmetic division. By wayof an
example axloms 7,8, ag8in 7 and 3, may be applied to obtain the wellknown
matrix multiplication rule, without recourse to drawings or explicit men-
tioning of rows and columns or "lively gesticulation". Take two matrices

b o At At find their product ¢ e
. an = n e roduc s
25 %y gt k=1 7k - k PP i o
A m m [ ]
O e a; x O eb,ks o(ea X (D(ﬁb )=
esij=q J=1 k=i 4-11-4 v j=t k=
n p m
= 0(8 a, x 6 0 bk)=o e(e a. x o bi) =
{=1 J=4 k:{J:A f=1 ks i
_0 e(z a-'xb.k)— a> 5(5 a:-xb,k)
izk=t gt Y o=f k=4 =t
Hence:
E-tzei ] q.6.d.

4. Testing by the tto;patbs me thod

As 1t was adumbrated in the introduction, reasonable assurance as to
program correctrmess may not be achieved by simple, however careful,
reading of the program text, A more potent tool is needed to gain
confidence and exclude effects of misprints or confusion which have
always to be reckoned with.

In the first place the methods of program description and design, the
TDL language and the concatenation operator method tend to reduce the
effort of imagination and simplify the implementation. Now, a formally
correct program must undergo testing which would yield results and these
would be compared with some cther results cbtaiment by a different
method. '
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Thefcllowing examples of alternative methods may be quoted:

10

2%  equilibrium computation,
3}0

formula integration and numerical integration,

Bettli - type galculationms.

The latter two methods are usually combined with orthogonal testing.

This operation consists of mapping the successive basis elements of the
data into an integral measure of the results by means of a program module.
Since such integral measures may be obtained by an alternative formula

manipulation and computation a two = pat§ method results. )
Take linear spaces of structural mechenics. The theory of linear elastic

structures, in its present form, invelves a wide spectrum of particular
conceptual elements which evolved during various stages of the development
of mathematical analysis and higher algebra.

Some unification of the conceptual apparatus must be performed when
numerical calculations are considered,in order to isclate the individual
operations of computation design. Also, particular physical asaumptions
have to be separated from an overall organisation of the problem stated
and of the resulting program package.

Such an overall organisation follo-a'trcm the application of the no-
tion of a linear space. Structural mechanics makes also use of real and
complex numbers, say, of number fields of higher algebra. It should be
borne in mind that, due to the truncation error, an approximation to a
number field appears on a computer not the number field itself.

As aforesaid, another important notion in present - day structural
mechanics is the linear space concept. The slements of a linear space
are not just numbers any more and they are endowed with some simple pro-
perties called axioms.

As a fundamental linear space of structural mechanics let us consider
the set of all possible self - equilibrated force systems /SEFS for
short/ which may act on a selected structural element and deform it.

The linear space of all SEFS satisfies the following axioms:

A. A sum of iwo /or any number/ of SEFS's is again a SEFS.

B. There is a uniqﬁe null SEFS, which may be added without altering

the deformation of the body.

http://rcin.org.pl
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D. multiplication of a SEFS by a number from a field of real or complex

numbers resilts in a SEFS. Hultiplication by 1 and zero results in an

unaltered SEFS and a null SEFS respectively. ;

Cs Summation of SEFS's is distributive and commutative, A SEFS may be
annihilated by adding a negated SEFS to it.

E. Hultiplication of a SEFS by a number is distributive with respct to

SEFS summation, with respect to sums of numbers and their products.

The above axioms of SEFS are the same as these of a vector space.
Therefore the SEFS space is & linear space.

Note that a non - null SEPS is neceassary to produce static deformation
of a body. Therefore it follows that SEFS is a fundamental concept of
structural mechanics. A deformed state of a body determines the genera-
lizec displacements of its points with an additional freedom given by
the group of stiff translation and rotation. There is thus a set of gene-
ralized displacement spaces aspoéinted with a SEPS space for a particular
body. By fixing the body in a position a single GD space may be made to
correspond to a SEFS space. Thu® a mapping of the SEFS space onto a GD
space characterizes the body within the linear theory, together with
a support of the basis functions called the regionm occupied by the body.

The above argument applies /with some limitations/ to infinitely
dimensional SEFS and GD spaces, Spaces of infinite dimension natureslly
result from say, Fourier series expansions. FPor numerical purposes they
have to be approximasted by finite dimensional ones. Such an approxima-
tion or truncation suffers from & truncation error which may be visua-
lized as a distance of the true solution from the approximating space.
Since a priori estimation of the neceassary number of terms of the
expansion may not be practicable, computation may be repeated for a few
truncations and thus accuracy may be estimated.

Starting from the well known notion of a modulus /i.e. norm/ of a vector,
the notion of a distance together with a norm engendered by it may be
introduced for the SEFS and GD spaces. Thue in the first place:

1. A basis of a finite dimensional SEFS /or GD/ space is assumed:



2. Any SEFS /resp. GD/ is expressed as a linear combination of basis
T,
cf

A distance e /dprinin; the metrics of the space/ is a non-negatiwve

elements:
in matrix notatiom.

function of ¢ arguments z., Z, which are the elements of the space
studied. Distance satisfieas the conditions (sxioms):

1o 9(21,22J=O only when Z10 %, coinclde.
i 0(z.2,)=0(%.2,) /symetry/
3. e (z.z3)K 9(24’22) = e(zz, Z3) /triangle inequality/

It is easy to verify that the Euclidean metrics:
T T
©(2,.2;) = -l/(c4 = )€, — C)

satisfies the axioms of distance /1=3/, S0 it is a definition of distance

acceptable for use with a SEFS or GD space. Euclidean metrics engenders
/e
Bzl = Cez.0n".

The spaces SEFS and GD /for fixed body position/ are isomorphic. Once

a2 norm

& problem has been solved for @ components of forces and displacements:
/or stresses and strains/ in the body follow directly as functionals of
the elements of the SEPS apace. At this stage elements of the bapis are
used to express dependence on spatial coordinates. This is obriously a
generalisation of the influence line concept, although the notiom of

a linear space requires an overall approach which tends to organize -
the arguments and counteract ommissions.

Finite dimensional spaces are complete in the sense that svery Ca3uchy
sequence of elements of the space has a 1limit which belongs to the space .
A complete linear space endowed with 2 norm is a Benach space. Important
theorems on iterative processes of computation are formulated for Banach
spaces and known as theorems on norm - reducing operatars. /cf. Banach -
- Cacciopoli theorem &c./

Checking program modules makes use of the property that the norms
used are homogeneous; *

Bazl = 1AL Jizll.
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Therefoare “"orthogonal testing™ is used in which any mapping program is
tested for each basis element or each class of basis elements separately.
In order to visualize the method let us consider a curved rod whose axis
follows a segment of a cimcular arc, The rod is clamped at @ = Oand

is subject to load distributed slong the median line according to the
complex exponential exp (i a + 1b) 8 /8 = angular coordinate/ and
there exists a program module which is capable of calculating the rod
median line displacements for this kind of load, which may be called
load of class I, On the other hand the static response of a rod clamped
at one end to a concentrated load /class II load/ at its frees tip is
alsc known. The Betti rule says that work performed by load I on displa-
cements of class II is the same as the work of load II on displacements
of class I. But the latter work is obtamed by simple algebra, though
however work "I on II" necemitates computing a few integrals over the
basis functions. These integrals -are verified by cross-checking formulae
with numerical calculation. When no collision ir found in the whole
environment the last step of calculation checks the effects of geometri-
cal and physical data by finding the response of the rod tip to changes
in size or in stiffness. Extensive testing results usually in pinning
down of some malicious misprints.
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Appendix A

A example of the two = path method of program module testing

Consider a segment of a hy}indrical shell cut - off by 2 axial planes

/B =const/ and 2 (z-consvt}-planss, thus a median surface segment:
FRY, A= [0, X[0,§]1
. /
Bcecie, Lo,

Introduce the notations:

e related

& - a vector of degrees of freedom composed of subvectors ¢
g(s; ‘to various modes of deforming the sagmnt.(s-l, ses 5_’9
AJ -~ matrix operators for g-th component of generalized displacement,

8~th deformation mode, J=1,2,

fe)

- the s-th functional basis.
o)

-Q - the s-th matrix of coefficients of a Pourier series expansion by
the DOFO method /intetsperaad{0.530,31. by oeee s B bkniror
consecutive f'; of a #'(Q) basis/, i

- weightis,
Pg ghts,
K =~ edge index /K=1,2 left, right or top, bottom/,
J - edge pairindex /J=1,2 upright and horizontal/,
\ 8 \ s
2 Rl S0y D)
A 8=1 »
Jd *
/ 5 I /where M and ¥ are given /O=1/
(9 )= U (8} .

* =1 V’ . matrices/

One path of the algorithm calculates the expansion coeffic!.er;ts of the

4 generalized diéplacemnts over the 4 edges of the shell segment, star-

\

ting from a given vector ¢ . This vector may be in "ortogonal™ form i.e.

the 1-out-of-n item is non = zero and equal to cne.
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Any generalized displacement of s point of the segment’'s median surface

ﬁ is given by the representation in terms of 8 anad :

5 £

£ () p¢ p(s)

/a2 (GD) "Z’ c A;; #

-

- qay

Dus to the sheer number of A 3 # & whole program module gen GD imple=
ments the formula. This represents a forward path of the calculation.

: N - 2
The GD's obtained are next expanded in a Fourier series to yield llKU

and treated as starting data for calculating the free term:
-~

4 g,c) GKJ En g
T4y S 8.5.;:1 sz? %A_.‘, f y(?\ KA k34%Vs
) J

where a vertical line denotes a trace, ’Ko)ia the set = theoretical
(s)

sum of ¢? 's,/%§J

-~

&
dKJis'uBBociated with the /K, /-th edge. ‘Q(?) is a palimpsest of
L7

g an
the ‘A\f/'a, P

is an sppropriate trigonometric function,

is a weight vector, A similar formula holds for

£
the matrix -
g dKJ ( ( S( )T :
T (o) 0) ,(0)T (o
mob S b 'y ag; A9
T & dJ J 0 KJ J
After solving the equation: :
i N b

for € the results are next compered with the starting & values aﬁd
symptoms of possible misprints may be found or aggreement certified.
Details of the calculation comprise two-path testing of the integra-
tion in formulae /A3/ and /A4/, and numerous logical decisions concer=
ning the choice of appropriate A's, A's, U's, {'s etc.

Another point is the Fourier expansion performed by the me thod exposed
in [1l The extent of the truncation error is also appreciated by com=
paring the starting € values with the values resulting from the expan-

ded GD traces on the edges.
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Iz TDL the whole procéss assumes the form:
Ate[1,...,22)(sete,. gen GD, gen QIII,
take A I11° solve to get c, ‘compare and interpret );
The II;L descriptions of the succesaive parts are given below.
Describe “gen GD" in TDL in a somewhat self - explaining way:

gen GD( recall param, init ¢ (zerc, ome in ¢},

ge[1,2,3,4 1 ( gen GDg, print GD, store GD);

gen GDg( zer ref GD, JE[1,2]1( gen GDgJ));
gen GDgJ ( zerqs, Ke[1,2] ( gen GDgJK,
print accu, accu to GD,
iner storef GD);
gen GDgJK ( zer accu, zer par Qs, gen Qs part I, ab to Qs, set param,
Ase€ [‘l. see , 5]( part ¢ to cs, zer AgsJ, gen Agsd, print A cs Qs,
gen Qs part II, gen W, W to accu);
genQs part I( Je=1(expand 1z, pack in Qs),
V=2 (expand 1 th, pack in-@s));
genQe part II(VJ=1(expand rest pwsiz, pack in @s,
mult constantsI), WJ=2 (expand rest psi th,
pack in Qs, mult constants II ));

Another module, gen QIII may also be given & TDL description:

genQIII [recall param, find U, zer QIII,
Ae ef1 ,2.3,4] ( set storef U,
Aie[1,2] (genagos,
AK€ [1,.‘:] ( recall U, zer 1, print U,
zer b,Ak2€[0,...,2 KN]( print2 blank lines,

Nete i eenyisl (integrals, wrong ( printS), acch),
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iner 1 by 4), print b, AgOJS to AUX, acc oxzn)));

print QIII, ger 1, set q nl,

A1€[1,000,n1] (cut QIIT ), print OIII, outtape QIIL);
Pormula /A3/ has been given a form ‘

2. kN

4 g,
4 KJ £
4 o) = 8(k2) 1(k2)
TV — éz; A,J £ .2 (éﬂ’\:u adp g ;

to explicitate the order of operations designed to keep the size of
arrays a4t 2 possibly low value.

An inguisitive reader might require some detailed information on
the TDL segments written above. He will probably notice that "recall™
and"store "have their usual storage retrieval and initializastion signi-
ficance, "print" or "mult" need no explanation, "set' is shorter than
"intialize", "zer" means zeroe, "gen" is short for generate, "find"
means supplying external storage reference address, "incr" stands for
increment a counter, "pack" denotes putting in an appropriate location
within a set, "expand”™ and "cut" denote changes in set size to get a
non - singular matrix. "to" is used for trahsfers between sets, large'
or small, "sto ref" is storage reference. Other names are directly lin~
Qed to the significance of the implemented formulas,

Reference
M 'Hqcz}ﬂski Je. An algorithm for Fourier series expansion in

a subinterval of the circumference. Algorithm 79, Applica-
tiones Mathematicae 17, 1, /1980/.
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MATRIX MULTIPLICATION REVISITED

By applying the concatenation operators e and ¢ matrix
multiplication may be brought to the form:

B1 ;4 b = - . = : ¢ o=
( ) ?Q?a‘* ‘EJ XQG&[E bt Z??"Fb"j
ez @ a. x b .

7 ¥ ( o ) k
Proof:

Use Example in § 3, rule 8 therein and interchange elements
in the sums.

The above formula may immediately serve to organize multiplica-
tion of large matrices for efflclent use of external mass stora-
ge (EMS).

Rapid access storage (core) contains in this case a few single
columns of the matrices involved. Therefore the algorithm de-

mands a sequential arrangement of matrix columns and no trans-
position or picking out of single elements is necessary any mo-

re.
(

A program for this purpose may be outlined in TDL as follows:
N e n
take b -u (j—th column of [blj 105
w05
Nkel,....pl(
take 3} =N,
ARibe 18t ni(
"i - W, t+oug L s Wl
put
s
The operators take and put may be devised to suit some

buffering technigue. Thus concatenation algebra may serve
to obtain algorithms for efficient manipulation of matrices.

— e

=]

<
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Appendix C

The simple sum and the simple product of matrices

The concatenation operators ¢ and O may be used to define
further operations on matrices such as the simple sum and

the simple product of matrices. The simple product is ascribed to
Kronecker and sometimes called the Kronecker product.

Write AU*V to denote a matrix with U rows and V columns,
then a simple sum of a palr of matrices A§i% and Aéig
is:

L= (2)
= (0]
A (p4R)*(Q4S) (Apxq © Opxs 19(0pyg B Agys )
where Ou*v is a zero matrix of U rows and V columns.
A simple sum of n matrices is assoclative but not commutative,

therefore the indices (1,2) 1in the definition are a pair and
may not be interchanged. For any n we write:

A - B aiL)
TP 4R, T 4=1 TP Qg
where no pair of the row of indices [1,2,...,n] may be interchan~

ged, although formation of partial sums 1s not prohibited.
Forming a concatenation of elements:
(1) o)
i i

a simple product of two matrices A(i)

1 2) 1),(2)
g»@“"](a*s' Apraqs ™ § ij éns :

A simple product is neither assoclative nor commutative. In ge-
neral

is written:

and Aéié

A = ¥ al1)

TR = T1Q, 1m1 P % Q
By a special aggreement the products are formed by taking
successive pairs in a decreasing order of index pairs (rom
right to left). Here [T denotes an ordinary multiplication

Ol Limes s

The following relations hold:

(1) (al1) o a(2) y((1)g (2)) = a(2)5(1) 4 2 (2)5(2),

(2) (a(1) o al2) y(a(1)g p(2)y = a(2)g(1) , 4 (2)p(2),

o Al ftls b Al ol
1) (2) X

;,“QQA%) (BQ*SbB



o

i 2 !
= (AP:*Q ° Ay i )([1]2*1 ® Bois )

where [1]2*1 (in general [1] ) 1s a column of unit elements.

The relation

Apiq ® Brag ™ (Apsg © In 1 (Tq e Bryg )
follows from (2).

Nx4

Such and similar relations hold for simple products and simple
sums of matrices. Thelr application to the speclal matrices of
digital holography may be found in [1] where further referen-
ces are glven.

REFEREHNCES

[1] Yaroslavskii, L.P., Merzlyakov N.S., Methods of digital
holography, N.Y. Plenum Press 1980 ch, new Russian ~dition:

llugposas Tomorpagua, Mocksa, Hayka I982).

http://rcin.org.pl
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Jacek Maczygdski
Pracownia Obliczen Numerycznych IPPT PAN

Presta Technika Pamigci wirtualnej

Nieskomplikowane procedury -WPISZ i POLE obsiuguja dostep
do zewnetrznej pamieci-masowej /EMS/, co sprzyja uproszczeniu
algorytmow pracujgcych z duzymi tablicami. Technika pamigci wir-
tualnej moze znalezé zastosowanie w takich zagadnieniach jak roz-
wigzywanie rownan rozniczkowych o pochodnych czastkowych metods

roznic skonczonych itp,

fluex MoruuHckui

JlaGopaTopms BuunciuTelbHO# TeXBHEM

06 mpocTO#f TeXHWEe BMPTYAJIBHOR NGMATE
HecuoEue mpoueAyps WPISZ @ POLE ("snmmz® # "moxze")
0GCIyEMBANT LOCTYN K BHEMHOX MaccoBo# namaTé (EMS ) uyro cmo-
cOOCTBYET yOpOWEeHED alTOpUTMOB DPAGOTANIMX C MACCHBAMM GOIBHHX
pa3MepoB. TeXH:HKA BUPTYaNbHO# NMAMATH MOXeT HAMTH NPUMBHEHHE B
TAKMX 3aZayaX KaE pelleHMe AupPepeHUWANBHNX YPABHEHMH C YACTHH-

MM ODOHW3BOJHHME METOLOM EOHCUHHX DA3HHL M OPOY.
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Jacek Maczynski
Computing Laboratory

A strajggntforward virtual memory technique

There are many situations when the size of arrays needed in a pro-
gram transgresses the available core size. The need arises to or-
ganize communication with the external mass storage (EMS). This
implies some skill, patience and attention which may regrettably

be diverted from the main purpose of the computing job undertaken
which 1s e.g. supplylng application results in a particular field
of science. There is thus a trade-off between somewhat lower compu-
tation efficlency when a semi-universal technique (like the one
described below) is selected and the cost of either hiring a spe-
clalist or that of do-it-yourself study and trials.

Again a program text 1s an excellent medium for defining an algo-
rithm and therefore a first working version should be kept as
clear as is physically possible and nevertheless operate with un-
impaired array sizes. This 1s another advantageous feature of the
technique suggested here.

The simple virtual memory pechnique described below is universal
when arrays are conceived from the very start to be one-dimnensio~-
nal vectors. Some very simple calculation such as:

L= oc b R ) = ok o (r=a )

(when a lexicographically stored array, say‘A[l:n,l:p,l:q] with

an element A[1,J,k] 18 to be simulated) supplies the necessary

current fleld Index 1 as a function of the given indices i,J,k
and their ©bound pair values (1:n), (1:p), (1:q).

The technique 1is implemented at some small expense of attention.
Two procedures conveniently named WPISZ (write in) and POLE (field)
together with an array OKNO (window), a real variable ENTRY and

an integer varlable dok have to be declared in the program, pre-
ferably in the most external block of an ALGOL program.

Next, dok and drumplace (this 1s a non-local standard integer
variable to be supplied when missing in some algol version) are
put equal to 1 and ¢ respectively. Thus own variables (or
COMMON variables should FORTRAN be considered] are simulated with-
out having to explicltate them as procedure parameters.

Writing a real number into an EMS field involves two operations:

- initlalizing the variable ENIRY,
- calling the WPISZ procedure with a required index value.

In the version implemented index expressions may be used as
actual parameters of WPISZ (ef. ‘the text program below) .

Once a transmission stage has been terminated and a retrieval sta-
- ge is to begin, a mopping-up operation is needed. This consists in
transmitting the contents of the buffer OKNO to the EMS in or-

der to.update the field and save the contents of the buffer .

http://rcin.org.pl
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Conversely, an item (a real number) is retrieved from EMS by
putting some real variable equal to POLE(i) where the parameter
1 1s the requilred current index in the EMS field.

An experienced reader may have noticed by now that the variable
dok seems to have been treated as a program constant. The proce'
dures WPISZ and POLE leave it unchanged. The role of this va-
riable 1s to provide an encoded identifier for the set in EMS
with which contact 1s established. This is a number which is

set to be the first half-item of the field in EMS. If more than
one storage field is used by the program aiditional care must

be taken properly to classify the contacts with the respective
fields and to initialize .dok. It must be borne in mind that
when there are N 1items in a field (say, n*p¥q iteme of an ar-
ray Al1:n,1:p,1:q]) there are 2N half-items and dok has to
be increased in steps which are double values of the field si-
7es in items (on the particular computer considered). Such doub=-
1ing should present no difficulty and a rough sketch of the me-
mory fields (which may be called sets) required by the program
should be highly appropriate.

The above recipe is wholly sufficient for successful use of the
technique. No resposibility may be assumed for failures due to
overreaching of bounds or some lnadvertent overlaylng of data
or to contacting an uninitialized field.

The technique having been tuned, prospective users are invited

to try their ability to avall themselves of it. Therefore the
test program below and the description of the procedures should
lest be read carefully. TDL [1] was used for design and descri~
ption of the aligorithms because of 1ts capability to convey pro-
gram structure.

The procedure POLE

Consider the TDL description:

POLE(set m, set ref, V OKNO on portion and 1 e range(take from

OKNO), V not OKNO on portion or not i e range (take, backdrum=-
places E
where:
1 — index of an item in an EMS fie'd,
m - OKNO buffer size in items (set to 512)
setm - initialisation of m,

set ref - finding of the reference zero value of the buffer -
cition over the EMS field expressed in half-items (J)
and whole items (k).

Further:

OKNO on porticn 18 true when the value of the position (in
the EMS field) of the TIrst half-item to enter the buffer (i.e.
dok+]) 1s equal to the actual drumplace value. It 1s assumed
that this should not happen by chance and therefore drumplace
is set o zero at the start of the program (since drumplace

1s used to signal a correct sition of the buffer, so 1t has
to be desensitized at rirst?? ;



i1 € range is true when 1 1s within the buffer,
take from OKNO Is a take from buffer program segment,

dok - an EMS field zero reference in half-items,
take = here an item is taken from a previously filled
buffer, ;
We have:

_take(set drumplace, supply portion, take from buffer),
where:

set drumplace - buffer relative position Jj and the EMS field
position dok yleld the drumplace value,
supply portion - the whole buffer is refilled from the EMS,

back drumplace — the drumplace value 1s put to the value retur-
ned bty set drumplace.

As a result either values in the buffer have been previously
up—dated so they show the right portion of the EMS field or
conversely an up-date 1s spurred by demand and a correct buf-
fer content is established! Note that the buffer is visuali-
zed as a mobile window hovering over the EMS fileld,

The procedure POLE is a real function and may appear within ex-
preesions. Economy of the number of parameters and relatively
few instructionw needed to read a buffer value when no up-date
is needed, should make the use of POLE reasonably efficient.

The procedure WPISZ

WPISZ(set m, set ref, V¥ OKNO on portion and 1 € range(put in
buf), V not OKNO on portion or not 1 € range(transmit, take,
put in buf, backdrumplace));

The variables i, m, k, J, dok, the array OKNO, the tasks set m,
setref, take, back drumplace and the predicates OKNO on portion,
i € range are the same as in POLE.

put in buf - carries ENTRY into OKNO,
transmit = uses the previous drumplace value to store
the actual contents of OKNO.

To avoid an excessive number of transmissions the buffer (OKNO)
holds its contents as long as the buffer hovers in place over
a part of the EMS field. Hence a terminating construct 1s nee-
ded before the variable dok 1is altered and this is provided
by:

to drum(512, OKNO[11)

in the test program below.
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Note that the constructs to drum and from drum increase |
the value of the drumplace by 2N when N items are transmit-
ted to or from the drum. This side effect has to be simula-
ted on other computers.

The technique has been implemented and tested by the author

on an ODRA-120% computer. The portability of the technique is
seemingly high and no major difficulty in applying 1t with say,
disc storage and with some other algorithmic language is apparent.
Obviously the procedures POLE and WPISZ have to be re-writ-
ten in this case with some caution and tested before incorpora-
tion into a larger program.

Ref erenices

[B5E T, chzyﬁskl, A test-bench philosophy for the program modu-
les of the Tholos package (this issue).

http://rcin.org.pl
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comment
SZ, POLE;

begin .
InEeger dok; real ENTRY; array OKNO[1:512];
7 3 Eaains

ocedure WPISZ(1);
vaEue T7 Integer i; £
comment non-.ocal integer dok, real ENTRY,
Array OKNO[1:512];
begin integer k, J, m;
m: 25"
ke =fiaffdiv mim; J:=icHcs : .
1f drumplace=dok+j and 1 ge k+l and 1 le k+m then
DENO[ 1k ]: =ENTRY elSe i A ‘o

begin
E_O'Ea?um(m, OKNO[11]);

drumplace: =dok+];

from drum(m, OKNO[1]);
OKNO[ 1-i]: =ENTRY ;
drumplace: =drumplace-m-m;
end ;

end H

real procedure POLE(1); ‘

value 1; integer 1;

begin integer k, J, m; -

comment non-rocal integer dok, array OKNO[1:512];

e 3
k:=fi=sldiv mAam ; Jr=k+k;

if drumplace = dok+] and 1 ge k+1 and 1 le k+m then
FOLE: =OKNO[1-k] else — = S g

begin -
drumplace:=dok+];
from drum(m, OKNO[1]):

POLE: =OKNO[ 1-k];
drumplace: =drumplace-m-m;
end ;

end;

dok:=1; drumplace:=0;

begin:
InEe er 1; Format('123%,’); print(‘/test wpisz pole/’);
Tor %:-1 step 1 until 4096 do

bPegin
EN'%RY:-LO*:L: WPISZ(1);
end; to drum(512; OKNO[1]);

Tor 1:=1 step 1 until 4096 do

I POLE(1T ne 1 Then print(IT;

End interior;

BrInt (' koniec testu wpisz, pole/’);
Lt -

http://rcin.org.pl



J&cek Maezynski o el
Pracownia Ybliczer Numeryczmych

0 pewnym résnaniu rézniczkowe-calkowym

Réwnanie rézniczkono-calkowe /1/ wynikajgce z rozwig-
zan elastostatyki_tréJwyniaroaeJ zostalo zastosowane do ba-
dania rozkladu przemieszczen w prostoliniowym zbrojenim cieg#
gnem. Przedstawiono wyprowadzenie algoryimu ebliczeniowego
i orzykiad liczbowy. ;

flnex MoBwHBCKEH
JisGoparopua
BuuncaurensHoli Texmmru

06 ozuoM HETErpoZEpdepeHHHaIbHOM YDAaBHGHER

HETerpaisHO-AudjepeENUaTEEOe ypREEaRKe (I) crexypme
K3 PyHZaMEHTANRHHX DEEEHEE SNACTOCTATHKE OpPHMCHAETCH K
ECCIEeJOBAHED pacnpeleleHHs NepeMeNeERE B NPAMOIEEefHOHM
BOJIOKHMCTOMR aplﬂpOBKB.‘PBNeHle noIyuaeTcs MeTOAOM KyOH-
9eCKHX cnlafiioB. [IpecTaBleHO BHBEJIEHWE BHYHCIMTEIBEOTYD
aIlropuTMa M YHCIOBOH NpHMED.
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Je. Maczyfski
computation Laboratory

on an integro-aifferential ecuation

A prelirinary solution of the homogeneous integro dif-

ferential eguation:

L+z° 5
(1) Mz)-f (K(z-8) = K(z+8}) ii(s) ds = L(id)
2o
with the non-homogeneous boundary conditions:

(2) a(z,) = P/, G(z,+ L) =0

is presented.

This egquation approximately describes the displacement
field along a strzight extensible fibre of length L which is
pulled by a force £ at 2=z and submerged in a linearly
elastic matrix filling a half space which almost everywnere
is rigidly supported over the 2=(0 plane with the excepticn
of the point 2z=0, r=C where the thin fibre intersects the
plane.

The kernel K 1is obtained by considering tne clac:cical
funcamental solutions of Boussinesg=-Kelvin for a small fibre
diameter Toe
cing it by a concentrated "pirac mass") produces a rapidly

A simple approximation to the kernel (repla-

decaying rcugh solution which may be used to compare the re-—
sult with the behaviour of the solutions obtained for a more
refined kernel shape.

The method of solution presented below viz. spline in-
terpolation, was selected from a number of other approaches,
such as e,g.

- the Bellman-Kalaba embedding techtnigque,
= Fourier transformation.,
The spline interpolation proved to be by far the most

it llvair -~ i
nttp://rcin.org.pl
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straightforward, numerically effective, and therefore most
suitable for a computer implementetion. Qther, more tradi-
‘tional methods e.g. some iterative approach or series ex-
pansion proved either divergent on insnection or cumber-
some (hence unreliable),

Integral and also integro-differential equations re-
quire for their sclution an inversion bf & discretised
form of tne operator such as JC above, Thus usually a sys-
tew of eguations nas to be sclved, Tnerefore, keeping
aown tne number of unknowpn s 1is & main reqgui rement,
Spline interpolation provides a sufficiently high (Q(h4))
order of accuracy cof integration and tnerefore combines
economy and reliesbility, Tne main problem concerns the accue
racy obtained, Therefore calculations were performed for a
few different mesh sizes as presented below.

The kernel of Eq.(1) is composed of two terms, each
depending on the same function K given by the formula;

2
;
{59 E(@)s = e =i+ 0 S,
Zu a br3
where .
(4) v w s el nEyt/E

€y Cp are constants,
d

Putting (3) in uimensionless form we write:

o ~ —2 * -
(5) B3 =28 L. 5, £ (ef. Pig. 1)
r r
where
(6) ¢ = d/r = r/r B oy A R
o? o B Risar S0 b b G oF

Values of &8 are taken from the interval:

1t min
L Lot ET:
ahere

(8) = [Ovjf--tvn] ’ zo<zi< L+ZD,‘

((25=21), (25+21)) <O max - ((55-23), (25%2)).
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In or.er To apply trhe spline tecnunigue e may use a direct
approscn wituout trying to maxe tae program nignly effectiv
at tanis stage.

Consider cabic splines over [z,,L+2_1 diviaed intc n
e,ual sucintervals. gSeconc aerivatives {(z), zé_:zo,L+za]
are represernted by & continuous broken liué made of straight
line sezcments. sSucn & line is uniguely descriced by n+1
values: Ugs 31""'uc-1'un at nodel pointe., Thue for

z2€(2, 912 s n=Lén:

-Z z =2
k k-1 3
{(10) Roma iy + i ¥ (E:W,,_,'u)
k-1 h K A
on integration: 5 2
. (z,-2) (z -z, _4 )C
s + b Gy =tog
i1 k=1 oh o k k-1
/ z 2
(zp-2)” (z=2, 4 )
U3 Hy —— "ii-———-—*-*—*C,(Z-Z_-)d»
kel en o s
Tne conetants ( c é ti +t C-k-'i(zk_Z)‘
Lo La Cyv Cypq are from continuity;:
D] 1 2 i 1 1 2
o e L R O R R R 4
un substitution ana for z,~2 = z-zk_.l:b/E:

iy Jp2 iy
ety S By S SRR My
Tne boundery conditions for spline unigueness are assu-
med to be:

(13) Gy = gy Up.q = Uy
Therefore n-1 internal nodes only have to be considered and

(n=1)=dirensicnal mstrix vectors are used in the computatior,
¥rite from (25131, 12):

h GO
ST R B e B L
i = M2 h
14 u-nu
0 = iin__1k—1 & opitensl
2 h

. (€= 2,,.0,0=2)
(o) e F AU T S (B B0, )

wnereas for k= 1 from (14):

e 3 6 6
(16) St (u, - Y = =P,
i s =
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and for k=n-1:

3 6
T MR R R e
Therefore (15) together wita (16) and (17) ere put into a
matriz formg : : :

< "
(18) U = TU+k
Eq.(1) on substitution of (10) and after performing integ-
ration gssumes the dlscretlzed form Gl e n =1l

(19) uy o= iy 11 b n-1xcn *
i

n-1 i
i‘ik 1(kaok Kt:sk) + iy (Ko g g1Kex )]

tis
i o}
where the coefficients are written:

I

= Z e p
(20)  Kox Fore-1,1 p-o,1("") Ky (Zy_p=%2g)
i
foex u--121 dpz (_1)p[K2(zk—p'“i} -
* ziK‘l(zx—p_dzi)}
and py integrating the kernel (3)
Eq(d) = e ln(o+r) + oy (= g + lo(d+r)),
E;(8) = o F + o (r + ro/r), r = (r + a2yt/e

EG.(19) may be written:
n-1

LJ
(22) u, = ;;_21 Ky ju; or U =AU
where i A
Kjg = Kuq *+ (25Kgp — Kogp)/hy
g Bl 1 o 1
(23) Mg = h(Keaie = Zie-g Ko + zk+1 cke+1 ~ Kesisr)?
S .
: 1
Ki pq =~ g(2p 0K; ngq Kcs n-1) * Egn

BEquations (18) and (22) are combined into the matrix soluticn:

ﬁ =TS (=
(24) U= (I-KT,Tp) MIg k.
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The method described above bears a similarity to the
solution methods of integral eguations as described in
in, say {1] or [5].

The numerical solution of Eg.(24) for E'=628318,

r,= 0.05, L=10, E=20000, ¥ =0.16, P= 0,628 (in consistent
units) and n'= 13 is shown on a semilogarithmic scale in
Fig, 2. ¥When varyihg n from 10 to 13 the usual uniform
convergence pattern appears. Curves become more and more
closely packed with increasing n, The second derivative
i exnibits a somewnat oscillatory benaviour (with a cor-
rect trend, tnough) for lower n values and becomes re-—
gular for n=13 with some remaining oscillation close to
tne end-points, This may be attributed to the oversimpli-
fied spline boundary condition (EQ.(13)). Tae ratio {#{/u
wnich Greszczuk [3] assumes to be constant shows a regular
decrease by an order of msgnitude over the main portion
of twne fibre length 1. This is a novel result and is
attributable to tne shaoe of the kernel which definitely
ie not a Jirac mass and follows from exasct fundamental
sslutions of the theoryv of elasticity.

4notaer anmroach to tae pull-out oroblem is given
in [z] woere a matrix bar is assumed to be uniformly
stressed over a finite cross-section by the pull on the
fivre and the front part of the bar is free, the far away
rear end of the bar being clamped. Thnerefore direct com-
srison of tne results is not feasible, although an alter-

autive exneriiental arrangement is sug.ested by the method
presented nere, v

] Tue insert in pig, 2 snows an integral measure of
tre displacement aistribution (Obtained by Simpson integra-
tion) as plotlted against Zye Thnis measure (or characterise-
tic length) accentuates the benaviour of the initial portion
of tke disclec:ment curve i.e., that portion where the dis-
placements are largest, Naturally, the characteristic
length is larger when the matriz offers a lesser stiffness

due to tne increased thickness of the padding layer,
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Since EQge(1) may be brought to a dimensionless form
(the result being formally the same as that of inserting
a tilda (=) over -tane kernel, the variables and the cons-
:ants) andﬂ wariting G = e r, u/P, E = /I, g = 8/T s
L = L/ro, 3, = zo/ro together with K given by Eg.(5)
above, the numerical values obtained hold for nmarameter
values which leave the 5 dimensionless similarity cri~
teria: =

L/ro, zo/ro, P/ec = P/x rzﬂ', E‘/E, ¥ unchanged,
Ine boundary condition becomes dG/dZ = 1 in this case,
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